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» Consider a support set S C {1, ..., n} with |S| = s <« n and the random variables

Py i¢S
Y ~ 0 fz i=1,...n
P1 ieS

> Goal: exact recovery of S from multiple i.i.d. samples of each random variable Y;,
i=1,...,n.

» Conventional non-sequential approach: take a fixed number of samples of
each index i

» Sequential approach: decision to re-sample Y; based on prior observation

> Definition: take on average m samples of each index:

n
m:=E [Z J,] /n
i=1
where J; is a r.v. representing number of times index i is sampled.

> This talk: find relationship between (N, S, m) such that P(S = S) — 1.
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How much can we gain from sequential testing?
What can we do with limited knowledge of distributions?
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> n = number of channels under consideration
» S = {vacant channels}
>  Y;~CN(0,SNR; + 1)
Goal: map spectral occupation (recover S)
Challenges: noise floor is unknown (P not fully known)
1. Non-sequential
» Measure each channel a fixed number of times
2. Sequential

> sequential thresholding or coordinate-wise SPRT [A. Tajer 2010, W. Zhang 2010, M,
Malloy 2011] 2
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The Sequential Probability Ratio Test
How much better can sequential methods do? waid, woliowitz, Optimum Char. of the SPRT, 1948]
On a coordinate-wise basis, take additional measurement of index i if:
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After K = log n passes, return remaining indices!
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Note: For certain levels of sparsity, ST is
asymptotically optimal!
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Conclusion

Remaining questions: can procedures remove doubly logarithmic gap without
full knowledge of distributions?

For further reading:

B M. Malloy, R. Nowak
Sequential Analysis in High Dimensional Multiple Testing and Sparse
Recovery.

& M. Malloy, R. Nowak
On the limits of Sequential Testing in High Dimensions.




