
Introduction
Correlated sampling with reweighting

Correlated sampling with no reweighting
Conclusion and perspectives

Correlated sampling without reweighting,
computing properties with size-independent

variances

Roland Assaraf

Laboratoire de Chimie Théorique, CNRS-UMR 7616, Université Pierre et Marie
Curie Paris VI, Case 137, 4, place Jussieu 75252 PARIS Cedex 05, France

BIRS 2012

Roland Assaraf Correlated sampling without reweighting



Introduction
Correlated sampling with reweighting

Correlated sampling with no reweighting
Conclusion and perspectives

Some perspective on Quantum Monte Carlo (QMC)

Many problem in Quantum physics at zero temperature

The Schroedinger equation,

HΦ = (−
N∑

i=1

∆i + V(r1, r2 . . . rN))Φ = EΦ (1)

N number of particles.

ri, 3 spatial coordinates of particle i.

E lowest eigenvalue, the groundstate energy.

Φ(r1 . . . rN) the lowest eigen vector, the groundstate

Φ antisymetric for electrons (fermions).
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Stochastic technics in principle adapted for solving the
Schroedinger equation :

Solving the many problem in Quantum Physics
<=>

Computing integrals in large dimensions.
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Example : variational energy

Variational energy

EV ≡ 〈Ψ|Ĥ|Ψ〉

Average on a probability distribution

〈Ψ|Ĥ|Ψ〉 =

∫
dRΨ2(R)

HΨ

Ψ
(R)

= 〈HΨ
Ψ (R)〉Ψ2 = 〈e(R)〉Ψ2

R : 3N coordinates of the N interacting particles

Ev =
1
N

N∑
k=1

e(Rk)
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In general

More generally

EQMC = 〈e(R)〉Π

Depending on the QMC method, the nature of R might change :

3N particle coordinates (VMC,DMC..).

Trajectories in the space of 3N particle coordinates
(PDMC, PIMC, reptation...)
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Accurate energies

No analytical integration

Flexibility (choice of ψ in VMC).

Weak limitation in system sizes.

Possibility to improve “arbitrarily” the accuracy
(“zero-variance zero-bias principle”, choice of ψ in VMC..).

In practice, reference methods for total energies on large
systems (large N)
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Quantites of physical interest

They are energy differences.

Exploiting accurate total energies

More tricky in QMC than in a deterministic method.

Energy differences are usually very small.

Statistical uncertainties.

Small statistical uncertainty on a total energy might be huge on
a difference if energies are computed independently.
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Why energy differences are usually small ?

Examples
Binding energies, transition state energies. One, two particle gaps (electron

affinities, ionization energies) . . .

First order derivatives of the energy : Any observable (force, dipole, moment,

densities...).

Higher order derivatives : spectroscopic constants . . .

They are groundstate energies of similar systems
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Paradigm : Calculation of an observable O

Hλ = H + λO => Ō =
dEλ
dλ

≃ Eλ − E0

λ
=

∆λ

λ
(2)

∆λ = Eλ − E0 ∝ λ small

Behavior as a function of the system size

limN→∞ ∆λ(N) = K finite.

The perturbation λO depends usually on a few degrees of
freedom.

∆λ has a locality property
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In summary

Small λ and large N

∆λ(N) ∝ λ

Accuracy on ∆λ in an independent energy calculation

δ∆λ

∆λ

∝ δE0

λ
∝

√
N
λ

No locality property for the statistical uncertainty.

Comparison to total energy

δ∆λ

∆λ

∝ N
3
2

λ

δE
E
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correlated sampling with reweighting

We have to compute the difference

Eλ − E0 = 〈eλ(R)〉πλ − 〈e(R)〉π

Sampling the same distribution for the two energies

Eλ − E0 =
〈eλ πλπ 〉π
〈πλ
π
〉π

− 〈e〉π. (3)

weight wλ

Different contexts

Variational Monte Carlo eλ(R) = Hλψλ

ψλ

(R), wλ(R) =
ψ2

λ

ψ2 (R)

Forward walking method inc ontext of DMC algorithms.

...
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General expression

Compact expression

∆λ = Eλ − E0 = 〈eλ − e〉π +
cov(eλ,wλ)

〈wλ〉π
(4)

λ dependence

Eλ − E0 = λ∂Eλ
dλ |λ=0 + o(λ).

E′

λ = 〈e′λ〉π + cov(eλ,w
′

λ)

Zero-Variance (ZV) estimator Pulay correction

Finite statistical uncertainty on E′

λ =⇒ δ∆λ

∆λ
= K + o(λ)
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Pair correlation function

[J. Toulouse, R. Assaraf, C. J. Umrigar. J. Chem. Phys. 126 244112 (2007)]

Ou =
∑

i<j δ(rij − u)
Probability density to find a pair of electrons at distance u
ZV term : dEλ

dλ = 〈Ou + (H−e)ψ′

ψ0
〉ψ2

0
= 〈Ou〉ψ2
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histogram estimator with HF wave function
ZV1 estimator with HF wave function

ZV1ZB1 estimator with HF wave function
accurate intracule

He atom

Roland Assaraf Correlated sampling without reweighting



Introduction
Correlated sampling with reweighting

Correlated sampling with no reweighting
Conclusion and perspectives

The method
Statistical uncertainties
Numerical illustration

N-dependence

R. Assaraf, D. Domin, W. Lester.

Model of two separated (non interacting) subsystems

Particles coordinates Rl and Ru. Hλ = Hl
λ + Hu

Variational Monte Carlo

R = (Rl,Ru)

Ψλ(R) = Ψλ(Rl,Ru) = Ψl
λ(R

l)Ψu(Ru)

Local energy eλ(R) = el
λ(R

l) + eu(Ru)

Eλ − E = 〈el
λ − el

0〉 +
cov(eλ,wl)

〈wl〉 (5)
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First term (ZV)

〈el
λ − el

0〉 depends only on Rl

=⇒ Locality property of its variance
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Pulay term

cov(eλ,wl)

〈wl〉 =
cov(el

λ,w
l)

〈wl〉 +
cov(eu,wl)

〈wl〉 (6)

Local Non local

The non local contribution is 0 (eu and wl independant) !

Its variance on a finite sample (eu(Ru
i ),w

l(Rl
i))i∈[1..M] :

∝ V(eu) ∝ N

.
=⇒ δ∆λ(N) ∝

√
N for large N.

Non locality property of the Pulay term.
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Conclusion

δ∆λ

∆λ

∝
√

N (7)

Correlated sampling with reweighting solves the small λ
difficulty but not the large N one
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Illustration on Hn chains

Is the analysis for non interacting subsystems holds for
interacting systems ?

Hydrogen chains, metallic and insulating

Calculation of the force on the first nucleus : derivative of
the energy with respect to the position of the first nucleus

Variational calculation

ψ is a single determinant (Restricted Hartree Fock)
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Metallic hydrogen chains
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Insulating hydrogen chains
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Histogram of the ZV term, metallic chain
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FIG.: Histogram of the energy derivative in the Hn chain

ZV contribution has the local property ! !
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Histogram of the local energy, metallic chain
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The local energy has not the local property
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Statistical uncertainties
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The method
Assaraf, Caffarel, Kollias 2011

Basic idea

〈eλ(R)〉πλ − 〈e(R)〉π = 〈eλ(Rλ) − e(R)〉Π(R,Rλ)

Marginal distributions of Π(R,Rλ) must be π(R), πλ(Rλ).

differences of the order of λ, 〈(Rλ) − R)2〉 = Kλ2
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How to build such a process

Choosing close stochastic processe, L, Lλ having π and πλ
as stationary states.

Stability versus chaos. Two trajectories with the different
initial conditions and same pseudo random numbers meet
exponentially fast.

Insures that close processes will produce close
trajectories.
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For example, with the overdamped Langevin process one
would have

R(t + dt) = R(t) + b [R(t)] dt + dW (8)

Rλ(t + dt) = Rλ(t) + bλ [Rλ(t)] dt + dW (9)
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Stability of the process versus chaos

Chain of 120 Hydrogens (120 electrons).
Same process but different initial conditions.
Perturbed system one atom displaced of λ = 10−4a.u (finite
difference derivative).
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Independance of the uncertainties on λ

Exact derivative

H120 finite differences

〈(Rλ−R
λ

)2〉

〈
ELλ−EL
λ
〉

Finite difference parameterλ (au)
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−
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FIG.: Quadratic distances betwen the two processes
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Locality of the algorithm
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Reweighting introduces statistitical fluctuations difficult to
control

Solves the small perturbation problem (λ small).

Sometimes large prefactors in the variance.

Same large N behavior as independent energy
calculations.

Correlated sampling with no reweighting

Solves the small λ and large N undesirable behavior.

Perspective to obtain small energy differences with
comparable accuracy to the energy.

Relies on some particular dynamics (stability with respect
to the chaos).
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Possible to build such stable dynamics

At the core of perfect sampling (criteria of time
convergence, see Fahy, Krauth...).

Building such dynamics for general molecules is underway.

Vast subject (numerically, mathematically). Collaborations
are welcome...
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