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From Parallel Tempering to Interacting Tempering

» The Equi Energy sampler ko005 is an example of Interacting
Tempering algorithm.
» The idea is to replace an instantaneous swap by an interaction

with the whole past of a neighboring process on the temperature
ladder.
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From Parallel Tempering to Interacting Tempering
» The Equi Energy sampler ko« . (2005) is an example of Interacting
Tempering algorithm.
» The idea is to replace an instantaneous swap by an interaction

with the whole past of a neighboring process on the temperature
ladder.

Equi-Energy sampler ko et ai (2006)

> Will define X® = {X{ n > 0} with XV (hot temperature), - - -
X E) target process.

» Algorithm: given the previous level Xl(k,,ilf and the current point
X,,(,k_)l, define X' as follows:

> (MCMC step / local moves) with probability ¢,
XP PO (x® Ly with PR st B pH) = (k)

> (Interaction step / global moves) otherwise,

-1) (k1)

(i) selection of a point Xsk among the set {X;" "} with the same

energy level as Xflli)l
(i) acceptance-rejection ratio.
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Numerical application: on the interest of EE

>
o . 20
" u » target density : 7= No(p, X;)
e T % » K processes with target distribution m'/7k
3 L J
20 Tk =1)




“Design parameters” of the EE sampler

1. How to choose the probability of interaction ¢ ?
2. How many temperatures, and which ones ?

3. How many energy levels, and which ones ?

Despite many convergence analysis  (on EE with no selection)
> ergodicity: lim,, E[h( ,(IK))] = 7(h)
> law of large numbers: DD h(X](K)) — m(h) inPoras.

) —15n (K) 2
> LT i S (X)) —w(h)} —p N(0,02)
see e.g. Kou, Zhou, Wong (2006); Atchadé (2010); Andrieu, Jasra, Doucet, Del Moral (2011); Fort, Moulines, Priouret (2012); Fort,
Priouret, Vandekerkhove (2012) these problems are still open.




“Design parameters” of the EE sampler

1. How to choose the probability of interaction ¢ ?
2. How many temperatures, and which ones ?
3. How many energy levels, and which ones ?

» In the original EE: energy rings = strata in the range of the energy
‘H of the target

m(x) = exp(—H(z))
Choose H; s.t. minH < Hy <--- < Hp.

Energy Ring #i = {z,H(z) € [Hi—1, Hi]}

» Our contribution: tune adaptively the boundaries of the strata



Num. Appl.: fixed boundaries vs adapted boundaries

» Target distribution on RS

1 1
™= 5-/\/6 (/J'703 Id)+§-/\/6 (_/1'50'2 Id) n= [25 72]

» We compare Hastings-Metropolis (HM); and the EE sampler and the
Adaptive EE sampler when applied with 3 temperatures and 11
strata.

> The last plot is for the 2-d projection (u” X;v7X) with
ul o [1,1,-+- 1] vl o [1,1,1, -1, -1, 1]



Behavior along one path:  HM EE A-EE

[Top] Error when estimating the means
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Behavior on 50 ind. run
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Adaptive tuning of the boundaries of the energy rings

— How to define the boundaries Hy,--- , Hy, of the energy rings 7

Algorithm
> Level 1 (Hot level)
» Sample X with target 7!/™* (MCMC).
> at each time n, update the boundaries Hf:i, e ,Hf]l’)L computed
from Xfl,),
> Level 2
» Sample X® (MCMC step and interaction step) with target 7
For the interaction step, use the boundaries H®.
> at each time n, update the boundaries Hffi, e ,H,(LQ’)L computed

from X

I:n

1/Ts

» Repeat until Level K.
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On the convergence of such adaptive schemes
Convergence result: we prove ergodicity and a strong law of large
numbers for A-EE.

Our approach for the proof is by induction:
> we assume the process X (*~1) " converges".
» we prove that the process X (¥) has the same convergence properties.

» Repeat from level 1 to K.
Tools for the proof:
> the conditional distribution £(X, )\past(1 k)) is Pg(f) (X,(l]i) )

P (@, ay) = PP (@, ay) + (1 — 9K (@, aw)
n n
96, (2, ¥)0n (dy)

(k) ) 96,, (z, y)0n (dy) (k)
K58 @ ) = [ afl) @y DT g a) [ e @) o )

I 90, (@, 2)0n (d2)
/TR o1 (y) [ag, (2, 2)6n (dz)

- (k) _
0p = — 5 _ o z,y) =
§ x (k=) o (T =10 /T~ Th—1 (4 [ g6, (v, 2)0n(d2)

96,, (. y) =" and y are in the same energy ring with boundaries defined by aFoy

(ex.) 0 ifif =, y are in the same energy level
- 1 i f otherwise
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On the convergence of such adaptive schemes
Convergence result: we prove ergodicity and a strong law of large
numbers for A-EE.

Our approach for the proof is by induction:
> we assume the process X (¥~ "converges” .
> we prove that the process X (¥) has the same convergence properties.
> Repeat from level 1 to K.

Tools for the proof:

» the conditional distribution E(X,(,,k)\pastglliﬁ)) is Pe(f)il(X,,(ji)l, )
» containment and diminishing adaptation conditions extensions from the pioneering
work by (Roberts, Rosenthal (2005)) + PO|SSOn equation + lelt TheOremS fOI’

Martingales.
» condition on the adapted boundaries

| ere exists p > 0 s.t. lm, n n.e — =0 w.p.1.
i) Th ists 8> 0 s.t. lim,n® |H) — H® 0 w.p.1

n—1,e

(iy HF — HE, w.p.1 when n — oo.
(iii) assumption on the limiting boundaries:

inf / %) (z, )/ T (dy) > 0



Example of adaptive boundaries

Example of adaptive boundaries:
choose exp(—Hi(k)) for 1 <i < L (computed from X(¥)) as the
quantiles of order i/(L + 1) of the distribution of

w(Z) when Z ~ 7t/Tk



Example of adaptive boundaries

Example of adaptive boundaries:
choose exp(—HT(fi)) for 1 <i < L (computed from Xl(fc)) as an estimator

n

of the quantiles of order i/(L + 1) of the distribution of

w(Z) when Z ~ 7t/Tk
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Example of adaptive boundaries

Example of adaptive boundaries:
choose exp(—Hffi)) for 1 <i < L (computed from ka“;z) as an estimator
of the quantiles of order i/(L + 1) of the distribution of

m(Z)  when Z ~ zt/Tk
Note that in EE, when using the interacting step to sample X,(lk)
» determine the ring such that H;_; < flogﬂ(X,(l]i)l) < H;

» choose (at random) one point among X—fkfl), - ,X,(Ik:ll) such that

exp(—H;) < m(XFY) < exp(—H,_1)

and accept / reject.

> When convergence:  £(XS™) = 71/Te-1 when n — oo



Quantile estimators

1) A first estimator, is based on the inversion of the empirical cdf

1 n
k —
EO0) =4 Z ~(X ) <h

(+) easy implementation
(-) time consuming

2) A second one is based on Stochastic Approximation procedures
18,2 = 1+ = (X0, 102)

(+) running time
(—) implementation of SA algorithm (choice of the step-size, initialization)



Num. Appl.: Adaptive EE
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[left] True density (mixture of Gaussian, Frequency of the visit to each com-
same weights); ponent of the mixture. Boxplot

[right] Adaptive EE with 50 ind. run
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Num. Appl.: Motif discovery in DNA sequence

Same model as in the talk of Dawn, yesterday:

> a background sequence, with a Markovian transition (known)

» motifs, of known length, with independent multinomial transition

(unknown)
Here is the result for A-EE and EE
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Conclusion

» EE depends on many design parameters that all play a role on the
efficiency of the sampler. We propose an adaptive procedure to
tune on the fly the energy rings.

» Convergence results are established * when the quantiles are
estimated by inversion of the cdf.

» Work in progress: convergence when the quantiles are estimated by
a Stochastic Approximation procedure.
Challenging: convergence of SA algorithms when the draws are not
Markovian (thanks to M. Vihola).

» First convergence results on EE with selection of the auxiliary point
during the interaction step.

*Submitted, available at http://perso.telecom-paristech.fr/ schreck
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