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Problem Setup

I Consider a support set S ⊂ {1, ..., n} with |S| = s � n and the random variables

Yi ∼
{

P0 i 6∈ S
P1 i ∈ S

i = 1, ..., n

I Goal: exact recovery of S from multiple i.i.d. samples of each random variable Yi ,
i = 1, ..., n.

I Conventional non-sequential approach: take a fixed number of samples of
each index i

I Sequential approach: decision to re-sample Yi based on prior observation

I Definition: take on average m samples of each index:

m := E

[ n∑
i=1

Ji

]
/n

where Ji is a r.v. representing number of times index i is sampled.

I This talk: find relationship between (n, s,m) such that P(Ŝ = S)→ 1.
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2 / 17



Problem Setup

I Consider a support set S ⊂ {1, ..., n} with |S| = s � n and the random variables

Yi ∼
{

P0 i 6∈ S
P1 i ∈ S

i = 1, ..., n

I Goal: exact recovery of S from multiple i.i.d. samples of each random variable Yi ,
i = 1, ..., n.

I Conventional non-sequential approach: take a fixed number of samples of
each index i

I Sequential approach: decision to re-sample Yi based on prior observation

I Definition: take on average m samples of each index:

m := E

[ n∑
i=1

Ji

]
/n

where Ji is a r.v. representing number of times index i is sampled.

I This talk: find relationship between (n, s,m) such that P(Ŝ = S)→ 1.
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Motivation – Gene knock-out studies in biology

fruit fly

I n = 13, 071 single gene knock-outs
I S = {∼ 100 genes vital to influenza replication}
I Yi = noisy observed fluorescence levels of gene knockout i

Goal: find genes vital to virus replication (recover S)
Challenges: n large, observations noisy, distributions of fluorescence unknown

1. Non-sequential
I Measure each gene knock-out a fixed number of times.

2. Sequential [L. Hao et.al. Drosophilia RNAi screen identifies host genes important to influenza virus replication, Nature 08]

I Round 1: observe all 13k knock-outs, twice. Retain the approximately 1k
with highest fluorescence (13k - 1k).

I Round 2: measure remaining strains 10 times each. Retain only those
with ‘significant’ fluorescence.

How much can we gain from sequential testing?
What can we do with limited knowledge of distributions?
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Motivation – Spectrum Sensing

I n = number of channels under consideration
I S = {vacant channels}
I Yi ∼ CN (0, SNRi + 1)

Goal: map spectral occupation (recover S)
Challenges: noise floor is unknown (P1 not fully known)

1. Non-sequential
I Measure each channel a fixed number of times

2. Sequential
I sequential thresholding or coordinate-wise SPRT [A. Tajer 2010, W. Zhang 2010, M.

Malloy 2011]
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Limitations of non-sequential testing

T (m)
i :=

1
m

m∑
j=1

log
p1(Yi,j)

p0(Yi,j)

a.s.→

{
−D(P0||P1) i 6∈ S
D(P1||P0) i ∈ S

P(Ŝ 6= S) ≤ (n − s) P0

(
T (m) > γ

)
+ s P1

(
T (m) ≤ γ

)
. n e−mD(P1||P0)

I How fast does m have to grow with n for exact recovery of S?

m >
log n

D(P1||P0)

is a necessary condition for exact recovery of S.
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The Sequential Probability Ratio Test
How much better can sequential methods do? [Wald, Wolfowitz, Optimum Char. of the SPRT, 1948]

On a coordinate-wise basis, take additional measurement of index i if:

A <

j′∏
j=1

p1(Yj)

p0(Yj)
< B
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Sketch of Lower Bound
Sketch of coordinate-wise lower bound

m ≈ E0[J] =
E0

[∑J
j=1 log

p0(yj )

p1(yj )

]
D(P0||P1)

≥
α log α

1−β + (1− α) log 1−α
β

D(P0||P1)

I 1) for s � n
I 2) Wald’s identity
I 3) log-sum inequality for any test with false negative β, false positive α
I 4) assume α ≤ 1/(n − s) and β ≤ 1/s
I 5) imposing condition

m <
log s

D(P0||P1)

and taking limits as n→∞ implies contradiction, and thus

P(Ŝ 6= S)→ 1
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SPRT Implementation issues

Practical concerns:

I level of sparsity is often unknown
I full knowledge of P0 and P1 is restrictive

I often some parameter of P1 unknown

+
gene

fruit fly virus 

microarray

I SPRT not optimal for composite tests: consider P0 ∼ N (0, 1) and
P1 ∼ N (µ, 1), µ > 0 unknown

A <

j′∏
j=1

p1(Yj)

p0(Yj)
< B =⇒ log A

µ
+

j ′µ
2
<

j′∑
j=1

Yj <
log B
µ

+
j ′µ
2

I thresholds depend on µ, number of samples
I What can we do without knowledge of P1 or s?
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Sequential Thresholding
Input:

I K ≈ log n measurement passes

(depends only on n)

I threshold γ : P0
(
T (m/2) ≤ γ

)
= 1

2

(depends only on P0)

1) sample each index m
2

times

2) re-measure only
indices above threshold

3) repeat

4) ...

E

[ n∑
i=1

Ji

]
≈

mn
2

+
mn
4

+
mn
8

+ ... ≤ mn

After K ≈ log n passes, return remaining indices!

13 / 17



Sequential Thresholding
Input:

I K ≈ log n measurement passes (depends only on n)

I threshold γ : P0
(
T (m/2) ≤ γ

)
= 1

2

(depends only on P0)

1) sample each index m
2

times

2) re-measure only
indices above threshold

3) repeat

4) ...

E

[ n∑
i=1

Ji

]
≈

mn
2

+
mn
4

+
mn
8

+ ... ≤ mn

After K ≈ log n passes, return remaining indices!

13 / 17



Sequential Thresholding
Input:

I K ≈ log n measurement passes

(depends only on n)

I threshold γ : P0
(
T (m/2) ≤ γ

)
= 1

2 (depends only on P0)

1) sample each index m
2

times

2) re-measure only
indices above threshold

3) repeat

4) ...

E

[ n∑
i=1

Ji

]
≈

mn
2

+
mn
4

+
mn
8

+ ... ≤ mn

After K ≈ log n passes, return remaining indices!

13 / 17



Sequential Thresholding
Input:

I K ≈ log n measurement passes

(depends only on n)

I threshold γ : P0
(
T (m/2) ≤ γ

)
= 1

2

(depends only on P0)

k = 1

1) sample each index m
2

times

2) re-measure only
indices above threshold

3) repeat

4) ...

E

[ n∑
i=1

Ji

]
≈

mn
2

+
mn
4

+
mn
8

+ ... ≤ mn

After K ≈ log n passes, return remaining indices!

13 / 17



Sequential Thresholding
Input:

I K ≈ log n measurement passes

(depends only on n)

I threshold γ : P0
(
T (m/2) ≤ γ

)
= 1

2

(depends only on P0)

k = 1

k = 2

1) sample each index m
2

times

2) re-measure only
indices above threshold

3) repeat

4) ...

E

[ n∑
i=1

Ji

]
≈

mn
2

+
mn
4

+
mn
8

+ ... ≤ mn

After K ≈ log n passes, return remaining indices!

13 / 17



Sequential Thresholding
Input:

I K ≈ log n measurement passes

(depends only on n)

I threshold γ : P0
(
T (m/2) ≤ γ

)
= 1

2

(depends only on P0)

k = 1

k = 2

k = 3

1) sample each index m
2

times

2) re-measure only
indices above threshold

3) repeat

4) ...

E

[ n∑
i=1

Ji

]
≈

mn
2

+
mn
4

+
mn
8

+ ... ≤ mn

After K ≈ log n passes, return remaining indices!

13 / 17



Sequential Thresholding
Input:

I K ≈ log n measurement passes

(depends only on n)

I threshold γ : P0
(
T (m/2) ≤ γ

)
= 1

2

(depends only on P0)

k = 1

k = 2

k = 3

k = 4

1) sample each index m
2

times

2) re-measure only
indices above threshold

3) repeat

4) ...

E

[ n∑
i=1

Ji

]
≈

mn
2

+
mn
4

+
mn
8

+ ...

≤ mn

After K ≈ log n passes, return remaining indices!

13 / 17



Sequential Thresholding
Input:

I K ≈ log n measurement passes

(depends only on n)

I threshold γ : P0
(
T (m/2) ≤ γ

)
= 1

2

(depends only on P0)

k = 1

k = 2

k = 3

k = 4

1) sample each index m
2

times

2) re-measure only
indices above threshold

3) repeat

4) ...

E

[ n∑
i=1

Ji

]
≈

mn
2

+
mn
4

+
mn
8

+ ... ≤ mn

After K ≈ log n passes, return remaining indices!

13 / 17



Sequential Thresholding
Input:

I K ≈ log n measurement passes

(depends only on n)

I threshold γ : P0
(
T (m/2) ≤ γ

)
= 1

2

(depends only on P0)

k = 1

k = 2

k = 3

k = 4

1) sample each index m
2

times

2) re-measure only
indices above threshold

3) repeat

4) ...

E

[ n∑
i=1

Ji

]
≈

mn
2

+
mn
4

+
mn
8

+ ... ≤ mn

After K ≈ log n passes, return remaining indices!

13 / 17



Controlling Family Wise Error Rates

P(Ŝ 6= S) = P

⋃
i 6∈S

K⋂
k=1

Ti,k ≥ γ

 ∪
{⋃

i∈S

K⋃
k=1

Ti,k ≤ γ

}
≤ (n − s)

1
2K + sKP1

(
T (m/2)

i < γ
)

. (n − s)
1

2K + sKe−
m
2 D(P0||P1)

→ 0

provided ...

1. K = (1 + ε) log n

2. m > 2 log(sK )
D(P0||P1)

Adjust definition of γ removes 2 . . .

Theorem
Sequential Thresholding succeeds in exactly
recovery of S if

m >
log s

D(P0||P1)
+

log log n
D(P0||P1)

Note: For certain levels of sparsity, ST is
asymptotically optimal!

k = 1

k = 2

k = 3

k = 4
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P(Ŝ 6= S) = P

⋃
i 6∈S

K⋂
k=1

Ti,k ≥ γ

 ∪
{⋃

i∈S

K⋃
k=1

Ti,k ≤ γ

}
≤ (n − s)

1
2K + sKP1

(
T (m/2)

i < γ
)

. (n − s)
1

2K + sKe−
m
2 D(P0||P1)

→ 0

provided ...

1. K = (1 + ε) log n

2. m > 2 log(sK )
D(P0||P1)

Adjust definition of γ removes 2 . . .

Theorem
Sequential Thresholding succeeds in exactly
recovery of S if

m >
log s

D(P0||P1)
+

log log n
D(P0||P1)

Note: For certain levels of sparsity, ST is
asymptotically optimal!

k = 1

k = 2

k = 3

k = 4

14 / 17



Controlling Family Wise Error Rates
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P(Ŝ 6= S) = P

⋃
i 6∈S

K⋂
k=1

Ti,k ≥ γ

 ∪
{⋃

i∈S

K⋃
k=1

Ti,k ≤ γ

}
≤ (n − s)

1
2K + sKP1

(
T (m/2)

i < γ
)

. (n − s)
1

2K + sKe−
m
2 D(P0||P1)

→ 0

provided ...

1. K = (1 + ε) log n

2. m > 2 log(sK )
D(P0||P1)

Adjust definition of γ removes 2 . . .

Theorem
Sequential Thresholding succeeds in exactly
recovery of S if

m >
log s

D(P0||P1)
+

log log n
D(P0||P1)

Note: For certain levels of sparsity, ST is
asymptotically optimal!

k = 1

k = 2

k = 3

k = 4

14 / 17



Controlling Family Wise Error Rates
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Conclusion

Remaining questions: can procedures remove doubly logarithmic gap without
full knowledge of distributions?

For further reading:

M. Malloy, R. Nowak
Sequential Analysis in High Dimensional Multiple Testing and Sparse
Recovery.
ISIT 2011.

M. Malloy, R. Nowak
On the limits of Sequential Testing in High Dimensions.
Asilomar 2011.
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