Sequential (Interactive) Testing in High Dimensions

Matthew Malloy

University of Wisconsin-Madison
Department of Electrical and Computer Engineering
http://homepages.cae.wisc.edu/ mmalloy/

BIRS 2012 - Interactive Information Theory Joint work with Rob Nowak

Problem Setup

- Consider a support set $\mathcal{S} \subset\{1, \ldots, n\}$ with $|\mathcal{S}|=s \ll n$ and the random variables

$$
Y_{i} \sim\left\{\begin{array}{ll}
P_{0} & i \notin \mathcal{S} \\
P_{1} & i \in \mathcal{S}
\end{array} \quad i=1, \ldots, n\right.
$$

$2 / 17$

Problem Setup

- Consider a support set $\mathcal{S} \subset\{1, \ldots, n\}$ with $|\mathcal{S}|=s \ll n$ and the random variables

$$
Y_{i} \sim\left\{\begin{array}{ll}
P_{0} & i \notin \mathcal{S} \\
P_{1} & i \in \mathcal{S}
\end{array} \quad i=1, \ldots, n\right.
$$

- Goal: exact recovery of \mathcal{S} from multiple i.i.d. samples of each random variable Y_{i}, $i=1, \ldots, n$.

$2 / 17$

Problem Setup

- Consider a support set $\mathcal{S} \subset\{1, \ldots, n\}$ with $|\mathcal{S}|=s \ll n$ and the random variables

$$
Y_{i} \sim\left\{\begin{array}{ll}
P_{0} & i \notin \mathcal{S} \\
P_{1} & i \in \mathcal{S}
\end{array} \quad i=1, \ldots, n\right.
$$

- Goal: exact recovery of \mathcal{S} from multiple i.i.d. samples of each random variable Y_{i}, $i=1, \ldots, n$.
- Conventional non-sequential approach: take a fixed number of samples of each index i
$2 / 17$

Problem Setup

- Consider a support set $\mathcal{S} \subset\{1, \ldots, n\}$ with $|\mathcal{S}|=s \ll n$ and the random variables

$$
Y_{i} \sim\left\{\begin{array}{ll}
P_{0} & i \notin \mathcal{S} \\
P_{1} & i \in \mathcal{S}
\end{array} \quad i=1, \ldots, n\right.
$$

- Goal: exact recovery of \mathcal{S} from multiple i.i.d. samples of each random variable Y_{i}, $i=1, \ldots, n$.
- Conventional non-sequential approach: take a fixed number of samples of each index i
- Sequential approach: decision to re-sample Y_{i} based on prior observation

Problem Setup

- Consider a support set $\mathcal{S} \subset\{1, \ldots, n\}$ with $|\mathcal{S}|=s \ll n$ and the random variables

$$
Y_{i} \sim\left\{\begin{array}{ll}
P_{0} & i \notin \mathcal{S} \\
P_{1} & i \in \mathcal{S}
\end{array} \quad i=1, \ldots, n\right.
$$

- Goal: exact recovery of \mathcal{S} from multiple i.i.d. samples of each random variable Y_{i}, $i=1, \ldots, n$.
- Conventional non-sequential approach: take a fixed number of samples of each index i
- Sequential approach: decision to re-sample Y_{i} based on prior observation
- Definition: take on average m samples of each index:

$$
m:=\mathbb{E}\left[\sum_{i=1}^{n} J_{i}\right] / n
$$

where J_{i} is a r.v. representing number of times index i is sampled.

Problem Setup

- Consider a support set $\mathcal{S} \subset\{1, \ldots, n\}$ with $|\mathcal{S}|=s \ll n$ and the random variables

$$
Y_{i} \sim\left\{\begin{array}{ll}
P_{0} & i \notin \mathcal{S} \\
P_{1} & i \in \mathcal{S}
\end{array} \quad i=1, \ldots, n\right.
$$

- Goal: exact recovery of \mathcal{S} from multiple i.i.d. samples of each random variable Y_{i}, $i=1, \ldots, n$.
- Conventional non-sequential approach: take a fixed number of samples of each index i
- Sequential approach: decision to re-sample Y_{i} based on prior observation
- Definition: take on average m samples of each index:

$$
m:=\mathbb{E}\left[\sum_{i=1}^{n} J_{i}\right] / n
$$

where J_{i} is a r.v. representing number of times index i is sampled.

- This talk: find relationship between (n, s, m) such that $\mathbb{P}(\hat{\mathcal{S}}=\mathcal{S}) \rightarrow 1$.

Related work

A. Wald and J. Wolfowitz

Optimum character of the sequential probability ratio test. 1948. 1-dimensional simple binary hypothesis test

E. Posner

Optimal Search Procedures. 1963. AWGN, $s=1$, SPRT
J. Haupt, R. Castro, and R. Nowak

Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation. 2010. AWGN, $Y_{i, j}=x_{i}+\gamma_{i, j}^{-1 / 2} W_{i, j}$, FDP/NDP
L. Lai, H. Vincent Poor, Y. Xin, and G. Georgiadis

Quickest Search Over Multiple Sequences. Trans. on Info Theory. 2011. Find one element in \mathcal{S}
E. Bashan, G. Newstadt, and A. Hero

Two-Stage Multi-Scale Search for Sparse Targets. 2011. AWGN, two stage procedure
A. Tajer, R. Castro

Adaptive Spectrum Sensing for Agile Cognitive Radios. 2010.
Spectrum Sensing

Motivation - Gene knock-out studies in biology

fruit fly

Motivation - Gene knock-out studies in biology

4/17

Motivation - Gene knock-out studies in biology

Motivation - Gene knock-out studies in biology

Motivation - Gene knock-out studies in biology

Motivation - Gene knock-out studies in biology

Motivation - Gene knock-out studies in biology

Motivation - Gene knock-out studies in biology

Goal: find genes vital to virus replication (recover \mathcal{S})

Motivation - Gene knock-out studies in biology

Goal: find genes vital to virus replication (recover \mathcal{S})
Challenges: n large, observations noisy, distributions of fluorescence unknown

Motivation - Gene knock-out studies in biology

Goal: find genes vital to virus replication (recover \mathcal{S})
Challenges: n large, observations noisy, distributions of fluorescence unknown

1. Non-sequential

Motivation - Gene knock-out studies in biology

Goal: find genes vital to virus replication (recover \mathcal{S})
Challenges: n large, observations noisy, distributions of fluorescence unknown

1. Non-sequential

- Measure each gene knock-out a fixed number of times.

Motivation - Gene knock-out studies in biology

Goal: find genes vital to virus replication (recover \mathcal{S})
Challenges: n large, observations noisy, distributions of fluorescence unknown

1. Non-sequential

- Measure each gene knock-out a fixed number of times.

2. Sequential [L. Hao et.al. Drosophilia RNAi screen identifies host genes important to influenza virus repication, Nature 08]

Motivation - Gene knock-out studies in biology

Goal: find genes vital to virus replication (recover \mathcal{S})
Challenges: n large, observations noisy, distributions of fluorescence unknown

1. Non-sequential

- Measure each gene knock-out a fixed number of times.

2. Sequential [L. Hao et.al. Drosophilia RNAi screen identifies host genes important to influenza virus repication, Nature 08]

- Round 1: observe all 13k knock-outs, twice. Retain the approximately 1k with highest fluorescence (13k-1k).

Motivation - Gene knock-out studies in biology

Goal: find genes vital to virus replication (recover \mathcal{S})
Challenges: n large, observations noisy, distributions of fluorescence unknown

1. Non-sequential

- Measure each gene knock-out a fixed number of times.

2. Sequential [L. Hao et.al. Drosophilia RNAi screen identifies host genes important to influenza virus replication, Nature 08]

- Round 1: observe all 13k knock-outs, twice. Retain the approximately 1k with highest fluorescence (13k-1k).
- Round 2: measure remaining strains 10 times each. Retain only those with 'significant' fluorescence.

Motivation - Gene knock-out studies in biology

Goal: find genes vital to virus replication (recover \mathcal{S})
Challenges: n large, observations noisy, distributions of fluorescence unknown

1. Non-sequential

- Measure each gene knock-out a fixed number of times.

2. Sequential [L. Hao et.al. Drosophilia RNAi screen identifies host genes important to influenza virus replication, Nature 08]

- Round 1: observe all 13k knock-outs, twice. Retain the approximately 1k with highest fluorescence (13k-1k).
- Round 2: measure remaining strains 10 times each. Retain only those with 'significant' fluorescence.
How much can we gain from sequential testing?

Motivation - Gene knock-out studies in biology

Goal: find genes vital to virus replication (recover \mathcal{S})
Challenges: n large, observations noisy, distributions of fluorescence unknown

1. Non-sequential

- Measure each gene knock-out a fixed number of times.

2. Sequential [L. Hao et.al. Drosophilia RNAi screen identifies host genes important to influenza virus replication, Nature 08]

- Round 1: observe all 13k knock-outs, twice. Retain the approximately 1k with highest fluorescence (13k-1k).
- Round 2: measure remaining strains 10 times each. Retain only those with 'significant' fluorescence.
How much can we gain from sequential testing?

What can we do with limited knowledge of distributions?

Motivation - Spectrum Sensing

Motivation - Spectrum Sensing

- $n=$ number of channels under consideration

Motivation - Spectrum Sensing

- $n=$ number of channels under consideration
- $\mathcal{S}=\{$ vacant channels $\}$

Motivation - Spectrum Sensing

- $n=$ number of channels under consideration
- $\mathcal{S}=\{$ vacant channels $\}$
- $\quad Y_{i} \sim \mathcal{C N}\left(0, \mathrm{SNR}_{i}+1\right)$

Motivation - Spectrum Sensing

- $n=$ number of channels under consideration
- $\mathcal{S}=$ \{vacant channels $\}$
- $\quad Y_{i} \sim \mathcal{C N}\left(0, \mathrm{SNR}_{i}+1\right)$

Goal: map spectral occupation (recover \mathcal{S})

Motivation - Spectrum Sensing

- $n=$ number of channels under consideration
- $\mathcal{S}=\{$ vacant channels $\}$
- $\quad Y_{i} \sim \mathcal{C N}\left(0, \mathrm{SNR}_{i}+1\right)$

Goal: map spectral occupation (recover \mathcal{S})
Challenges: noise floor is unknown (P_{1} not fully known)

Motivation - Spectrum Sensing

- $n=$ number of channels under consideration
- $\mathcal{S}=\{$ vacant channels $\}$
- $\quad Y_{i} \sim \mathcal{C N}\left(0, \mathrm{SNR}_{i}+1\right)$

Goal: map spectral occupation (recover \mathcal{S})
Challenges: noise floor is unknown (P_{1} not fully known)

1. Non-sequential

- Measure each channel a fixed number of times

Motivation - Spectrum Sensing

- $n=$ number of channels under consideration
- $\mathcal{S}=$ \{vacant channels $\}$
- $\quad Y_{i} \sim \mathcal{C N}\left(0, \mathrm{SNR}_{i}+1\right)$

Goal: map spectral occupation (recover \mathcal{S})
Challenges: noise floor is unknown (P_{1} not fully known)

1. Non-sequential

- Measure each channel a fixed number of times

2. Sequential

- sequential thresholding or coordinate-wise SPRT [A. Tajer 2010, W. Zhang 2010, M. Malloy 2011]

Limitations of non-sequential testing

$$
T_{i}^{(m)}:=\frac{1}{m} \sum_{j=1}^{m} \log \frac{p_{1}\left(Y_{i, j}\right)}{p_{0}\left(Y_{i, j}\right)}
$$

$6 / 17$

Limitations of non-sequential testing

$$
T_{i}^{(m)}:=\frac{1}{m} \sum_{j=1}^{m} \log \frac{p_{1}\left(Y_{i, j}\right)}{p_{0}\left(Y_{i, j}\right)} \xrightarrow{\text { a.s. }} \begin{cases}-D\left(P_{0} \| P_{1}\right) & i \notin \mathcal{S} \\ D\left(P_{i} \| P_{0}\right) & i \in \mathcal{S}\end{cases}
$$

$6 / 17$

Limitations of non-sequential testing

$$
T_{i}^{(m)}:=\frac{1}{m} \sum_{j=1}^{m} \log \frac{p_{1}\left(Y_{i, j}\right)}{p_{0}\left(Y_{i, j}\right)} \xrightarrow{\text { a.s. }} \begin{cases}-D\left(P_{0} \| P_{1}\right) & i \notin \mathcal{S} \\ D\left(P_{i} \| P_{0}\right) & i \in \mathcal{S}\end{cases}
$$

$6 / 17$

Limitations of non-sequential testing

$6 / 17$

Limitations of non-sequential testing

$$
T_{i}^{(m)}:=\frac{1}{m} \sum_{j=1}^{m} \log \frac{p_{1}\left(Y_{i, j}\right)}{p_{0}\left(Y_{i, j}\right)} \xrightarrow{\text { ass. }} \begin{cases}-D\left(P_{0} \| P_{1}\right) & i \notin \mathcal{S} \\ D\left(P_{i} \| P_{0}\right) & i \in \mathcal{S}\end{cases}
$$

$$
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) \leq(n-s) \mathbb{P}_{0}\left(T^{(m)}>\gamma\right)+s \mathbb{P}_{1}\left(T^{(m)} \leq \gamma\right)
$$

$6 / 17$

Limitations of non-sequential testing

$$
\begin{gathered}
T_{i}^{(m)}:=\frac{1}{m} \sum_{j=1}^{m} \log \frac{p_{1}\left(Y_{i, j}\right)}{p_{0}\left(Y_{i, j}\right)} \xrightarrow[\rightarrow]{\text { a.s. }} \begin{cases}-D\left(P_{0} \| P_{1}\right) & i \notin \mathcal{S} \\
D\left(P_{1} \| P_{0}\right) & i \in \mathcal{S}\end{cases} \\
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & \leq(n-s) \mathbb{P}_{0}\left(T^{(m)}>\gamma\right)+s \mathbb{P}_{1}\left(T^{(m)} \leq \gamma\right) \\
& \lesssim n e^{-m D\left(P_{1} \| P_{0}\right)}
\end{aligned}
\end{gathered}
$$

Limitations of non-sequential testing

$$
\begin{gathered}
T_{i}^{(m)}:=\frac{1}{m} \sum_{j=1}^{m} \log \frac{p_{1}\left(Y_{i, j}\right)}{p_{0}\left(Y_{i, j}\right)} \xrightarrow[\rightarrow]{\text { a.s. }} \begin{cases}-D\left(P_{0} \| P_{1}\right) & i \notin \mathcal{S} \\
D\left(P_{1} \| P_{0}\right) & i \in \mathcal{S}\end{cases} \\
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & \leq(n-s) \mathbb{P}_{0}\left(T^{(m)}>\gamma\right)+s \mathbb{P}_{1}\left(T^{(m)} \leq \gamma\right) \\
& \lesssim n e^{-m D\left(P_{1} \| P_{0}\right)}
\end{aligned}
\end{gathered}
$$

- How fast does m have to grow with n for exact recovery of \mathcal{S} ?

Limitations of non-sequential testing

$$
\begin{gathered}
T_{i}^{(m)}:=\frac{1}{m} \sum_{j=1}^{m} \log \frac{p_{1}\left(Y_{i, j}\right)}{p_{0}\left(Y_{i, j}\right)} \quad \stackrel{\text { a.s. }}{\rightarrow} \begin{cases}-D\left(P_{0} \| P_{1}\right) & i \notin \mathcal{S} \\
D\left(P_{1} \| P_{0}\right) & i \in \mathcal{S}\end{cases} \\
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & \leq(n-s) \mathbb{P}_{0}\left(T^{(m)}>\gamma\right)+s \mathbb{P}_{1}\left(T^{(m)} \leq \gamma\right) \\
& \lesssim n e^{-m D\left(P_{1} \| P_{0}\right)}
\end{aligned}
\end{gathered}
$$

- How fast does m have to grow with n for exact recovery of \mathcal{S} ?

$$
m>\frac{\log n}{D\left(P_{1} \| P_{0}\right)}
$$

is a necessary condition for exact recovery of \mathcal{S}.

Limitations of non-sequential testing

$$
\begin{gathered}
T_{i}^{(m)}:=\frac{1}{m} \sum_{j=1}^{m} \log \frac{p_{1}\left(Y_{i, j}\right)}{p_{0}\left(Y_{i, j}\right)} \quad \stackrel{\text { a.s. }}{\rightarrow} \begin{cases}-D\left(P_{0} \| P_{1}\right) & i \notin \mathcal{S} \\
D\left(P_{1} \| P_{0}\right) & i \in \mathcal{S}\end{cases} \\
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & \leq(n-s) \mathbb{P}_{0}\left(T^{(m)}>\gamma\right)+s \mathbb{P}_{1}\left(T^{(m)} \leq \gamma\right) \\
& \lesssim n e^{-m D\left(P_{1} \| P_{0}\right)}
\end{aligned}
\end{gathered}
$$

- How fast does m have to grow with n for exact recovery of \mathcal{S} ?

$$
m>\frac{\log n}{D\left(P_{1} \| P_{0}\right)} \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{m}{\log n}>\frac{1}{D\left(P_{1} \| P_{0}\right)}
$$

is a necessary condition for exact recovery of \mathcal{S}.

Limitations of non-sequential testing

$$
T_{i}^{(m)}:=\frac{1}{m} \sum_{j=1}^{m} \log \frac{p_{1}\left(Y_{i, j}\right)}{p_{0}\left(Y_{i, j}\right)} \quad \stackrel{\text { a.s. }}{\rightarrow} \quad \begin{cases}-D\left(P_{0} \| P_{1}\right) & i \notin \mathcal{S} \\ D\left(P_{1} \| P_{0}\right) & i \in \mathcal{S}\end{cases}
$$

Non-sequential methods cannot overcome statistical 'curse of dimensionality'

$$
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & \leq(n-s) \mathbb{P}_{0}\left(T^{(m)}>\gamma\right)+s \mathbb{P}_{1}\left(T^{(m)} \leq \gamma\right) \\
& \lesssim n e^{-m D\left(P_{1} \| P_{0}\right)}
\end{aligned}
$$

- How fast does m have to grow with n for exact recovery of \mathcal{S} ?

$$
m>\frac{\log n}{D\left(P_{1} \| P_{0}\right)} \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{m}{\log n}>\frac{1}{D\left(P_{1} \| P_{0}\right)}
$$

is a necessary condition for exact recovery of \mathcal{S}.

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

7/17

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wal, Wolfowit, Opimum Char. of the SPRT, 1948] On a coordinate-wise basis, take additional measurement of index i if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

$8 / 17$

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wal, Wolfowit, Opimum Char. of the SPRT, 1948] On a coordinate-wise basis, take additional measurement of index i if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

$8 / 17$

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wald, Wolfowit, Opimum Char. of the SPRt, 1948] On a coordinate-wise basis, take additional measurement of index i if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wal, Wolfowit, Opimum Char. of the SPRT, 1948] On a coordinate-wise basis, take additional measurement of index i if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wal, Wolfowit, Opimum Char. of the SPRT, 1948] On a coordinate-wise basis, take additional measurement of index i if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wal, Wolfowit, Opimum Char. of the SPRT, 1948] On a coordinate-wise basis, take additional measurement of index i if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wald, Wolfowit, Opimum Char. of the SPRt, 1948] On a coordinate-wise basis, take additional measurement of index i if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wald, Wollowit, Opimum Char. ot the SPRT, 1948] On a coordinate-wise basis, take additional measurement of index i if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

$$
\log \frac{(n-s)}{\epsilon}
$$

$$
\log \frac{\epsilon}{s}
$$

Theorem
Set $A=\frac{\epsilon}{2 s}, B=\frac{2(n-s)}{\epsilon}$. The SPRT recovers \mathcal{S} with probability

$$
\mathbb{P}(\hat{\mathcal{S}}=\mathcal{S}) \geq 1-\epsilon
$$

and requires fewer than

$$
m \leq\left(1+\epsilon_{0}\right) \frac{\log s+\log \epsilon^{-1}}{D\left(P_{0} \| P_{1}\right)}
$$

samples per dimension in expectation for any $\epsilon_{0}>0, n$ sufficiently large.

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wald, Wolfowitz, Optimum Char. of the SPRT, 1948] On a coordinate-wise basis, take additional measurement of index if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

Theorem
Set $A=\frac{\epsilon}{2 s}, B=\frac{2(n-s)}{\epsilon}$. The SPRT recovers \mathcal{S} with probability

$$
\mathbb{P}(\hat{\mathcal{S}}=\mathcal{S}) \geq 1-\epsilon
$$

and requires fewer than

$$
m \leq\left(1+\epsilon_{0}\right) \frac{\log s+\log \epsilon^{-1}}{D\left(P_{0} \| P_{1}\right)}
$$

samples per dimension in expectation for any $\epsilon_{0}>0, n$ sufficiently large.

The Sequential Probability Ratio Test

How much better can sequential methods do? [Wald, Wolfowitz, Optimum Char. of the SPRT, 1948] On a coordinate-wise basis, take additional measurement of index i if:

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B
$$

Theorem
There exist thresholds A and B such that the SPRT recovers \mathcal{S} exactly if

$$
m>\frac{\log s}{D\left(P_{0} \| P_{1}\right)}+\frac{\log \epsilon_{n}^{-1}}{D\left(P_{0} \| P_{1}\right)}
$$

for any $\epsilon_{n} \rightarrow 0$.

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

9/17

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

$9 / 17$

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

Sketch of Lower Bound

Sketch of coordinate-wise lower bound
$10 / 17$

Sketch of Lower Bound

Sketch of coordinate-wise lower bound

$$
m \approx \mathbb{E}_{0}[J]
$$

- 1) for $s \ll n$
$10 / 17$

Sketch of Lower Bound

Sketch of coordinate-wise lower bound

$$
m \approx \mathbb{E}_{0}[J]=\frac{\mathbb{E}_{0}\left[\sum_{j=1}^{J} \log \frac{p_{0}\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}\right]}{D\left(P_{0} \| P_{1}\right)}
$$

- 1) for $s \ll n$
- 2) Wald's identity

Sketch of Lower Bound

Sketch of coordinate-wise lower bound

$$
m \approx \mathbb{E}_{0}[J]=\frac{\mathbb{E}_{0}\left[\sum_{j=1}^{J} \log \frac{p_{0}\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}\right]}{D\left(P_{0} \| P_{1}\right)} \geq \frac{\alpha \log \frac{\alpha}{1-\beta}+(1-\alpha) \log \frac{1-\alpha}{\beta}}{D\left(P_{0} \| P_{1}\right)}
$$

- 1) for $s \ll n$
- 2) Wald's identity
- 3) log-sum inequality for any test with false negative β, false positive α

Sketch of Lower Bound

Sketch of coordinate-wise lower bound

$$
m \approx \mathbb{E}_{0}[J]=\frac{\mathbb{E}_{0}\left[\sum_{j=1}^{J} \log \frac{p_{0}\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}\right]}{D\left(P_{0} \| P_{1}\right)} \geq \frac{\alpha \log \frac{\alpha}{1-\beta}+(1-\alpha) \log \frac{1-\alpha}{\beta}}{D\left(P_{0} \| P_{1}\right)}
$$

- 1) for $s \ll n$
- 2) Wald's identity
- 3) log-sum inequality for any test with false negative β, false positive α
- 4) assume $\alpha \leq 1 /(n-s)$ and $\beta \leq 1 / s$

Sketch of Lower Bound

Sketch of coordinate-wise lower bound

$$
m \approx \mathbb{E}_{0}[J]=\frac{\mathbb{E}_{0}\left[\sum_{j=1}^{J} \log \frac{p_{0}\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}\right]}{D\left(P_{0} \| P_{1}\right)} \geq \frac{\alpha \log \frac{\alpha}{1-\beta}+(1-\alpha) \log \frac{1-\alpha}{\beta}}{D\left(P_{0} \| P_{1}\right)}
$$

- 1) for $s \ll n$
- 2) Wald's identity
- 3) log-sum inequality for any test with false negative β, false positive α
- 4) assume $\alpha \leq 1 /(n-s)$ and $\beta \leq 1 / s$
- 5) imposing condition

$$
m<\frac{\log s}{D\left(P_{0} \| P_{1}\right)}
$$

Sketch of Lower Bound

Sketch of coordinate-wise lower bound

$$
m \approx \mathbb{E}_{0}[J]=\frac{\mathbb{E}_{0}\left[\sum_{j=1}^{J} \log \frac{p_{0}\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}\right]}{D\left(P_{0} \| P_{1}\right)} \geq \frac{\alpha \log \frac{\alpha}{1-\beta}+(1-\alpha) \log \frac{1-\alpha}{\beta}}{D\left(P_{0} \| P_{1}\right)}
$$

- 1) for $s \ll n$
- 2) Wald's identity
- 3) log-sum inequality for any test with false negative β, false positive α
- 4) assume $\alpha \leq 1 /(n-s)$ and $\beta \leq 1 / s$
- 5) imposing condition

$$
m<\frac{\log s}{D\left(P_{0} \| P_{1}\right)}
$$

and taking limits as $n \rightarrow \infty$ implies contradiction, and thus

$$
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) \rightarrow 1
$$

Sketch of Lower Bound

Sketch of coordinate-wise lower bound

$$
m \approx \mathbb{E}_{0}[J]=\frac{\mathbb{E}_{0}\left[\sum_{j=1}^{J} \log \frac{p_{0}\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}\right]}{D\left(P_{0} \| P_{1}\right)} \geq \frac{\alpha \log \frac{\alpha}{1-\beta}+(1-\alpha) \log \frac{1-\alpha}{\beta}}{D\left(P_{0} \| P_{1}\right)}
$$

- 1) for $s \ll n$
- 2) Wald's identity
- 3) log-sum inequality for any test with false negative β, false positive α
- 4) assume $\alpha \leq 1 /(n-s)$ and $\beta \leq 1 / s$
- 5) imposing condition

$$
m<\frac{\log s}{D\left(P_{0} \| P_{1}\right)}
$$

and taking limits as $n \rightarrow \infty$ implies contradiction, and thus

$$
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) \rightarrow 1
$$

Theorem
Any coordinate-wise sequential method fails to recover \mathcal{S} provided

$$
m<\frac{\log s}{D\left(P_{0} \| P_{1}\right)}
$$

Sketch of Lower Bound

Sketch of coordinate-wise lower bound

$$
m \approx \mathbb{E}_{0}[J]=\frac{\mathbb{E}_{0}\left[\sum_{j=1}^{J} \log \frac{p_{0}\left(y_{j}\right)}{p_{1}\left(y_{j}\right)}\right]}{D\left(P_{0} \| P_{1}\right)} \geq \frac{\alpha \log \frac{\alpha}{1-\beta}+(1-\alpha) \log \frac{1-\alpha}{\beta}}{D\left(P_{0} \| P_{1}\right)}
$$

- 1) for $s \ll n$
- 2) Wald's identity
- 3) \log-sum inequality for any test with false negative β, false positive α
- 4) assume $\alpha \leq 1 /(n-s)$ and $\beta \leq 1 / s$
- 5) imposing condition

$$
m<\frac{\log s}{D\left(P_{0} \| P_{1}\right)}
$$

and taking limits as $n \rightarrow \infty$ implies contradiction, and thus

$$
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) \rightarrow 1
$$

Theorem
Any eoordinate wise sequential method fails to recover \mathcal{S} provided

$$
m<\frac{\log s}{D\left(P_{0} \| P_{1}\right)}
$$

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2} .
$$

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2} .
$$

SPRT Implementation issues

Practical concerns:

$12 / 17$

SPRT Implementation issues

Practical concerns:

- level of sparsity is often unknown

SPRT Implementation issues

Practical concerns:

- level of sparsity is often unknown
- full knowledge of P_{0} and P_{1} is restrictive
$12 / 17$

SPRT Implementation issues

Practical concerns:

- level of sparsity is often unknown
- full knowledge of P_{0} and P_{1} is restrictive
- often some parameter of P_{1} unknown

$12 / 17$

SPRT Implementation issues

Practical concerns:

- level of sparsity is often unknown

- full knowledge of P_{0} and P_{1} is restrictive
- often some parameter of P_{1} unknown

- SPRT not optimal for composite tests: consider $P_{0} \sim \mathcal{N}(0,1)$ and $P_{1} \sim \mathcal{N}(\mu, 1), \mu>0$ unknown
$A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B$

SPRT Implementation issues

Practical concerns:

- level of sparsity is often unknown

- full knowledge of P_{0} and P_{1} is restrictive
- often some parameter of P_{1} unknown

- SPRT not optimal for composite tests: consider $P_{0} \sim \mathcal{N}(0,1)$ and $P_{1} \sim \mathcal{N}(\mu, 1), \mu>0$ unknown

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B \quad \Longrightarrow \quad \frac{\log A}{\mu}+\frac{j^{\prime} \mu}{2}<\sum_{j=1}^{j^{\prime}} Y_{j}<\frac{\log B}{\mu}+\frac{j^{\prime} \mu}{2}
$$

SPRT Implementation issues

Practical concerns:

- level of sparsity is often unknown

- full knowledge of P_{0} and P_{1} is restrictive
- often some parameter of P_{1} unknown

- SPRT not optimal for composite tests: consider $P_{0} \sim \mathcal{N}(0,1)$ and $P_{1} \sim \mathcal{N}(\mu, 1), \mu>0$ unknown

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B \quad \Longrightarrow \quad \frac{\log A}{\mu}+\frac{j^{\prime} \mu}{2}<\sum_{j=1}^{j^{\prime}} Y_{j}<\frac{\log B}{\mu}+\frac{j^{\prime} \mu}{2}
$$

- thresholds depend on μ, number of samples

SPRT Implementation issues

Practical concerns:

- level of sparsity is often unknown
- full knowledge of P_{0} and P_{1} is restrictive
- often some parameter of P_{1} unknown

- SPRT not optimal for composite tests: consider $P_{0} \sim \mathcal{N}(0,1)$ and $P_{1} \sim \mathcal{N}(\mu, 1), \mu>0$ unknown

$$
A<\prod_{j=1}^{j^{\prime}} \frac{p_{1}\left(Y_{j}\right)}{p_{0}\left(Y_{j}\right)}<B \quad \Longrightarrow \quad \frac{\log A}{\mu}+\frac{j^{\prime} \mu}{2}<\sum_{j=1}^{j^{\prime}} Y_{j}<\frac{\log B}{\mu}+\frac{j^{\prime} \mu}{2}
$$

- thresholds depend on μ, number of samples
- What can we do without knowledge of P_{1} or s ?

Sequential Thresholding

Input:

- $K \approx \log n$ measurement passes
- threshold $\gamma: \mathbb{P}_{0}\left(T^{(m / 2)} \leq \gamma\right)=\frac{1}{2}$
$13 / 17$

Sequential Thresholding

Input:

- $K \approx \log n$ measurement passes (depends only on n)
- threshold $\gamma: \mathbb{P}_{0}\left(T^{(m / 2)} \leq \gamma\right)=\frac{1}{2}$
$13 / 17$

Sequential Thresholding

Input:

- $K \approx \log n$ measurement passes
- threshold $\gamma: \mathbb{P}_{0}\left(T^{(m / 2)} \leq \gamma\right)=\frac{1}{2}$ (depends only on P_{0})
$13 / 17$

Sequential Thresholding

Input:

- $K \approx \log n$ measurement passes
- threshold $\gamma: \mathbb{P}_{0}\left(T^{(m / 2)} \leq \gamma\right)=\frac{1}{2}$
$k=1$

1) sample each index $\frac{m}{2}$ times

$$
\mathbb{E}\left[\sum_{i=1}^{n} J_{i}\right] \approx \frac{m n}{2}
$$

Sequential Thresholding

Input:

- $K \approx \log n$ measurement passes
- threshold $\gamma: \mathbb{P}_{0}\left(T^{(m / 2)} \leq \gamma\right)=\frac{1}{2}$

1) sample each index $\frac{m}{2}$ times
2) re-measure only indices above threshold

$$
\mathbb{E}\left[\sum_{i=1}^{n} J_{i}\right] \approx \frac{m n}{2}+\frac{m n}{4}
$$

Sequential Thresholding

Input:

- $K \approx \log n$ measurement passes
- threshold $\gamma: \mathbb{P}_{0}\left(T^{(m / 2)} \leq \gamma\right)=\frac{1}{2}$

Sequential Thresholding

Input:

- $K \approx \log n$ measurement passes
- threshold $\gamma: \mathbb{P}_{0}\left(T^{(m / 2)} \leq \gamma\right)=\frac{1}{2}$

Sequential Thresholding

Input:

- $K \approx \log n$ measurement passes
- threshold $\gamma: \mathbb{P}_{0}\left(T^{(m / 2)} \leq \gamma\right)=\frac{1}{2}$

Sequential Thresholding

Input:

- $K \approx \log n$ measurement passes
- threshold $\gamma: \mathbb{P}_{0}\left(T^{(m / 2)} \leq \gamma\right)=\frac{1}{2}$

Controlling Family Wise Error Rates

Controlling Family Wise Error Rates

$$
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S})=\mathbb{P}\left(\left\{\bigcup_{i \notin \mathcal{S}} \bigcap_{k=1}^{K} T_{i, k} \geq \gamma\right\} \cup\left\{\bigcup_{i \in \mathcal{S}} \bigcup_{k=1}^{K} T_{i, k} \leq \gamma\right\}\right)
$$

Controlling Family Wise Error Rates

$$
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & =\mathbb{P}\left(\left\{\bigcup_{i \notin \mathcal{S}} \bigcap_{k=1}^{K} T_{i, k} \geq \gamma\right\} \cup\left\{\bigcup_{i \in \mathcal{S}} \bigcup_{k=1}^{K} T_{i, k} \leq \gamma\right\}\right) \\
& \leq(n-s) \frac{1}{2^{K}}+s K \mathbb{P}_{1}\left(T_{i}^{(m / 2)}<\gamma\right)
\end{aligned}
$$

Controlling Family Wise Error Rates

$$
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & =\mathbb{P}\left(\left\{\bigcup_{i \notin \mathcal{S}} \bigcap_{k=1}^{K} T_{i, k} \geq \gamma\right\} \cup\left\{\bigcup_{i \in \mathcal{S}} \bigcup_{k=1}^{K} T_{i, k} \leq \gamma\right\}\right) \\
& \leq(n-s) \frac{1}{2^{K}}+s K \mathbb{P}_{1}\left(T_{i}^{(m / 2)}<\gamma\right) \\
& \lesssim(n-s) \frac{1}{2^{K}}+s K e^{-\frac{m}{2} D\left(P_{0} \| P_{1}\right)}
\end{aligned}
$$

Controlling Family Wise Error Rates

$$
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & =\mathbb{P}\left(\left\{\bigcup_{i \notin \mathcal{S}} \bigcap_{k=1}^{K} T_{i, k} \geq \gamma\right\} \cup\left\{\bigcup_{i \in \mathcal{S}} \bigcup_{k=1}^{K} T_{i, k} \leq \gamma\right\}\right) \\
& \leq(n-s) \frac{1}{2^{K}}+s K \mathbb{P}_{1}\left(T_{i}^{(m / 2)}<\gamma\right) \\
& \lesssim(n-s) \frac{1}{2^{K}}+s K e^{-\frac{m}{2} D\left(P_{0} \| P_{1}\right)} \\
& \rightarrow 0
\end{aligned}
$$

provided ...

Controlling Family Wise Error Rates

$$
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & =\mathbb{P}\left(\left\{\bigcup_{i \notin \mathcal{S}} \bigcap_{k=1}^{K} T_{i, k} \geq \gamma\right\} \cup\left\{\bigcup_{i \in \mathcal{S}} \bigcup_{k=1}^{K} T_{i, k} \leq \gamma\right\}\right) \\
& \leq(n-s) \frac{1}{2^{K}}+s K \mathbb{P}_{1}\left(T_{i}^{(m / 2)}<\gamma\right) \\
& \lesssim(n-s) \frac{1}{2^{K}}+s K e^{-\frac{m}{2} D\left(P_{0} \| P_{1}\right)} \\
& \rightarrow 0
\end{aligned}
$$

provided ...

1. $K=(1+\epsilon) \log n$

Controlling Family Wise Error Rates

$$
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & =\mathbb{P}\left(\left\{\bigcup_{i \notin \mathcal{S}} \bigcap_{k=1}^{K} T_{i, k} \geq \gamma\right\} \cup\left\{\bigcup_{i \in \mathcal{S}} \bigcup_{k=1}^{K} T_{i, k} \leq \gamma\right\}\right) \\
& \leq(n-s) \frac{1}{2^{K}}+s K \mathbb{P}_{1}\left(T_{i}^{(m / 2)}<\gamma\right) \\
& \lesssim(n-s) \frac{1}{2^{K}}+s K e^{-\frac{m}{2} D\left(P_{0} \| P_{1}\right)} \\
& \rightarrow 0
\end{aligned}
$$

provided ...

1. $K=(1+\epsilon) \log n$
2. $m>\frac{2 \log (s K)}{D\left(P_{0}| | P_{1}\right)}$

Controlling Family Wise Error Rates

$$
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & =\mathbb{P}\left(\left\{\bigcup_{i \notin \mathcal{S}} \bigcap_{k=1}^{K} T_{i, k} \geq \gamma\right\} \cup\left\{\bigcup_{i \in \mathcal{S}} \bigcup_{k=1}^{K} T_{i, k} \leq \gamma\right\}\right) \\
& \leq(n-s) \frac{1}{2^{K}}+s K \mathbb{P}_{1}\left(T_{i}^{(m / 2)}<\gamma\right) \\
& \lesssim(n-s) \frac{1}{2^{K}}+s K e^{-\frac{m}{2} D\left(P_{0} \| P_{1}\right)} \\
& \rightarrow 0
\end{aligned}
$$

provided ...

1. $K=(1+\epsilon) \log n$
2. $m>\frac{2 \log (s K)}{D\left(P_{0} \| P_{1}\right)}$

Adjust definition of γ removes $2 \ldots$

Controlling Family Wise Error Rates

$$
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & =\mathbb{P}\left(\left\{\bigcup_{i \notin \mathcal{S}} \bigcap_{k=1}^{K} T_{i, k} \geq \gamma\right\} \cup\left\{\bigcup_{i \in \mathcal{S}} \bigcup_{k=1}^{K} T_{i, k} \leq \gamma\right\}\right) \\
& \leq(n-s) \frac{1}{2^{K}}+s K \mathbb{P}_{1}\left(T_{i}^{(m / 2)}<\gamma\right) \\
& \lesssim(n-s) \frac{1}{2^{K}}+s K e^{-\frac{m}{2} D\left(P_{0} \| P_{1}\right)} \\
& \rightarrow 0
\end{aligned}
$$

provided ...

1. $K=(1+\epsilon) \log n$
2. $m>\frac{2 \log (s K)}{D\left(P_{0} \| P_{1}\right)}$

Adjust definition of γ removes $2 \ldots$

Theorem

Sequential Thresholding succeeds in exactly recovery of \mathcal{S} if

$$
m>\frac{\log s}{D\left(P_{0} \| P_{1}\right)}+\frac{\log \log n}{D\left(P_{0} \| P_{1}\right)}
$$

Controlling Family Wise Error Rates

$$
\begin{aligned}
\mathbb{P}(\hat{\mathcal{S}} \neq \mathcal{S}) & =\mathbb{P}\left(\left\{\bigcup_{i \notin \mathcal{S}} \bigcap_{k=1}^{K} T_{i, k} \geq \gamma\right\} \cup\left\{\bigcup_{i \in \mathcal{S}} \bigcup_{k=1}^{K} T_{i, k} \leq \gamma\right\}\right) \\
& \leq(n-s) \frac{1}{2^{K}}+s K \mathbb{P}_{1}\left(T_{i}^{(m / 2)}<\gamma\right) \\
& \lesssim(n-s) \frac{1}{2^{K}}+s K e^{-\frac{m}{2} D\left(P_{0} \| P_{1}\right)} \\
& \rightarrow 0
\end{aligned}
$$

provided ...

1. $K=(1+\epsilon) \log n$
2. $m>\frac{2 \log (s K)}{D\left(P_{0} \| P_{1}\right)}$

Adjust definition of γ removes $2 \ldots$

Theorem

Sequential Thresholding succeeds in exactly recovery of \mathcal{S} if

$$
m>\frac{\log s}{D\left(P_{0} \| P_{1}\right)}+\frac{\log \log n}{D\left(P_{0} \| P_{1}\right)}
$$

Note: For certain levels of sparsity, ST is asymptotically optimal!

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

$15 / 17$

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

Results

$$
s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

Results

$$
n=10^{9} \quad s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

$16 / 17$

Results

$$
n=10^{9} \quad s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

Results

$$
n=10^{9} \quad s=n^{\frac{1}{4}} \quad D\left(P_{0} \| P_{1}\right)=\frac{1}{2}
$$

Conclusion

Remaining questions: can procedures remove doubly logarithmic gap without full knowledge of distributions?

For further reading:
围 M. Malloy, R. Nowak
Sequential Analysis in High Dimensional Multiple Testing and Sparse Recovery. ISIT 2011.
睩 M. Malloy, R. Nowak
On the limits of Sequential Testing in High Dimensions.
Asilomar 2011.

