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Unrepetitive graph coloring

A bi-inifnite word can be viewed as a coloring of edges (or nodes) of
Cay(Z; 1)
Its factors are the coloring of finite simple paths

Generalize to an arbitrary graph G

E.g., the minimal number of colors to avoid squares is the Thue
chromatic number of G (Alon, Grytczuk, Ha luszczak, Riordan,
2002)

We consider a different problem
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Unrepetitive walks

Let G = (V ;E) be a finite digraph.

A walk is a sequence of edges, i.e., a word on the alphabet E

Thus we can look for unrepetitive words among walks in G

Motivation

Symbolic dynamics (ergodicity)

Unrepetitive traces

Repetition threshold for words

Unending chess

A match of chess may be viewed as a walk in a digraph with vertices
= positions and edges = moves. With modified rules, infinite
square-free walks correspond to unending matches (Morse, Hedlund,
1943)
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Preliminaries

Let G = (V ;E) be a digraph
A walk in G is any word of W = E

+ n E�
NE

�, where

N = f(v1; v2)(v3; v4) j v1; v2; v3; v4 2 V ; v2 6= v3g

As any infinite walk terminates in a strongly connected component, we
will consider only strongly connected digraphs, w.l.o.g.
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Unending square-free walks

Theorem
A strongly connected digraph G = (V ;E) has an unending square-free
walk if and only if

Card(E) � Card(V ) + 2

--mm

??

��

��

__

Theorem
Any strongly connected digraph G has an unending cube-free walk unless
it is a simple cicle
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Vertex sequences

The vertex sequence of a walk

w = (v0; v1)(v1; v2)(v2; v3) � � �

is the infinite word
v0v1v2v3 � � �

on the alphabet V
We say that a walk is vertex-square-free if its vertex sequence is
square-free

Problem
Effectively characterize digraphs with an infinite vertex-square-free walk
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Square-free traces

A alphabet
D symmetric, anti-reflexive relation on A (dependency)
M (A;D) = A= � where � is the congruence generated by

ab � ba for all (a ; b) 2 (A�A) nD

(trace monoid)
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Theorem (C., de Luca, 1986)

Let M =M (A;D) be a trace monoid. The following propositions are
equivalent:

M has infinitely many square-free traces

the dependency graph has a vertex-square-free infinite walk

the dependency graph has one of the following subgraphs

Remark
This characterize undirected graphs with a vertex-square-free infinite
walk. The problem remains open for digraphs
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Example

--mm

??

��

��

__

has an infinite
vertex-square-free walk

--mm

??

�� ��

__

has no infinite
vertex-square-free walk
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Repetition threshold

the exponent of a finite word is the ratio of its length and its least
period

the critical exponent of a (possibly infinite) word is the supremum of
the exponents of its (finite) factors

the repetition threshold RT(k) is the minimal critical exponent of an
infinite word on k letters

Definition
The repetition threshold of a digraph G is the minimal critical exponent
RT(G) of an infinite walk in G
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Repetition threshold on n letters

n RT(n)

2 2 Thue, 1906
3 7=4 Dejean, 1972
4 7/5 Pansiot, 1984

n � 5 n/(n-1) Moulin-Ollagnier, 1992 for 5 � n � 11
Mohammad-Noori, Currie, 2007 for 12 � n � 14
C., 2007 for n � 33
Rao and Currie, Rampersad, 2009 for 15 � n � 32

All conjectured by Dejean, 1972
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Generalized repetition threshold

the k -exponent of a finite word is the ratio of its length and its least
period not smaller than k

the k -critical exponent of a (possibly infinite) word is the supremum
of the k -exponents of its (finite) factors

the generalized repetition threshold RT(n ; k) is the minimal
k -critical exponent of an infinite word on n letters
(Ilie, Ochem, Shallit, 2004)

Definition
For a digraph G, the generalized repetition threshold RT(G; k) is the
minimal k -critical exponent of an infinite walk in G
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Examples

All these graphs have repetition threshold 2:

,,ll ll ,,

No square-free infinite walk

,,ll ll ,, ,,ll

A square-free infinite walk, no vertex-square-free infinite walk

,,ll

??
��

��
__ ,,ll

A vertex-square-free infinite walk
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Other examples

��

LL
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[[

{{

;;
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;;
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��

,,ll ll ,,

The n-edge star has repetition threshold RT(n)
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Other examples
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Kn

3n vertices
4n edges
a (2-automatic) infinite walk of critical
exponent 1 + 4=n

n + 2

n
� RT(Kn) �

n + 4

n
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de Bruijn digraph

B(n ; k) = (Ak�1;E) with Card(A) = n and
E = f(au ;ub) j a ; b 2 A; u 2 Ak�2g

010 101

011

110

111
}}

��

OO __

��

OO

??
,,ll

100

001

000
!!

__

����
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��

��

oo

//

Carpi Banff, February 19–24, 2012 16/24



de Bruijn digraph

B(n ; k) = (Ak�1;E) with Card(A) = n and
E = f(au ;ub) j a ; b 2 A; u 2 Ak�2g

010 101

011

110

111
}}

��

OO __

��

OO

??
,,ll

100

001

000
!!

__

����

??

��

��

oo

//

00011110

Remark
There is a natural 1-1 correspondence between A�k [A! and the set of
finite and infinite walks in B(n ; k) which preserves factors and periods
(compatibly with length contraction)

Carpi Banff, February 19–24, 2012 16/24



Proposition

For 1 � m � k ,

RT(B(n ;m); k) � RT(n ; k) � RT(B(n ;m); k) +
m � 1

k
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Uniform embeddings

Definition
Let G1 = (V1;E1) and G2 = (V2;E2) with V2 � V1. An embedding of
G2 in G1 is a monoid morphism a map ' : E�

2 ! E
�
1 such that

1. for any edge (v ; v 0) 2 E2, '(v ; v 0) is a path from v to v 0 whose
internal vertices do not belong to V2,

2. for any e1; e2 2 E2 with e1 6= e2, '(e1) and '(e2) have no common
edges.

Remark
' maps walks of G2 into walks of G1

Proposition

If there is a uniform embedding of G2 in G1 then

RT(G1) � RT(G2)
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Generalized embeddings

Definition
Let G1 = (V1;E1) and G2 = (V2;E2) with V2 � V1. A generalized
embedding of G2 in G1 is a monoid morphism a map ' : E�

2 ! E
�
1 such

that

1. for any edge (v ; v 0) 2 E2, '(v ; v 0) is a path from v to v 0 whose
internal vertices do not belong to V2,

2. for any e1; e2 2 E2 with distinct origins and distinct tails, '(e1) and
'(e2) have no common edges.

Proposition

If there is a generalized uniform embedding of G2 in G1 then

RT(G1) � RT(G2) +
2

c

where c is the minimal length of cycles in G2
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Embedding in Cayley digraphs

Proposition

Let T be a subtree of a Cayley digraph K , rooted in 1, with leaves
`1; `2; : : : ; `r , and let H = h`1; `2; : : : ; `r i, r � 2. Suppose that the
following condition is verified:

for any pair of distinct internal vertices v1; v2 of T such that
v
�1
1 v2 2 H there exists x such that v1x is the unique child of v1

and v2x is the unique child of v2

Then there is a generalized embedding of Cay(H ; `1; `2; : : : ; `r ) in K .
Moreover, if all the leaves have the same height in T , then the
generalized embedding is uniform
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From de Bruijn graph to the symmetric group

Proposition (Moulin-Ollagnier, 1992)

The digraph Cay(Sn ;�0; �1), where

�0 = (1 2 � � � n) and �1 = (1 2 � � � n � 1)

is a subgraph of B(n ;n � 1)

Fact
Let n � 15. There is a generalized uniform embedding of
Cay(G; �0; �1; �2) in Cay(Sn ;�0; �1) where
�0 = (7 9 10 8); �1 = (9 11 12 10); �2 = (1 5 6 3 4), G = h�0; �1; �2i.
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From symmetric group to grid

Since the orbit of �2 does not intersect those of �0 and �1,

Cay(G ; �0; �1; �2) = Cay(G1; �0; �1)�C5

Computer verification shows that Cay(G1; �0; �1) has a simple cycle
of length 100

Thus, C100 �C5 is a subgraph of Cay(G ; �0; �1; �2)

The graph we called K100 is a subgraph of C100 �C5
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In conclusion, there is a generalized uniform embedding of K100 in
B(n ;n � 1)

//
���� //
��

��

��

��

��

��

��

��

��oo

oo
��oo

__ __oo
__

OO

OO

__

OO

??

??

OO

?? //

//
??

One derives

RT(B(n ;n � 1)) � 1:03 and RT (n ; k) � 1:03 + 2=k ; k � n � 1

Actually, K100 is embedded in a subgraph of B(n ;n � 1) where ‘short’
walks correspond to words of critical exponent � n=(n � 1).
Thus we have obtained a new infinite word of minimal critical exponent.
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Thank you !
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