The Benefit of Interaction in Lossy Source Coding

Nan Ma

UC Berkeley

Joint work with Prakash Ishwar, Boston University

Acknowledgment:
Prof. Ram Zamir, Dr. Vinod Prabhakaran
Research supported by:

Wyner-Ziv problem

- n samples $\left(X_{i}, Y_{i}\right) \sim \operatorname{iid} p_{X Y}$
- Per-sample distortion measure $d(x, \hat{x})$
- Wyner-Ziv rate-distortion function [Wyner \& Ziv IT'76]:

$$
R_{\text {sum }, 1}(D)=\min _{\substack{U-X-Y \\ \\ \\ \\ \\ E[d(X, g(\widehat{X})] \leq D}} I(X ; U \mid Y)
$$

Kaspi's 2-way src coding problem (simplified version)

- Same objective: lossy source reproduction
- Two-message interaction
- Sum-rate: $R_{1}+R_{2}$, minimum sum-rate for distortion D is $R_{\text {sum }, 2}(D)$
- Sum-rate-distortion function [Kaspi IT' 85]:

$$
\begin{aligned}
& R_{\text {sum }, 2}(D)= \min _{\substack{\left.V_{1}-Y-X \\
\\
\\
\\
\\
\\
\\
\\
X \\
X \\
-g\left(X V_{1}\right)-Y \\
\\
\\
E[d(X, \widehat{X})], Y\right) \\
\hline}}\left\{I\left(Y ; V_{1} \mid X\right)+I\left(X ; V_{2} \mid Y V_{1}\right)\right\} \\
& \hline
\end{aligned}
$$

Main question

- One message v.s. two messages

- $R_{\text {sum, } 1} \geq R_{\text {sum, } 2}$ always holds
- Question [Kaspi IT'85]: Is interaction useful?

$$
R_{\text {sum }, 1}=R_{\text {sum }, 2} \text { or } R_{\text {sum }, 1}>R_{\text {sum }, 2} \text { for some } D ?
$$

Related results

- Lossless function computation [Orlitsky \& Roche IT'01], [Ma \& Ishwar ISIT’08]
- Independent sources: $X \sim \operatorname{Uniform}\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- B computes $X * Y$

$$
R_{\text {sum }, 1}=\log _{2} L \quad \text { strictly }>\quad R_{1}+R_{2}=h_{2}(p)+p \log _{2} L
$$

- $R_{\text {sum, } 1} /\left(R_{1}+R_{2}\right)$ can be arbitrarily large

Related results

- Lossless source reproduction [Slepian \& Wolf IT'73] and cutset bound

- No benefit in using two messages
- Caveat: interaction may help for nonergodic sources [Yang \& He, ISIT’08]

Contribution

- Main question:
- Lossy source reproduction: $R_{\text {sum }, 1}=R_{\text {sum }, 2}$ or $R_{\text {sum }, 1}>R_{\text {sum }, 2}$?
- Answer: $R_{\text {sum, } 1}>R_{\text {sum,2 }}$---- interaction is useful [Ma \& Ishwar ISIT' 10]
- Will first show this without explicitly constructing a 2-msg scheme
- Will then show explicit construction in which

1) Gain of interaction is arbitrarily large and simultaneously,
2) Feedback rate is arbitrarily small, compared to the forward rate

- Key tool: rate reduction functional

Rate reduction functional [Ma \& Ishwar Allerton’09, arXiv Oct' 09]

- Functional viewpoint: $R_{\text {sum,i }}$ is a functional of ($p_{X Y}, D$)
- Rate reduction functional

$$
\begin{aligned}
& \rho_{i}\left(p_{X Y}, D\right):=H(X \mid Y)+H(Y \mid X)-R_{s u m, i}\left(p_{X Y}, D\right) \\
& \text { Rate to exchange } \\
& \text { sources losslessly } \\
& \begin{array}{|c}
\rho_{1}\left(p_{X Y}, D\right)= \\
\max _{\substack{U-X-Y \\
\widehat{X}=g(U, Y) \\
E[d(X, \widehat{X})] \leq D}}[H(Y \mid X)+H(Y \mid U, X)] \\
\\
\end{array}
\end{aligned}
$$

- Since $R_{\text {sum, } 1} \geq R_{\text {sum, } 2}$ always holds, $\rho_{1} \leq \rho_{2}$ always holds
- Thus, $R_{\text {sum }, 1}>R_{\text {sum }, 2}$ iff $\rho_{1}<\rho_{2}$ iff $\rho_{1} \neq \rho_{2}$

Rate reduction functional [Ma \& Ishwar Allerton’09, arXiv Oct' 09]

- Key corollary of result from previous talk:

$$
\rho_{1}=\rho_{2} \text { iff } \rho_{1}\left(p_{X \mid Y} p_{Y}, D\right) \text { is concave w.r.t. }\left(p_{Y}, D\right)
$$

- If ρ_{1} is not concave, "concavification" improves performance
- Will pick $p_{X \mid Y}$ and distortion function and show that:
- $\rho_{1}\left(p_{X \mid Y} p_{Y}, D\right)$ is not concave w.r.t. p_{Y} which implies
- $\rho_{1} \neq \rho_{2} \Rightarrow \rho_{1}<\rho_{2} \Rightarrow R_{\text {sum }, 1}>R_{\text {sum }, 2}$

- Let $p_{Y_{1}} \sim \operatorname{Ber}(q)$ and $p_{Y_{2}} \sim \operatorname{Ber}(\bar{q})$, where, $\bar{q}:=(1-q)$
- Let $\quad p_{X \mid Y} \sim B S C(p)=$

- Let $d=$ binary erasure distortion $=$

$d(x, \hat{x})$			
$x \backslash \hat{x}$	0	e	1
0	0	1	∞
1	∞	1	0

- Will prove that there exist (p, q, D) such that

$$
\begin{gathered}
\rho_{1}\left(p_{X \mid Y} \frac{p_{Y_{1}}+p_{Y_{2}}}{2}, D\right)<\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{1}}, D\right)+\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{2}}, D\right) \\
\text { (would have been } \geq \text { if concave) }
\end{gathered}
$$

Rate reduction for DSBS

- Objective:

$$
\rho_{1}\left(p_{X \mid Y} \frac{p_{Y_{1}}+p_{Y_{2}}}{2}, D\right)<\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{1}}, D\right)+\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{2}}, D\right)
$$

- Left-side: $\quad p_{Y}:=\frac{p_{Y_{1}}+p_{Y_{2}}}{2} \sim \operatorname{Ber}(1 / 2) ; \quad p_{X \mid Y} \sim B S C(p)$
- For $D \in[0,1]$, the optimal auxiliary variables are

- Rate reduction: $\rho_{1}\left(p_{X \mid Y} p_{Y}, D\right)=(1+D) h(p)$

Rate reduction for symmetrically correlated sources

- Objective: $\quad \rho_{1}\left(p_{X \mid Y} \frac{p_{Y_{1}}+p_{Y_{2}}}{2}, D\right)<\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{1}}, D\right)+\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{2}}, D\right)$

- $1^{\text {st }}$ term on right-side: $p_{Y_{1}} \sim \operatorname{Ber}(q) ; p_{X \mid Y} \sim B S C(p)$
- A valid choice of (suboptimal) auxiliary variables is

Rate reduction for symmetrically correlated sources

- Objective: $\quad \rho_{1}\left(p_{X \mid Y} \frac{p_{Y_{1}}+p_{Y_{2}}}{2}, D\right)<\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{1}}, D\right)+\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{2}}, D\right)$

- $1^{\text {st }}$ term on right-side: $p_{Y_{1}} \sim \operatorname{Ber}(q) ; p_{X \mid Y} \sim B S C(p)$
- Distortion: $\quad D^{\prime}(p, q, \alpha)=(\bar{p} \bar{q}+p q) \alpha+(\bar{p} q+p \bar{q})$
- Rate reduction: $\rho_{1}\left(p_{X \mid Y} p_{Y_{1}}, D^{\prime}\right) \geq H\left(Y_{1} \mid X_{1}\right)+H\left(X_{1} \mid Y_{1}, U_{1}\right)$

$$
=: \quad C(p, q, \alpha)
$$

Rate reduction for symmetrically correlated sources

- Objective: $\quad \rho_{1}\left(p_{X \mid Y} \frac{p_{Y_{1}}+p_{Y_{2}}}{2}, D\right)<\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{1}}, D\right)+\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{2}}, D\right)$

- $2^{\text {nd }}$ term on right-side: $p_{Y_{2}} \sim \operatorname{Ber}(\bar{q}) ; p_{X \mid Y} \sim B S C(p)$
- By symmetry:

$$
\rho_{1}\left(p_{X \mid Y} p_{Y_{2}}, D^{\prime}\right)=\rho_{1}\left(p_{X \mid Y} p_{Y_{1}}, D^{\prime}\right) \geq C(p, q, \alpha)
$$

where

$$
D^{\prime}(p, q, \alpha)=(\bar{p} \bar{q}+p q) \alpha+(\bar{p} q+p \bar{q})
$$

Comparing left-side with right-side

- Objective: $\quad \rho_{1}\left(p_{X \mid Y} \frac{p_{Y_{1}}+p_{Y_{2}}}{2}, D\right)<\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{1}}, D\right)+\frac{1}{2} \rho_{1}\left(p_{X \mid Y} p_{Y_{2}}, D\right)$
- Left-side $=(1+D) h(p)$
- Right-side $\geq C(p, q, \alpha), D=D^{\prime}(p, q, \alpha)$
- As $p \rightarrow 0: \lim _{p \rightarrow 0} \frac{(1+D) h(p)}{h(p)}=2-\bar{q}(1-\alpha)$

$$
\lim _{p \rightarrow 0} \frac{C(p, q, \alpha)}{h(p)}=2-q(1-\alpha)
$$

- For $q \in(0,1 / 2), 0<p \ll 1$:
- left-side strictly $<C \leq$ right-side
- $\rho_{1}\left(p_{X \mid Y} p_{Y}, D\right)$ is not concave w.r.t. $\quad p_{Y} \Rightarrow \rho_{1} \neq \rho_{2}$

Explicit construction of 2-message aux.r.v.'s

$$
\begin{aligned}
& R_{\text {sum }, 2}(D)= \min _{V_{1}-Y-X}\left\{I\left(Y ; V_{1} \mid X\right)+I\left(X ; V_{2} \mid Y V_{1}\right)\right\} \\
& V_{2}-\left(X V_{1}\right)-Y \\
& \widehat{X}=g\left(V_{1}, V_{2}, Y\right) \\
& E[d(X, \widehat{X})] \leq D \\
& \hline
\end{aligned}
$$

- Let $(X, Y) \sim \operatorname{DSBS}(p)$ and
- $d=$ binary erasure distortion
- Choose V_{1} to be:

- Choose V_{2} as follows:
- Given $V_{1}=0$

- Given $V_{1}=1$

Explicit construction of 2-message aux.r.v.

- Connecting choice of V_{1}, V_{2} to previous discussion:
- Conditioning on $1^{\text {st }} \mathrm{msg}$, two-msg system back to one-msg system

Given Given

- Given $V_{1}=0: \quad p_{Y X V_{2} \mid V_{1}}=p_{Y_{1} X_{1} U_{1}}, \quad \widehat{X}=V_{2}=U_{1}$
- Given $V_{1}=1$: symmetric case

Explicit construction of 2-message aux.r.v.

- Distortion: $D^{\prime}(p, q, \alpha)$
- Rate reduction: $C(p, q, \alpha)$
- Take limits:

$$
\begin{aligned}
& \lim _{p \rightarrow 0} \frac{R_{1}}{h(p)}=\lim _{p \rightarrow 0} \frac{I\left(Y ; V_{1} \mid X\right)}{h(p)}=0 \\
& \lim _{p \rightarrow 0} \frac{R_{2}}{h(p)}=\lim _{p \rightarrow 0} \frac{I\left(X ; V_{2} \mid X, V_{1}\right)}{h(p)}=q(1-\alpha) \\
& \lim _{p \rightarrow 0} \frac{R_{\text {sum }, 1}}{h(p)}=\bar{q}(1-\alpha)
\end{aligned}
$$

Explicit construction of 2-message aux.r.v.

- When $0<q \ll 1,0<p \ll 1, \quad R_{1} \ll R_{2} \ll R_{\text {sum }, 1} \ll 1$

- $R_{\text {sum, } 1} /\left(R_{1}+R_{2}\right)$ can be arbitrarily large and simultaneously
- R_{1} / R_{2} can be arbitrarily small

Another example: arbitrarily large additive gain

- Can these three conditions hold simultaneously?
- $R_{\text {sum, } 1}-\left(R_{1}+R_{2}\right)$ arbitrarily large
- $R_{\text {sum }, 1} /\left(R_{1}+R_{2}\right)$ arbitrarily large
- R_{1} / R_{2} arbitrarily small
- Yes!

Another example: arbitrarily large additive gain

- Extension of a non-interactive example in [Cohen, Zamir '08]
- Large alphabets
- Planar difference set
- Size of alphabets: $\Theta\left(a^{2}\right)$
- When a grows,
- $R_{\text {sum }, 1}-\left(R_{1}+R_{2}\right) \sim \log a \quad$ arbitrarily large
- $R_{\text {sum }, 1} /\left(R_{1}+R_{2}\right) \sim 2(\log a)^{2} \quad$ arbitrarily large
- $R_{1} / R_{2} \sim(\log \log a) /(\log a) \quad$ arbitrarily small

Concluding remarks

- Interaction strictly improves the Wyner-Ziv R-D function for lossy source reproduction
- The benefit of a very small feedback rate can be huge
- Powerful tool: rate reduction functional
- Connects one-message and two-message performance
- Concavity of ρ_{1} functional is equivalent to optimality of ρ_{1}
- There are interesting questions beyond the single-letter characterization

