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Outline

• Introduction

– information theory and coding: algebraic and graph-based codes

– control theory: LQG control

• Interplay between control and communication

– coding for interactive communications: tree codes

– control over noisy channels: anytime capacity

– estimation over lossy channels

• Construction of linear tree codes

– existence with high probability

– efficient decoding for erasure channels

– examples

• Conclusion

– future work and open problems
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Single-User Information Theory

Single-user information (Shannon 1948) deals with the study of the

fundamental limits of reliable information transmission between a sender

and a receiver over a noisy channel

- -
p(y|x)

x y

C = max
pX (·)

{H(x) + H(y)−H(x, y)}

Key idea: Block coding

• the behavior of the channel over a single use is unpredictable

• but the behavior over many channel uses is:

– if the channel introduces errors with probability p, say, over

n≫ 1 channel uses it will introduce ≈ np errors
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Coding Theory

• start with b = {bi}mi=1 bits (the message)

• map them to c = {ci}ni=1 bits (encoding, rate = m
n

)

• the set of all codewords, c, is denoted by C (|C| = 2m)

• if c = {ci}ni=1 is transmitted across the channel and y = {yi}ni=1 is

received, then the maximimum likelihood decoder is

ĉ = arg max
c∈C

p(y|c)

Shannon showed that for all rates m
n

< C, there exists a sequence of

codes, such that

lim
n→∞

P (ĉ 6= c) = 0.
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Information Theorists Live in Asymptopia

This is nice theory and an elegant result. However,

• it may require unlimited computational resources at the transmitter

and receiver (encoding and decoding may need exponential time)

• it assumes asymptotically long delays (n→∞)

– encoding can be done only after all the bits {bi}ni=1 are available

– decoding can be done only after all the outputs {yi}ni=1 are

observed
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In Practice...

• one cares about the probability-of-error as a function of the rate and

the length of the code (error exponents)

• one cares about codes that can be efficiently encoded and decoded

– algebraic codes

∗ Reed-Solomon, Reed-Muller, algebraic geometry

∗ Berlekamp-Massey, list-decoding (Guruswamy-Sudan), etc.

– graph-based codes

∗ turbo codes, LDPC codes, expander codes

∗ message-passing, bit-flipping, LP decoding, etc.

– polar codes

In summary, after 60 years of work, we have practical codes that come

close to the Shannon limits in many cases.
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A Critique...

An early criticism (albeit philosphical) of information was that it did not

involve time

• the “information” obtained about knowledge of an event, depends

only on the probability of that event

log
1

p
,

not on when this knowledge is revealed or when we want to take

action on this knowledge

• issue never quite resolved (things like directed mutual information,

or the entropy rate of a random process don’t quite cut it)

• problem is that information-theoretic quantities often require some

form of ergodicity to have operational significance
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Control Theory

�

- plant

controller

• in control theory we observe the output of a dynamical system

(plant) and design a controller to regulate its behavior

• controller needs to react and generate control signals on the fly (in

real-time)

• the introduction of delay can result in loss of performance and/or

instability
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Control Theory

�

- plant

controller

• very rich theory has been developed (especially in the LTI case)

– LQG control, H∞ control, Kalman filtering, separation principle

• virtually no interaction with information theory

– plant and controller often co-located, no measurement loss
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But what if...?

�

-
?

6

plant

controller

lossy
channel

lossy
channel

• increasingly we have applications where systems (autonomous

agents, sensor/actuator networks, smart grid, etc.) are remotely

controlled and where measurement and control signals are

transmitted across noisy channels

• conventional channel coding does not work - the ensuing delay may

lead to instability
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Living with the Noisy Channels...?

�

-
?

6

plant

controller

lossy
channel

lossy
channel

• if the noisy channels are erasure channels, Sinopoli et al (2005)

showed that if the erasure probability is high enough then the closed

loop system will be unstable

• similar results hold for other classes of channels
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What to Do?

�

-
?

6

plant

controller

lossy
channel

lossy
channel

• the problem is that if we cannot tolerate large delays, we cannot

make the noisy channels reliable

• but do we need to do that?

• what do we need to guarantee the stability of the closed loop

system?
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Coding for Interactive Communications

Consider a two-party communication system

Alice, x Bob, y

s1 = f1(x)

−−−−−− →
s2 = f2(y, s1)

← −−−−−−
s3 = f3(x, s1, s2)

−−−−−− →
...

Can one do this reliably over noisy links?
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Tree Codes (Schulman, 1993)

• semi-infinite d-ary tree

• each edge labeled by a symbol in an alphabet of size d′ > d

• maps a sequence {si}∞i=1 to a sequence {ci}∞i=1, where

si ∈ {0, 1, . . . , d− 1} and ci ∈ {0, 1, . . . , d′ − 1}

• represents a causal code; each path is a codeword; R = log d

log d′
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Tree Codes (Schulman, 1993)

• for every pair of paths with a common ancestor and length n, say,

we require that the ”Hamming distance” between the paths be at

least a fixed proportion of n

• Schulman proved the existence of tree codes

• along with ML decoding, allows reliable interactive communication

over a noisy link

• Problem: No explicit constructions; no tractable decoding;

existence result is not with high probability

15



'

&

$

%

Anytime Capacity (Sahai, 2001)

plant

unstable
scalar causal

encoder
noisy
channel

causal
decoder controller

• scalar unstable LTI system

• noisy channel from plant output to controller

• each measured output quantized to k bits; causally encoded and

transmitted across channel

• controller attempts to causally decode transmitted bits, estimate

state of the system and generate a control signal to stabilize the

plant
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Anytime Capacity (Sahai, 2001)

plant

unstable
scalar causal

encoder
noisy
channel

causal
decoder controller

• how big should k be?

• given that we cannot reliably recover the transmitted bits, can we

even stabilize the system?

• what sort of fidelity do we need?
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Toy Example: Tracking an Unstable Plant

xi+1 = axi + wi, |a| > 1, wi ∈ {−1, 1} (unknown)

Assume the initial state x0 = 0 is known to the encoder and controller.

• clearly, at each time instant, the encoder should try to convey 1 bit

of information to the controller indicating whether wi = 1 or

wi = −1

• the encoder will causally encode this sequence of bits {bi}∞i=0 and

send them across the channel

• the decoder, at each time instant i, will attempt to decode the entire

bit sequence {bj}ij=0 and obtain {b̂j|i}ij=0
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Toy Example: Tracking an Unstable Plant

Define

Pe(i, d) = Prob(b̂j|i = bj , ∀j < i− d, b̂i−d|i 6= bi−d)

This is the probability that the first error happens d time steps in the

past.

• Then the mean-square error is bounded by

E(xi+1−x̂i+1|i)
2 ≤

i
X

d=1

„

ad − 1

a− 1

«2

Pe(i, d) <
1

(a− 1)2

∞
X

d=1

|a|2d
Pe(i, d).

• Clearly, if there exists K, ǫ and ∆, such that for all i and d > ∆:

Pe(i, d) < K|a|−2d−ǫ
,

we will have E(xi+1 − x̂i+1|i)
2 <∞, for all i, i.e., we will have

mean-square stability.
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• Remark: For mean absolute stability, we just need

Pe(i, d) < K|a|−d−ǫ

Conclusion: We do not need arbitrary reliability. Only a reliability

that decays appropriately exponentially fast with the delay.
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Anytime Capacity

• Definition: A channel will be said to have ”anytime capacity”

Cany(λ), for some parameter λ > 1, if for all rates R < Cany(λ),

there exists causal encoding and decoding schemes such that

Pe(i, d) < Kλ
−d−ǫ

, ∀i, ∀d > ∆

• Theorem: Consider a scalar LTI system
8

<

:

xi+1 = axi + wi + ui

yi = xi + vi

|λ| > 1

where wi and vi are bounded disturbances. Then to stabilize this

system over a noisy channel it is necessary and sufficient that

1. k > log |λ|
2. R = k

n
< Cany(|λ|)

• The theorem is based on the use of tree codes
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Some Problems

This is an elegant result, but...

• there are no explicit constructions of tree codes with efficient

decoding

• there is very little hope of actually computing Cany(λ)

– this requires computing optimal error exponents for tree codes

– even for block codes optimal error exponents have not been

computed

• there are no ”necessary and sufficient” conditions for systems with

vector states

What to do...?
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Linear Tree Codes

• linear codes can be represented by generator or, equivalently, parity

check matrices

• a linear tree code will thus clearly have a lower triangular generator

matrix
2

6

6

6

6

6

6

4

c1

c2

c3

...

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

G11

G21 G22

G31 G32 G33

...
...

...
. . .

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

b1

b2

b3

...

3

7

7

7

7

7

7

5

,

where bi ∈ GF k
2 , ci ∈ GF n

2 and Gij ∈ GF n×k
2
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• equivalently, the parity check matrix can be made lower triangular
2

6

6

6

6

6

6

4

P11

P21 P22

P31 P32 P33

...
...

...
. . .

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

c1

c2

c3

...

3

7

7

7

7

7

7

5

= 0

where Pij ∈ GF
(n−k)×n

2

• Do linear tree codes exist? Requires Pe(i, d) < Kλ−d−ǫ, for all i and

d > ∆. This requires two union bounds (which kills things)—hence

Schulman’s approach
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Toeplitz Linear Tree Codes

• trick is to make the code Toeplitz
2

6

6

6

6

6

6

4

G0

G1 G0

G2 G1 G0

...
...

...
. . .

3

7

7

7

7

7

7

5

and
2

6

6

6

6

6

6

4

P0

P1 P0

P2 P1 P0

...
...

...
. . .

3

7

7

7

7

7

7

5

• this makes the code ”look the same” at all times i, and so we avoid

the union bound over i
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Existence of Tree Codes with High Probability

Theorem: Choose the entries of the entries of the matrices {Gi}∞i=1

independently from Bernouli( 1
2
) and consider a binary-input channel

with Bhattacharya parameter

ζ =

Z ∞

−∞

p

p(y|b = 1)p(y|b = 0)dy.

Then with probability 1− 2−Ω(n∆), for all rates satisfing

R < 1− log(1 + ζ),

there exists a K such that the probability of ML decoding satisfies

Pe(i, d) < K2−βd
, ∀i, ∀d > ∆

where

β < H
−1(1−R)

„

log
1

ζ
+ log(21−R − 1)

«

.
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• The theorem holds exactly if we choose the entries of the {Pi}∞i=0

from Bernouli( 1
2
)

• For the BSC(p), the Bhattacharya parameter is 2
p

p(1− p) and

therefore

R < 1− log(1 + 2
p

p(1− p)) = 1− 2 log(
√

p +
p

1− p).

• For the BEC(ǫ), the Bhattacharya parameter is ǫ and therefore

R < 1− log(1 + ǫ).
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But What to do About ML Decoding?

• to get the error performance we need, we must do ML decoding at

each time instant

• for block codes doing this even once is too hard....
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But not for Erasure Channels

• Consider a random block linear code with (N −K)×N parity check

matrix P (R = K
N

)

• Suppose the codeword c is transmitted and partition it onto the

observed entries co and the erased entries ce, i.e., c =

2

4

co

ce

3

5.

• Now due to the parity check condition

Pc =
h

Po Pe

i

2

4

co

ce

3

5 = 0, we have

Pece = Poco
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•
Pece = Poco

If the erasure probability of the channel is ǫ, then ce will have size

≈ Nǫ

• If R = K
N

< C = 1− ǫ, then N −K > Nǫ and the system of linear

equations Pece = Poco, will, with high probability, have a unique

solution.

Conclusion: For erasure channels ML decoding is simply matrix

inversion
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But What About the Lower Triangular Case?

• for tree codes the matrices Pe and Po are lower triangular

• therefore even though the matrix Pe has more rows/equations

(N −K) than columns/unknowns (≈ Nǫ), the system of equations

Pece = Poco,

will most likely not have a unique solution (otherwise tree codes

would have the same performance of block codes!)

• however, if the tree code corrects all errors above a delay of d, this

means that if we partition ce =

2

4

ce1

ce2

3

5, where ce are all the erased

entries with delay more than d, we must have

Pec
′
e = Pec

′′
e implies c

′
e1 = c

′′
e2
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• partitioning Pe, Po and co similarly, we have
2

4

Pe11

Pe21 Pe22

3

5

2

4

ce1

ce2

3

5 =

2

4

Po11

Po21 Po22

3

5

2

4

co1

co2

3

5

or
2

4

Pe11ce1

Pe21ce1 + Pe22ce2

3

5 =

2

4

Po11co1

Po21co1 + Po22co2

3

5

pre-multiplying the second set of equations by P⊥
e22, the orthogonal

complement of Pe22 yields
2

4

Pe1

P⊥
e22Pe21

3

5 ce1 =

2

4

Po11co1

P⊥
e22Po21co1 + P⊥

e22Po22co2

3

5

But this latter system of equations must have a unique solution for

ce1.

32



'

&

$

%

An Efficient Algorithm

1. suppose at time i the bits up to delay d have not yet been decoded

(this happens with probability Pe(i, d) < Kλ−d)

2. for these bits, partition c =

2

4

ce

co

3

5 and P =
h

Pe Po

i

3. starting with delays d′ = 1, 2, . . . , d check whether the matrix
2

4

Pe1

P⊥
e22Pe21

3

5

has full column rank

4. if so, solve for ce1 in the system of equations
2

4

Pe1

P⊥
e22Pe21

3

5 ce1 =

2

4

Po11co1

P⊥
e22Po21co1 + P⊥

e22Po22co2

3

5
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5. if this does not happen for any d′ = 1, 2, . . . d, go to next time instant

The expected complexity per time instant is constant:

∞
X

d=1

K
′
d
3
λ
−d

Furthermore, the probability that the complexity at any given time

instant exceeds O(d3) decays as O(λ−d).

Remark: With feedback, encoding can also be done with constant

expected complexity.
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A Scalar Example

• Take the scalar LTI system
8

<

:

xi+1 = 2xi + wi + ui

yi = xi + vi

where wi is uniform over [−30, 30] and vi is uniform over [−1, 1].

• Suppose we want to stabilize this over an erasure channel with

erasure probability ǫ = 0.3 and that we have n = 15 bits per

measurement at our disposal.

• We need an error exponent 2−β < 1
2
. Using the theorem we can see

that we need a rate less than R < 0.40, i.e., we should quantize the

measurements to at most k = 5 bits.
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Figure 1: Open loop response.
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Figure 2: Closed loop response, k = 5.
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R = 3/15, β(R) = 4.8

R = 4/15, β(R) = 3.5

R = 5/15, β(R) = 2.5

R = 6/15, β(R) = 1.7

Exponent β should be larger than
2 inorder to stabilize the plant

Figure 3: CDF of LQR costs for different realizations of the codes.
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The Vector Case

Necessary and sufficient conditions to guarantee stability for LTI systems

with vector state-space is not known. Here is a useful sufficient condition.

• Consider an LTI system with vector state-space, scalar

measurement, and bounded system and measurement noise.

• Wlog write the state-space system in observer canonical form
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

xi+1 =

2

6

6

6

6

6

6

4

−a1 1 0 . . . 0

−a2 0 1 . . . 0

...
...

. . .
. . .

...

−an 0 0 . . . 1

3

7

7

7

7

7

7

5

xi + wi + ui

yi =
h

1 0 0 . . . 0
i

xi + vi

Note that the ai are the coefficients of the characteristic polynomial

of the system matrix.
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• Let λ > 1 be the smallest positive number such that the matrix
2

6

6

6

6

6

6

4

|a1|
λ

1 0 . . . 0

|a2|
λ

0 1 . . . 0

...
...

. . .
. . .

...

|an|
λ

0 0 . . . 1

3

7

7

7

7

7

7

5

is stable.

• Then we can stabilize the system (in a mean-square sense) by

appropriately quantizing each measurement with k bits and using a

tree code, such that

1. k > log λ

2. Pe(i, d) < K|λmax|−2d−ǫ for all i and d > ∆, where |λmax| is the

largest eigenvalue of the system matrix (in absolute value).
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A Vector Example

xi+1 =

2

6

6

4

2 1 0

0.25 0 1

−0.5 0 0

3

7

7

5

xi + wi + ui

yi =
h

1 0 0
i

xi + vi

where wi and vi are truncated N(0, 1) normals to lie in [−2.5, 2.5].

λmax = 2.

• We would like to stabilize the plant over an erasure channel with

ǫ = 0.3.

• We have n = 15 bits per measurement available.

• We need an exponent < 1
2
: an application of the theorem shows that

we need a rate R < 0.43, hence k < 7.
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k=2, n=15, nβ=6.3162

k=3, n=15, nβ=4.7593

k=4, n=15, nβ=3.5329

k=5, n=15, nβ=2.5279

Figure 4: CDF of LQR costs for different realizations of the codes.
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Some Remarks

• We have developed a universal and efficient method for stabilizing

plants driven by bounded noise over erasure channels

• This is perhaps the most practically interesting case: most systems

will probably quantize their measurements to some number of bits,

put them in packets and send them across a lossy network (where

packets will either be received or dropped)

• Not clear how to deal with unbounded noise (say, Gaussian). Seems

to require perfect feedback. Not clear if this is important in practice.

• Stabilizing a plant is the first step. Optimizing performance is the

next.

– this will require studying the trade-offs between control and

communication resources

– shoule we quantize coarsely, but heavily protect the bits, or

quantize finely and moderately protect the bits?
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Other Channels

• It would be interesting to develop efficiently-decodable tree codes for

other types of channels, especially, the BSC and the AWGNC.

• These appear to be much more challenging, since ML decoding is

out of the question.

– even in the block coding case, the codes that achieve capacity

over these channels (such as LDPCs or polar codes) do not do so

with an error exponent

– for example, polar codes approach capacity with a

probability-of-error e−α
√

N

• We care about having an error exponent much more than the rate

– in the block coding case, decoders that achieve an error exponent

are those that can correct a fixed fraction of errors

– Reed-Solomon codes; LDPC and expander codes with

bit-flipping and/or LP decoding

44



'

&

$

%

Conclusion

• Traditional information theory lives in Asymptopia—not

appropriate for real-time constraints

• Control has long ignored information theory...

• Controlling an unstable plant over a noisy channel is one place

where the two must meet

– the key object is a “tree code” (essentially a causal code), rather

than a block code

– the key criterion is the interplay between the rate and the decay

of the probability of error as a function of the delay (anytime

capacity)
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• For the first time:

– showed the existence (with high probability) of linear tree codes for a

wide class of channels

– developed an efficiently decodable tree code for erasure channels and

demonstrated the efficacy of the method

• This opens up many possibilities for controlling distributed systems

over noisy communication links and lossy networks

• It is important to study how best to trade off control and

communication resources to optimize system performance

• Developing efficiently-decodable tree codes for other classes of

channels is an important and interesting open problem
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