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Networked Information Processing System

Communication network

System: Internet, peer-to-peer network, sensor network, . . .

Sources: Data, speech, music, images, video, sensor data

Nodes: Handsets, base stations, processors, servers, sensor nodes, . . .

Network: Wired, wireless, or a hybrid of the two

Task: Communicate the sources, or compute/make decision based on them
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Network Information Theory

Communication network

Network information flow questions:

é What is the limit on the amount of communication needed?
é What are the coding schemes/techniques that achieve this limit?

Challenges:

é Many networks inherently allow for two-way interactions
é Most coding schemes are limited to one-way communications
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Objectives of the Talk

Review coding schemes that utilizes two-way interactions

Focus on the channel coding side of the story (given yesterday’s talks)

Draw mostly from a few classical examples and open problems (El Gamal–K )
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Discrete Memoryless Channel (DMC) with Feedback

M M̂Xi Yi

Y i−1

p(y|x)Encoder Decoder

Feedback does not increase the capacity of a DMC (Shannon ):

CFB = max
p(x)

I(X ;Y) = C

Nonetheless, feedback can help communication in several important ways

é Feedback can simplify coding and improve reliability (Schalkwijk–Kailath )

é Feedback can increase the capacity of channels with memory (Butman )

é Feedback can enlarge the capacity region of DMmultiuser channels (Gaarder–Wolf )

Insights on the fundamental limit of two-way interactive communication
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Iterative Refinement

Binary erasure channel:
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Iterative Refinement

Binary erasure channel:

0

1

0

1

e

1 − p

1 − p

X Y

Basic idea:

é First send a message at a rate higher than the channel capacity (without coding)

é Then iteratively refine the receiver’s knowledge about the message

Examples:

é Schalkwijk–Kailath coding scheme ()

é Horstein’s coding scheme ()

é Posterior matching scheme (Shayevitz–Feder )

é Block feedback coding scheme (Weldon , Ahlswede , Ooi–Wornell )
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Gaussian Channel with Feedback

X


Y

Z

Expected average transmitted power constraint

n

H
i=1

E(x2i (m,Y i−1)) ≤ nP , m ∈ [1 : 2nR]

Schalkwijk–Kailath Coding Scheme (Schalkwijk–Kailath , Schalkwijk ):

X1 ∝ θ,

Xi ∝ θ − θ̂i−1(Y i−1)
Doubly exponentially small probability of error
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Posterior Matching Scheme (Shayevitz–Feder )

Recall the Schalkwijk–Kailath coding scheme:

X1 ∝ Θ ∼ N(0, 1),
Xi ∝ Θ − Θ̂i−1(Y i−1) ∝ Xi−1 − E(Xi−1 |Y i−1) ⊥ Y i−1

é Y1 ,Y2 , . . . are i.i.d.

Consider a general DMC p(y|x)with a capacity-achieving input pmf p(x):
X1 = F−1

X (FΘ(Θ)), Θ ∼ Unif[0, 1)
Xi = F−1

X (FΘ|Y i−1 (Θ |Y i−1)) ⊥ Y i−1

é Y1 ,Y2 , . . . are i.i.d.

Generalizes repetition for BEC, S–K for Gaussian, and Horstein for BSC

Actual proof involves properties of iterated random functions

Question: Elementary proof (say, for BSC)?
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Block Feedback Coding Scheme

0

1

0

1
1 − p

1 − p

X Y

X Y

Z ∼ Bern(p)

Implementation of iterative refinement at the block level (Weldon ):

é Initially, transmit k bits uncoded

é Learn the error (via feedback), compress it using kH(p) bits, and transmit the

compression index uncoded

é Communicate the error about the error (kH2(p) bits)
é Communicate the error about the error about the error

Achievable rate: k/(k + kH(p) + kH2(p) + kH3(p) + ⋅ ⋅ ⋅) = 1 −H(p)
Extensions (Ahlswede , Ooi–Wornell )
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Multiple Access Channel (MAC) with Feedback

M1

M2

X1i

X2i

Encoder 

Encoder 

Decoderp(y|x1 , x2) Yi

Y i−1

Y i−1

M̂1 , M̂2

Transmission cooperation: x1i(M1 ,Y
i−1), xn2 (M2 ,Y

i−1)
Capacity region C is not known in general
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Example: Binary Erasure MAC

X1 ∈ {0, 1}

X2 ∈ {0, 1}
Y ∈ {0, 1, 2}

Capacity region without feedback:

R1 ≤ 1,

R2 ≤ 1,

R1 + R2 ≤ 3/2
Block feedback coding scheme (Gaarder–Wolf ):

é Rsym = 2/3: k uncoded transmissions + k/2 one-sided retransmissions
é Rsym = 3/4: k uncoded transmissions + k/4 two-sided retransmissions + k/16 + ⋅ ⋅ ⋅
é Rsym = 0.7602: k uncoded transmissions + k/(2 log 3) cooperative retransmissions

R∗
sym = 0.7911 (Cover–Leung , Willems )

Young-Han Kim (UCSD) Role of Interaction in NIT Banff, January   / 



Cover–Leung Coding Scheme

M1

M2

X1i

X2i

Encoder 

Encoder 

Decoderp(y|x1 , x2) Yi

Y i−1

Y i−1

M̂1 , M̂2
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Cover–Leung Coding Scheme

M1

M2

X1i

X2i

Encoder 

Encoder 

Decoderp(y|x1 , x2) Yi

Y i−1

M̂1 , M̂2
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Cover–Leung Coding Scheme

Encoder 

Encoder 

Decoderp(y|x1 , x2)

M̃2, j−1 ,M1 j

M2, j−1 ,M2 j

Xn
1 ( j)

Xn
2 ( j)

Y n( j − 1)

Y n( j)

Block Markov coding

Backward decoding (Willems–van der Meulen , Zeng–Kuhlmann–Buzo )

Willems condition (): Optimal when X1 is a function of (X2 ,Y)
Not optimal for the Gaussian MAC (Ozarow )

Question: Posterior matching for MAC?

Question: Optimality of Cover–Leung for one-sided feedback?
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Broadcast Channel (BC) with Feedback

M1 ,M2
Xi

p(y1 , y2|x)
Y1i

Y2i

M̂1

M̂2

Y i−1
1

Y i−1
2

Encoder

Decoder 

Decoder 

Receivers operate separately (regardless of feedback)

Physically degraded BC p(y1|x)p(y2|y1):
é Feedback does not enlarge the capacity region (El Gamal )

How can feedback help?
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Dueck’s Example

X

.666>666F
X0

X1

X2

Y2 = (X0 , X2 ⊕ Z)

Y1 = (X0 , X1 ⊕ Z)

Z ∼ Bern(1/2)

Capacity region without feedback:

{(R1 , R2) : R1 + R2 ≤ 1}
Capacity region with feedback (Dueck ):

{(R1 , R2) : R1 ≤ 1, R2 ≤ 1}
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Dueck’s Example

Zi−1

X1i

X2i

= (
= (

Zi ∼ Bern(1/2)

Y2i = (Zi−1 , X2i ⊕ Zi) → X1,i−1

Y1i = (Zi−1 , X1i ⊕ Zi) → X2,i−1

Capacity region without feedback:

{(R1 , R2) : R1 + R2 ≤ 1}
Capacity region with feedback (Dueck ):

{(R1 , R2) : R1 ≤ 1, R2 ≤ 1}
Feedback helps by letting the encoder broadcast common channel information
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Dueck’s Example

Zi−1

X1i

X2i

= (
= (

Zi ∼ Bern(1/2)

Y2i = (Zi−1 , X2i ⊕ Zi) → X1,i−1

Y1i = (Zi−1 , X1i ⊕ Zi) → X2,i−1

Extension to general BC (Shayevitz–Wigger )

“Learn from the past, don’t predict the future” (Tse )

Gaussian BC: Schalkwijk–Kailath coding scheme to LQG control

(Ozarow–Leung , Elia , Ardestanizadeh–Minero–Franceschetti )

Question: What’s going on with Gaussian? (Exactly why feedback helps?)
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Two-Way Channel

M1

M2

X1i

X2iY1i

Y2i M̂1

M̂2

Encoder 

Encoder Decoder 

Decoder 

Node Node 

p(y1 , y2|x1 , x2)

The first multiuser channel model (Shannon )

Capacity region C is not known in general

Main difficulties:

é Two information flows share the same channel, inflicting interference to each other
é Each node has to play two competing roles of communicating its own message and

providing feedback to help the other node

Two-way channel with common output: Y1 = Y2 = Y
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Bounds on the Capacity Region

Simple inner bound (Shannon ): A rate pair (R1 , R2) is achievable if
R1 < I(X1 ;Y |X2),
R2 < I(X2 ;Y |X1),

for some p(x1)p(x2)
é One-way communication
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Bounds on the Capacity Region

Simple inner bound (Shannon ): A rate pair (R1 , R2) is achievable if
R1 < I(X1 ;Y |X2 ,Q),
R2 < I(X2 ;Y |X1 ,Q)

for some p(q)p(x1|q)p(x2|q)
é One-way communication

é Can be improved using time sharing

é Not tight in general (Dueck , Schalkwijk )
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Bounds on the Capacity Region

Simple inner bound (Shannon ): A rate pair (R1 , R2) is achievable if
R1 < I(X1 ;Y |X2 ,Q),
R2 < I(X2 ;Y |X1 ,Q)

for some p(q)p(x1|q)p(x2|q)
Simple outer bound (Shannon ): If a rate pair (R1 , R2) is achievable,

R1 ≤ I(X1 ;Y |X2),
R2 ≤ I(X2 ;Y |X1)

for some p(x1 , x2)
Dependence balance bound (Hekstra–Willems ):

R1 ≤ I(X1 ;Y |X2 ,U),
R2 ≤ I(X2 ;Y |X1 ,U)

for some p(u, x1 , x2) such that I(X1 ; X2|U) ≤ I(X1 ; X2|Y ,U)
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Multiletter Characterization of the Capacity Region

Causally conditional pmf: p(xk ||yk−1) = ∏n
i=1 p(xi |xi−1 , yi−1)

Causally conditional directed information (Marko , Massey ):

I(Xn → Yn‖Zn) =
n

H
i=1

I(X i ;Yi |Y i−1, Z i)

Capacity region (Kramer ): Let Ck be the set of rate pairs (R1 , R2) such that

R1 ≤ 1

k
I(Xk

1 → Y k | |Xk
2 ),

R2 ≤ 1

k
I(Xk

2 → Y k | |Xk
1 )

for some p(xk1 ||yk−1)p(xk2 ||yk−1). Then C = ∪kCk

é Similar characterizations can be found for general TWC and MAC with feedback

é Each choice of k and p(xk1 ||yk−1)p(xk2 ||yk−1) leads to an inner bound

é Not computable
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Interactive Coding Scheme

X
k 1
,1

X
2
k

1
,k
+
1

X
3
k

1
,2
k
+
1

X
n
k

1
,(
n
−
1
)k
+
1

Y
k 1

Y
2
k

k
+
1

Y
3
k

2
k
+
1

Y
n
k

(n
−
1
)k
+
1

S1 j
.>F

Block j

Code over interleaved blocks (block j = times j , k + j , 2k + j , . . . , (n − 1)k + j)

Block j: input X1 j , output (Xk
2 ,Y

k
j ), causal channel state (X j−1

1 ,Y j−1)
R1 j < I(X1 j ; X

k
2 ,Y

k
j |X j−1

1 ,Y j−1) is achievable

Summing over blocks shows that∑k
j=1 R1 j < I(Xk

1 → Y k‖Xk
2 ) is achievable
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Example: Shannon–Blackwell Binary Multiplying Channel

X1 X2

YY

Simple bounds on the symmetric capacity (Shannon ):

max
p(x1)p(x2)

1

2
(I(X1 ;Y |X2) + I(X2 ;Y |X1)) ≤ Csym ≤ max

p(x1 ,x2)

1

2
(I(X1 ;Y |X2) + I(X2 ;Y |X1))
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Example: Shannon–Blackwell Binary Multiplying Channel

X1 X2

YY

Simple bounds on the symmetric capacity (Shannon ):

0.6170 ≤ Csym ≤ 0.6942

DB bound + channel augmentation (Hekstra–Willems ): Csym ≤ 0.6463

Schalkwijk’s lower bounds:

é Iterative refinement coding scheme (Schalkwijk ): 0.6191 ≤ Csym

é + Slepian–Wolf (Schalkwijk ): 0.6306 ≤ Csym

é Further extension (Meeuwissen–Schalkwijk–Bloemen ): 0.6307 ≤ Csym

Directed information inner bound: 1

2k
(I(Xk

1 → Y k‖Xk
2 ) + I(Xk

2 → Y k‖Xk
1 ))

é Ardestanizadeh (): 0.6191 ≤ Csym

Question: Can we outperform Schalkwijk (via directed information expression)?
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Intermission: Interactive Source Coding and Computing

Node  Node 

Xn
1 Xn

2Ml(Xn
1 ,M

l−1)
Ml+1(Xn

2 ,M
l)

Ẑn
1Ẑn

2

Two-way lossless source coding:

é Interaction does not enlarge the optimal rate region

é One-way Slepian–Wolf coding is optimal (Csiszár–Narayan )

Two-way lossy source coding:

é Interaction enlarges the rate–distortion region for correlated sources

é q-round interactions (Kaspi )

Two-way lossless computing:

é Interaction enlarges the optimal rate region even for independent sources

é Infinite-round interactions (Ma–Ishwar , )
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Relay Network

p(y1 , . . . , yN |x1 , . . . , xN )M

M̂ j

M̂k

M̂N

1

2

3

j

k

N

Topology of the network is defined through p(yN |xN)
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Relay Network

p(y1 , . . . , yN |x1 , . . . , xN )M M̂N

1

2

3

j

k

N

Topology of the network is defined through p(yN |xN)
Unicast
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Relay Network

p(y1 , . . . , yN |x1 , . . . , xN )M

M̂ j

M̂k

M̂N

M̂3

M̂2

1

2

3

j

k

N

Topology of the network is defined through p(yN |xN)
Unicast vs. broadcast
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Relay Network

p(y1 , . . . , yN |x1 , . . . , xN )M

M̂ j

M̂k

M̂N

1

2

3

j

k

N

Topology of the network is defined through p(yN |xN)
Unicast vs. broadcast vs. multicast
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Relay Network

p(y1 , . . . , yN |x1 , . . . , xN )M

M̂ j

M̂k

M̂N

1

2

3

j

k

N

Topology of the network is defined through p(yN |xN)
Unicast vs. broadcast vs. multicast

Capacity is not known in general

Many coding schemes have been proposed
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Dictionary of Coding Schemes

Standard parlance: decode–forward, compress–forward, amplify–forward

Extended vocabulary: partial decode–forward, noncoherent decode–forward,

coherent compress–forward, generalized amplify–forward

Recent coinages: hash–forward, compute–forward, quantize–map–forward,

rematch–forward

Loanwords: analog network coding, noisy network coding, hybrid coding

Dialects: calculate–forward, clean–forward,

combine–forward, demodulate–forward,

denoise–forward, detect–forward,

estimate–forward, flip–forward,

mix–forward, quantize–forward,

rotate–forward, scale–forward,

(randomly) select–forward,

sum–forward, truncate–forward
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Basic Coding Schemes

Decode–forward (Cover–El Gamal )

X1

Y2 : X2

Y3

̃
−

(M j−1 ,M j)

M̃ j M̃ j−1

M̂ j−1
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Basic Coding Schemes

Decode–forward (Cover–El Gamal )

Compress–forward (Cover–El Gamal )

X1

Y2 : X2

Y3

)

̂ n
−

M j

Ŷ n
2 j Ŷ n

2, j−1

M̂ j−1
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Basic Coding Schemes

Decode–forward (Cover–El Gamal )

Compress–forward (Cover–El Gamal )

Amplify–forward (Schein–Gallager )

X1

Y2 : X2

Y3

)

M

Y2i x2(Y2,i−1)

M̂
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Basic Coding Schemes

Decode–forward (Cover–El Gamal )

Compress–forward (Cover–El Gamal )

Amplify–forward (Schein–Gallager )

*–forward and extensions (Ahlswede–Cai–Li–Yeung ,

Kramer–Gastpar–Gupta , Avestimehr–Diggavi–Tse ,

Lim–Kim–El Gamal–Chung ): no/limited interaction
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Broadcast Relay Channel (BRC)

M Encoder
Xn
1 p(y2 , y3|x1)

Y n
2

Y n
3

Decoder 

Decoder 

R2 R3

M̂2

M̂3

A commonmessageM is to be broadcast to both receivers

(Draper–Frey–Kschischang )

Dual to MAC with partially cooperating encoders (Willems )
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Broadcast Relay Channel (BRC)

M Encoder
Xn
1 p(y2 , y3|x1)

Y n
2

Y n
3

Decoder 

Decoder 

R2 R3

M̂2

M̂3

A commonmessageM is to be broadcast to both receivers

(Draper–Frey–Kschischang )

Dual to MAC with partially cooperating encoders (Willems )

Capacity C(R2 + R3) is not known in general
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Example: Binary BRC (Xiang–Wang–K )

  

 

1 1

1

1

1

0

0

0

0

0

X1

Y2 Y3

3 − 2$2

$2 − 1

$2 − 1

X1 = Y2 ⋅ Y3

11

00

X1 Y2 ,Y3
$2 − 1

C(0) = 0.3941 (Z channel capacity)

C(2) = 1

C(R) = ?
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Example: Binary BRC (Xiang–Wang–K )

C(R)

R

1

2

0.3941

1.2338

Cutset

Partial decode–forward

?

R∗

Cutset: maxp(x1) min{I(X1 ;Y2) + R/2, I(X1 ;Y2 ,Y3)} (C(R) = 1 for R ≥ 1.2338)

Partial decode–forward: C(0)
R∗: Interactive computing of X1 = Y2 ⋅ Y3
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Example: Binary BRC (Xiang–Wang–K )

R

Cutset CF∞

1.4346 1.74491.2338 1.4893

CF⋅DF

CF2

CF

2

Compress–forward (Orlitsky–Roche ): HG(Y2|Y3) +HG(Y3|Y2) = 1.7449

Interactive relaying:

é Compress–forward and decode–forward (Draper–Frey–Kschischang ):

1 − I(X1 ;Y2) +HG (Y2|Y3) = H(Y2) + H(X1|Y3) = 1.4893
é Two-round compress–forward: H(Y2) + H(X1|Y3) = 1.4893
é Three-round compress–forward: 1.4488
é Four-round compress–forward: 1.4427

Infinite-round compress–forward (Ma–Ishwar , ):

(1 + p)H(p) + p log(pe1−p) !!!!p=1/$2
= 1.4346 < CFq−1 ⋅ DF = CFq

Questions: Optimality? Generalizations? Implications?
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Concluding Remarks

Interaction enables richer cooperation among network users

é Coherent transmission (MAC with feedback)

é Channel information broadcasting (BC with feedback)

é Sequential coding (two-way channel)

é Cooperative decoding (broadcast relay channel)

Theoretical challenges:

é Capacity still open for many basic problems

é Inherently multiletter solutions

(Permuter–Cuff–Van Roy–Weissman , Ma–Ishwar , , K )

Practical relevance:

é How to use feedback (beyond channel estimation, ARQ)

é Coordinated multipoint (CoMP) transmission/reception
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