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Real-time communication: Basic setup

ChannelEncoder DecoderSt Ŝt
Xt Yt

A stochastic source {St, t = 1, 2,…}.

Sequential encoder and sequential decoder.

Different channel models

Noiseless channel

Noiseless feedback

No feedback

Noisy feedback

Finite-delay decoding ρt(St−d, Ŝt)

Fixed rate Xt ∈ 𝒳
or variable-rate Xt ∈ 𝒳t (with a power/quantization cost ct(Xt)).
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A sequential strategy

IO systemIt Ot

Full memory: Ot = ft(I1:t, O1:t−1).

Fixed (not necessarily finite) memory:

Ot = ft(It,Mt−1), and Mt = gt(It,Mt−1).

Sliding window memory: Ot = ft(It−k:t).
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Solution concept

Structure of optimal coding schemes

Ot = ft(I1:t, O1:t−1) vs Ot = ft(It, πt) where πt = πt(I1:t−1, O1:t−1).

Dynamic programming decomposition

non-classical information structure

Some recent results: Mahajan, 2008, Nayyar, 2010.

Main insight: Dynamic programming is possible only if structural results

exist.
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Brief Literature Overview

Known source statistics (Stochastic control approach)

Ericson (1979), Witsenhausen (1979), Gaarder Slepian (1982), Walrand Varaiya

(1983), Borkar Mitter Tatikonda (2001), Teneketzis (2006), Mahajan Teneketzis

(2008, 2009), Kaspi Merhav (2010), Nayyar Teneketzis (2011), Asnani Weissman

(2011), Yüksel (2011).

Unknown source statistics (individual sequence approach)

Linder Lugousi (2001), Weissman Merhav (2002), Gÿorgy, Linder, Lugosi (2004),

Matloub Weissman (2006)

Many related setups . . .

Causal coding: Neuhoff Gilbert (1982), Linder Zamir (2006)

Sequential coding: Vishwanathan Berger (2009), Ma Ishwar (2011).

DPCM coding: Farvardin Modestino (1985), Chang Gibson (1991), Ishwar Ra-

machandaran (2004), Saxena Rose (2009)
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Real-time source coding

Encoder DecoderSt Ŝt
Xt

Source: First-order Markov process {St, t = 1, 2…, }.

Full memory encoder: Xt = ft(S1:t, X1:t−1)

General decoder: Ŝt = gt(Xt,Mt−1), Mt = ℎt(Xt,Mt−1), Mt ∈ ℳt

quantization cost: ct(Xt) and distortion cost: ρt(St, Ŝt).

Objective: Choose 𝐟 ∶= (f1, …, fT) and 𝐠 ∶= (g1, …, gT) to minimize

T
∑
t=1 [

ρt(St, Ŝt) + ct(Xt)]
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Simple generalizations of the model

Higher-order Markov source

If {St, t = 1, 2,…} is k-th order Markov, the results hold for S̃t = St−k+1:t which

is first-order Markov.

Fixed-finite delay

To reconstruct after delay d, i.e., ρt(St−d, Ŝt) (also called finite look-ahead), the
results hold for S̃t = St−d:t and an appropriately defined distortion ρ̃t(S̃t, Ŝt) =
ρt(St−d, Ŝt).
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Types of structural result

MDP-type structural result

S1:t,
X1:t−1,M1:t−1

Mt−1

Mt−1

St Xt Xt Ŝt

Xt Mt

Encoder Decoder

Memory

⟹

St,Mt−1 Mt−1

Mt−1

St Xt Xt Ŝt

Xt Mt

Encoder Decoder

Memory

POMDP-type structural result

S1:t, X1:t−1 X1:tSt Xt Xt Ŝt

Encoder Decoder

⟹

St Xt

P(St|X1:t−1)

St Xt Xt Ŝt

Xt−1 (φt, γt)

Encoder Decoder

Coordinator
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MDP-type of structural result

Without loss of optimality, we may restrict attention to encoders of the

form

Xt = ft(St,Mt−1)

S1:t,
X1:t−1,M1:t−1

Mt−1

Mt−1

St Xt Xt Ŝt

Xt Mt

Encoder Decoder

Memory

⟹

St,Mt−1 Mt−1

Mt−1

St Xt Xt Ŝt

Xt Mt

Encoder Decoder

Memory
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Originally proved in Witsenhausen (1979) (and Kapsi Merhav (2010) for quantization

cost). Simpler proof based on Teneketzis (2006).

S1:t,
X1:t−1,M1:t−1

Mt−1

Mt−1

St Xt Xt Ŝt

Xt Mt

Encoder Decoder

Memory

Note that {Mt, t = 1, 2,…} is a filtra-
tion of {Xt, t = 1, 2,…}.

Arbitrarily fix decoder 𝐠 and mem-
ory update 𝐡. Optimal design of the
best-response encoder is a central-

ized stochastic control problem.

The process {(St,Mt−1), t = 1,…}
is a controlled Markov chain con-

trolled by Xt.

The conditional expected cost E[ct(Xt)+ρt(St, Ŝt) | data at controller] depends
only on (St,Mt−1, Xt).
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Alternate visual proof based on graphical modeling approach of Mahajan Tatikonda

(2010) which generalizes Witsenhausen (1979) and Blackwell (1964)
St−1 St

Xt

Mt−1 Mt

Ŝt

ρt

ct

Conditioned on (St,Mt−1) and Xt, “past” is independent of “future”.

Allows for algorithmic verification of MDP type structural results.
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POMDP-type of structural result

Consider the case of full memory at decoder, i.e., ℳt =
t
∏
τ=1

𝒳τ.

Define Πt = P(St | X1:t−1). Then, without loss of optimality, we may
restrict attention to encoders and decoders of the form

Xt = ft(St, Πt) and Ŝt = gt(Xt, Πt).

S1:t, X1:t−1 X1:tSt Xt Xt Ŝt

Encoder Decoder

⟹

St Xt

P(St|X1:t−1)

St Xt Xt Ŝt

Xt−1 (φt, γt)

Encoder Decoder

Coordinator
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Originally proved in Walrand Varaiya (1983). Direct proof based on the general

approach of Nayyar Mahajan Teneketzis (2011). (Lipster Shariyayev (1977) showed a

similar result for transmitting linear Markov processes over AWGN channels with

noiseless feedback.)

Initial structure of encoders and decoders

S1:t, X1:t−1 X1:tSt Xt Xt Ŝt

Encoder Decoder

Use the MDP-type structure result

St, X1:t−1 X1:tSt Xt Xt Ŝt

Encoder Decoder
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Identify a coordinator for the system

St Xt

X1:t−1

St Xt Xt Ŝt

Xt−1 (φt, γt)

Encoder Decoder

Coordinator

The coordinator observes the common information X1:t−1.

. . . and chooses prescriptions to the encoder and decoder:

(φt, γt) = ℎt(X1:t−1)

Then encoder and decoder passively use the prescription:

Xt = φt(St) and Ŝt = γt(Xt)
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The coordinated system

Is a centralized, partially-observed system.

Use POMDP results to find structure of optimal strategies.

Define belief state Πt = P(state | obs) = P(St | X1:t−1).
Then Πt is a sufficient statistic or info-state for X1:t−1.

St Xt

X1:t−1

St Xt Xt Ŝt

Xt−1 (φt, γt)

Encoder Decoder

Coordinator

⟹

St Xt

P(St|X1:t−1)

St Xt Xt Ŝt

Xt−1 (φt, γt)

Encoder Decoder

Coordinator
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Define Πt = P(St | X1:t−1). Then, without loss of optimality, we may
restrict attention to encoders and decoders of the form

Xt = ft(St, Πt) and Ŝt = gt(Xt, Πt).

The structure of the decoder can be slightly simplified.

The coordinator approach also gives a dynamic programming decomposition.

Even for the finite memory-setup, the coordinator approach can be used to get a

dynamic programming decomposition. In this setup, the common information

is empty; hence the coordinator is equivalent to a system designer choosing

the design before the system starts operating.
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Types of structural result

MDP-type structural result

S1:t,
X1:t−1,M1:t−1

Mt−1

Mt−1

St Xt Xt Ŝt

Xt Mt

Encoder Decoder

Memory

⟹

St,Mt−1 Mt−1

Mt−1

St Xt Xt Ŝt

Xt Mt

Encoder Decoder

Memory

POMDP-type structural result

S1:t, X1:t−1 X1:tSt Xt Xt Ŝt

Encoder Decoder

⟹

St Xt

P(St|X1:t−1)

St Xt Xt Ŝt

Xt−1 (φt, γt)

Encoder Decoder

Coordinator
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Noisy channel with noiseless feedback
Originally considered in Walrand Varaiya (1983)

ChannelEncoder DecoderSt Ŝt
Xt Yt

Effectively the same information-structure as in case of source coding.

Same results!

S1:t,
X1:t−1, Y1:t−1

Y1:tSt Xt Xt Ŝt

Encoder Decoder



A. Mahajan Real-time communication
19

Noisy channel with no feedback
Originally considered in Teneketzis (2006). Dynamic programming decomposition

presented in Mahajan Teneketzis (2009).

ChannelEncoder DecoderSt Ŝt
Xt Yt

Let Ξt = P(Mt−1 | X1:t). Then, without loss of optimality, we can restrict
attention to encoders of the form

Xt = ft(St, Ξt)
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Some generalizations

Side information at decoder

Considered in Teneketzis (2006) (for noisy channels) and in Kapsi Merhav (2010).

Noisy observations of the source

Considered in Borkar Mitter Tatikonda (2001) and Yüksel (2011)

Channels with memory

Considered in Mahajan Teneketzis (2009)

Fixed finite delay decoding of i.i.d. sequences

Considered in Asnani Weissman (2011) (for noisy channels with noiseless feed-

back).

The structural results for these generalization can be worked out using the

above described ideas.
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An exercise: multi-round communication
Originally considered last night after a few drinks!

Encoder 1 Encoder 2S1t S2t

U1
t

U2
t

U1
t = f1t(S11:t, U1

1:t−1, U2
1:t−1) Ŝ2t = g1t(S11:t, U1

1:t, U2
1:t)

U2
t = f2t(S21:t, U1

1:t−1, U2
1:t−1) Ŝ1t = g2t(S21:t, U1

1:t, U2
1:t)

Distortion: ρt(S1t , S2t , Ŝ1t , Ŝ2t)
Independent Markov sources.
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An exercise: multi-round communication
Originally considered last night after a few drinks!

Encoder 1 Encoder 2S1t S2t

U1
t

U2
t

U1
t = f1t(S11:t, U1

1:t−1, U2
1:t−1) Ŝ1t = g1t(S11:t, U1

1:t, U2
1:t)

U2
t = f2t(S21:t, U1

1:t−1, U2
1:t−1) Ŝ2t = g2t(S21:t, U1

1:t, U2
1:t)

S11:t,
U1

1:t−1, U2
1:t−1

S21:t,
U1

1:t−1, U2
1:t−1

Encoder 1 Encoder 2

Distortion: ρt(S1t , S2t , Ŝ1t , Ŝ2t)
Independent Markov sources.

Control sharing info structure.
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S11:t,
U1

1:t−1, U2
1:t−1

S21:t,
U1

1:t−1, U2
1:t−1

Encoder 1 Encoder 2
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S11:t,
U1

1:t−1, U2
1:t−1

S21:t,
U1

1:t−1, U2
1:t−1

Encoder 1 Encoder 2

Lemma: The sources are conditionally independent.

P(S11:t, S21:t | U1
1:t−1, U2

1:t−1) = P(S11:t | U1
1:t−1, U2

1:t−1) P(S21:t | U1
1:t−1, U2

1:t−1)
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S1t ,
U1

1:t−1, U2
1:t−1

S21:t,
U1

1:t−1, U2
1:t−1

Encoder 1 Encoder 2

Past S11:t−1 is redundant at encoder 1.
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S1t ,
U1

1:t−1, U2
1:t−1

S2t ,
U1

1:t−1, U2
1:t−1

Encoder 1 Encoder 2

By symmetry S21:t−1 is redundant at encoder 2.



An exercise: multi-round communication (cont.)

A. Mahajan Real-time communication
21

S1t S2t

U1
1:t−1, U2

1:t−1

Encoder 1 Encoder 2

Coordinator

Consider a coordinator that observes common information
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S1t S2t

U1
1:t−1, U2

1:t−1

Encoder 1 Encoder 2

Coordinator

Define Ξt = P(S1t , S2t | U1
1:t−1, U2

1:t−1). Then,

S1t S2t

Ξt

Encoder 1 Encoder 2

Coordinator
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Define Πi
t = P(Sit | U1

1:t−1, U2
1:t−1). From conditional independence of sources:

Ξt ≡ (Π1
t , Π2

t)

There is no loss of optimality in restricting:

Ui
t = fit(Sit, Π1

t , Π2) and Ŝjt = git(U
j
t, Π1

t , Π2
t)



A. Mahajan Real-time communication
22

Multi-terminal systems
Originally considered in Nayyar Teneketzis (2011)

Decoder

Encoder 1

Encoder 2

S1t

S2t

Ŝt

X1
t

X2
t

Assumption: ∃A such that P(S11:t, S21:t | A) = P(S11:t | A) P(S21:t | A)

Define Bi
t = P(A | S11:t) and Πt = P(S1t , S2t | X1

1:t−1, X2
1:t−1). Then, wloo:

Xi
t = ft(Sit, Bi

t, Πt) and Ŝt = gt(X1
t , X2

t , Πt)
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Multi-terminal systems
Originally considered in Nayyar Teneketzis (2011)

Decoder

Channel 1

Channel 2

Encoder 1

Encoder 2

S1t

S2t

Ŝt

X1
t

X2
t

Y1t

Y2t
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Multi-terminal systems
Originally considered in Yüksel (2011)

Decoder

Encoder 1

Encoder 2

S1t

S2t

Ŝt

X1
t

X2
t

An encoder of the form

Xi
t = P(Sit, P(Sit | X1

1:t−1, X2
1:t−1))

is not optimal
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Another flavor of results
Finite memory vs sliding window memory

Originally showed in Kaspi Merhav (2010) using ideas from Merhav Ziv (2006).

Encoder DecoderSt Ŝt
Xt

Variable code setup

Quantization cost: c(⋅) = −λ logP(⋅)
System 1: Finite memory decoder with memory ℳ
System 2: Sliding window decoder with window size k

𝒥(Finite memory decoder) ≥ 𝒥(Sliding window decoder) − λ log |ℳ|/k
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Implications for interactive communication

Identify “easy” and “hard” problems based on info struct

This classification is not always consistent with that of information theory

(no-feedback vs noiseless feedback; MACwith feedback vs BC with feedback,

etc.).

Optimal structure of block Markov coding scheme

For example, for MAC with feedback, do different achievable schemes

(Cover-Leung, Bross-Lapidoth, Venkataramanan-Pradhan) have optimal

structure at block level.

Might be useful for relay networks as well.

Relation between auxiliary random variables in info theory

I think that there is a relation . . . but cannot explain it formally.


