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Unrepetitive graph coloring

Q_ A bi-inifnite word can be viewed as a coloring of edges (or nodes) of
Cay(Z;1)
Q@ Its factors are the coloring of finite simple paths
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Unrepetitive graph coloring

A bi-inifnite word can be viewed as a coloring of edges (or nodes) of
Cay(Z;1)

Its factors are the coloring of finite simple paths
Generalize to an arbitrary graph G

epp P

E.g., the minimal number of colors to avoid squares is the Thue
chromatic number of G (Alon, Grytczuk, Hatuszczak, Riordan,
2002)

We consider a different problem
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Let G = (V, E) be a finite digraph.
@ A walk is a sequence of edges, i.e., a word on the alphabet E
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Unrepetitive walks

Let G = (V, E) be a finite digraph.
@ A walk is a sequence of edges, i.e., a word on the alphabet E

@ Thus we can look for unrepetitive words among walks in G

Motivation

Q_ Symbolic dynamics (ergodicity)
Q@ Unrepetitive traces

Q@ Repetition threshold for words
@ Unending chess

A match of chess may be viewed as a walk in a digraph with vertices
= positions and edges = moves. With modified rules, infinite
square-free walks correspond to unending matches (Morse, Hedlund,
1943)
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Preliminaries

Let G = (V, E) be a digraph
A walk in G is any word of W = ET \ E* NE*, where

N = {(v1,v2)(v3,va) | v1,%2,v3,v4 € V, v2 # v3}
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Preliminaries

Let G = (V, E) be a digraph
A walk in G is any word of W = ET \ E* NE*, where

N = {(v1,v2)(v3,va) | v1,%2,v3,v4 € V, v2 # v3}

As any infinite walk terminates in a strongly connected component, we
will consider only strongly connected digraphs, w.l.o.g.
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Unending square-free walks

Theorem
A strongly connected digraph G = (V, E) has an unending square-free
walk if and only if

Card(E) > Card(V) + 2
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Unending square-free walks

Theorem
A strongly connected digraph G = (V, E) has an unending square-free
walk if and only if

Card(E) > Card(V) + 2

O

AN

CO=——"""F—F—=>0

N

O

Theorem
Any strongly connected digraph G has an unending cube-free walk unless
it is a simple cicle
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Vertex sequences

The vertex sequence of a walk

w = (vg, v1)(v1, v2)(va, v3) - -+
is the infinite word
YU1UV3 * **

on the alphabet V
We say that a walk is vertex-square-free if its vertex sequence is
square-free

Problem
Effectively characterize digraphs with an infinite vertex-square-free walk
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Square-free traces

A alphabet
D symmetric, anti-reflexive relation on A (dependency)
M(A,D)= A/ =~ where = is the congruence generated by

ab = ba for all (a,b) € (Ax A)\ D

(trace monoid)
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Theorem (C., de Luca, 1986)

Let M = M (A, D) be a trace monoid. The following propositions are
equivalent:

Q. M has infinitely many square-free traces
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Theorem (C., de Luca, 1986)

Let M = M (A, D) be a trace monoid. The following propositions are
equivalent:

Q. M has infinitely many square-free traces
Q@ the dependency graph has a vertex-square-free infinite walk
Q_ the dependency graph has one of the following subgraphs

A L [T e

Remark
This characterize undirected graphs with a vertex-square-free infinite
walk. The problem remains open for digraphs
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Example

O

has an infinite
vertex-square-free walk
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Example

/O\ /O
o &
has an infinite has no infinite
vertex-square-free walk vertex-square-free walk
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Repetition threshold

Q_ the exponent of a finite word is the ratio of its length and its least
period

Q_ the critical exponent of a (possibly infinite) word is the supremum of
the exponents of its (finite) factors

Q_ the repetition threshold RT(k) is the minimal critical exponent of an
infinite word on k letters
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Repetition threshold

Q_ the exponent of a finite word is the ratio of its length and its least
period

Q_ the critical exponent of a (possibly infinite) word is the supremum of
the exponents of its (finite) factors

Q_ the repetition threshold RT(k) is the minimal critical exponent of an
infinite word on k letters

Definition

The repetition threshold of a digraph G is the minimal critical exponent
RT(@G) of an infinite walk in G
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Repetition threshold on 7 letters

’ n | RT(n)
2 2 Thue, 1906
3 7/4 Dejean, 1972
4 7/5 Pansiot, 1984
n>5 | n/(n-1) Moulin-Ollagnier, 1992 for 5 < n <11

Mohammad-Noori, Currie, 2007 for 12 < n < 14
C., 2007 for n > 33

Rao and Currie, Rampersad, 2009 for 15 < n < 32
Q_ All conjectured by Dejean, 1972
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Generalized repetition threshold

Q_ the k-exponent of a finite word is the ratio of its length and its least
period not smaller than &

Q_ the k-critical exponent of a (possibly infinite) word is the supremum
of the k-exponents of its (finite) factors

Q_ the generalized repetition threshold RT(n, k) is the minimal
k-critical exponent of an infinite word on n letters
(llie, Ochem, Shallit, 2004)
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Generalized repetition threshold

Q_ the k-exponent of a finite word is the ratio of its length and its least
period not smaller than &

Q_ the k-critical exponent of a (possibly infinite) word is the supremum
of the k-exponents of its (finite) factors

Q_ the generalized repetition threshold RT(n, k) is the minimal
k-critical exponent of an infinite word on n letters
(llie, Ochem, Shallit, 2004)

Definition

For a digraph G, the generalized repetition threshold RT(G, k) is the
minimal k-critical exponent of an infinite walk in G
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Examples

All these graphs have repetition threshold 2:

O=—=0=—=0

No square-free infinite walk

O=——=0C<=——=0<=——=0

A square-free infinite walk, no vertex-square-free infinite walk

o
/N
o<<jo\o /@o

A vertex-square-free infinite walk
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Other examples

N
4

The n-edge star has repetition threshold RT(n)
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Other examples

3n vertices

4n edges

a (2-automatic) infinite walk of critical
exponent 1+ 4/n

2 4
n + SRT(Kn)<n+

n - n
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de Bruijn digraph

B(n,k) = (A*1, E) with Card(4) = n and
E ={(au,ub) | a,b€ A, ue A*2}

100 110

SN 1IN
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de Bruijn digraph

B(n,k) = (A*1, E) with Card(4) = n and
E ={(au,ubd) | a,b€ A, ue A* 2}

A NEVZAN

001 011

00011110

Remark
There is a natural 1-1 correspondence between A=* U A% and the set of

finite and infinite walks in B(n, k) which preserves factors and periods
(compatibly with length contraction)
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Proposition
For 1 <m <k,
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Uniform embeddings

Definition
Let Gl = (Vl,El) and Gz = (Vz,Ez) with Vz g Vl. An embedding of
Gz in Gy is a monoid morphism a map ¢ : E5 — Ef such that
1. for any edge (v, v') € E,, (v, v’) is a path from v to v’ whose
internal vertices do not belong to V5,

2. for any ey, ex € Ey with e; # ez, ¢(e1) and p(e2) have no common
edges.
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Uniform embeddings

Definition
Let Gl = (Vl,El) and Gz = (Vz,Ez) with Vz g Vl. An embedding of
Gz in Gy is a monoid morphism a map ¢ : E5 — Ef such that

1. for any edge (v, v') € E,, (v, v’) is a path from v to v’ whose
internal vertices do not belong to V5,

2. for any ey, ex € Ey with e; # ez, ¢(e1) and p(e2) have no common
edges.

Remark
¢ maps walks of G5 into walks of G;

Proposition
If there is a uniform embedding of G2 in Gy then

RT(G:1) < RT(Ga)
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Generalized embeddings

Definition
Let Gy = (V3, E1) and Gz = (Va, E») with V, C Vi, A generalized
embedding of Gz in G; is a monoid morphism a map ¢ : Ef — Ef such
that
1. for any edge (v, v') € Bz, ¢(v,v') is a path from v to v’ whose
internal vertices do not belong to V5,
2. for any ey, ex € E, with distinct origins and distinct tails, ¢(e;) and
©(ez) have no common edges.
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Generalized embeddings

Definition
Let Gy = (V3, E1) and Gz = (Va, E») with V, C Vi, A generalized
embedding of Gz in G; is a monoid morphism a map ¢ : Ef — Ef such
that
1. for any edge (v, v') € Bz, ¢(v,v') is a path from v to v’ whose
internal vertices do not belong to V5,

2. for any ey, ex € E, with distinct origins and distinct tails, ¢(e;) and
©(ez) have no common edges.

Proposition
If there is a generalized uniform embedding of Gz in G; then

RT(G:) < RT(Ga) +

where ¢ is the minimal length of cycles in Gz
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Embedding in Cayley digraphs

Proposition

Let T be a subtree of a Cayley digraph K, rooted in 1, with leaves
l1,45,...,4,, and let H = (¢1,45,...,4,), 7 > 2. Suppose that the
following condition is verified:

Q@ for any pair of distinct internal vertices vy, v; of T such that
’Ul_l’Ug € H there exists z such that vz is the unique child of v
and vz is the unique child of v,

Then there is a generalized embedding of Cay(H;4y,42,...,4,) in K.

Moreover, if all the leaves have the same height in T', then the

generalized embedding is uniform
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From de Bruijn graph to the symmetric group

Proposition (Moulin-Ollagnier, 1992)
The digraph Cay(S,; 0o, 01), where

op=(12---n)and oy =(12--- n—1)

is a subgraph of B(n,n — 1)
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From de Bruijn graph to the symmetric group

Proposition (Moulin-Ollagnier, 1992)
The digraph Cay(Sy; 0o, 01), where

op=(12---n)and oy =(12--- n—1)
is a subgraph of B(n,n — 1)

Fact

Let n > 15. There is a generalized uniform embedding of
Cay(G; 1o, T1,72) in Cay(Sy;00,01) where

To=(79108), m =(9111210), > =(15634), G = (10,71, T2).
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From symmetric group to grid

Q_ Since the orbit of 7 does not intersect those of 175 and 74,
Cay(G; 1o, T1,72) = Cay(G1; 70, 71) X Cs

Q@ Computer verification shows that Cay(Gy; o, 1) has a simple cycle
of length 100

Q@ Thus, Cigo x Cs is a subgraph of Cay(G; 1, 71, 72)

Q@ The graph we called Kiqg is a subgraph of Cigp X Cs
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In conclusion, there is a generalized uniform embedding of Kjgg in

B(n,n —1)
AN\
v N
v N
N e
NN
ANRANV V'S
One derives

RT(B(n,n—1)) <1.03 and RT(n,k) <1.03+2/k, k>n—-1

Actually, Kjgo is embedded in a subgraph of B(n,n — 1) where ‘short’
walks correspond to words of critical exponent < n/(n — 1).

Thus we have obtained a new infinite word of minimal critical exponent.

Carpi Banff, February 19-24, 2012

23/24



Thank you !
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