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Multiterminal Channel Model

F=public communication
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• Terminals 1, . . . ,m cooperate in secrecy generation.

• Terminals 1, . . . , k govern the inputs of a secure DMC W , with input terminal i

transmitting a sequence Xn
i = (Xi1, . . . , Xin) of length n which is not necessarily

i.i.d. Terminals k + 1, . . . ,m observe the corresponding output sequences, with

output terminal i observing Xn
i of length n.

• Following each simultaneous transmission of symbols over the DMC,

communication over a public noiseless channel of unlimited capacity is allowed

among all the terminals, perhaps interactively, and observed by all the terminals.

Let F denote collectively all such public communication.

• Randomization is permitted at the terminals, and is modeled by the rvs

Ui, i = 1, . . . ,m, which are taken to be mutually independent.
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Objective: To generate a secret key at the largest rate for a given set

A ⊆ M = {1, . . . ,m} of terminals, |A| ≥ 2, i.e., common randomness shared by the

terminals in A, which is

• of near uniform distribution;

• concealed from an eavesdropper that observes the public communication F.

All the terminals in M = {1, . . . ,m} cooperate in achieving this goal.

Assume: The eavesdropper is passive and cannot wiretap.



Secret Key Capacity
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• Common randomness: Pr{K = Ki, i ∈ A} ∼= 1.

• Secrecy & Uniformity: Security index

s(K;F)
△
= log |K| −H(K|F) = I (K ∧ F) + log |K| −H(K) ∼= 0.

Thus, a secret key (SK) is effectively concealed from an eavesdropper with access to

F, and is nearly uniformly distributed.

SK capacity CS(A) = largest achievable rate 1
n
log |K(n)| of such a SK for A.

Throughout this talk: A = M and CS(A) = CS(M) ≡ CS .



Channel with Single Output: SK Capacity and MAC Capacity Region
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• Consider the DMC W : X1 × · · · × Xm−1 → Xm.

• Let C = (average) error capacity region of the MAC W .

Theorem 1:

CS ≥ max
{

R : (R, . . . , R) ∈ C
}

.

Further, any R such that (R, . . . , R) ∈ C can be achieved as an SK rate with no public

communication by the input terminals and with only the output terminal m sending

a public message.



Proof of Theorem 1

• If (R, . . . , R) ∈ C, ∃

– mutually independent rvs Ki, i ∈ {1, . . . ,m− 1}, with each Ki ∼ unif. K;

– encoders fi : K → Xn
i , i ∈ {1, . . . ,m− 1} with |K| ∼= exp(nR);

– and a decoder φ : Xn
m → K× · · · × K,

such that φ recovers the rvs Ki, i ∈ {1, . . . ,m− 1} from the MAC output Xn
m

w.p. → 1 as n → ∞.

• Arbitrarily fix i1 ∈ {1, . . . ,m− 1}. Terminal m broadcasts

Ki1 +Ki mod |K|, i ∈ {1, . . . ,m− 1}\{i1}.

• All the terminals recover Ki1 , and Ki1 ⊥⊥
(

Ki1 +Ki mod |K|
)

i∈{1,...,m−1}\{i1}
.

• =⇒ K1 is a SK of rate R. �

OP: Is CS = max
{

R : (R, . . . , R) ∈ C
}

?

We have examples where equality holds, but know of no counterexample.



Channel with Single Output: SK Capacity and MAC Capacity Region

Xn

m−1

DMC W

1

m− 1

m Xn

m

Xn

1

Theorem 2: CS > 0 iff ∃ (R1, . . . , Rm−1) ∈ C such that Ri > 0 for each

i ∈ {1, . . . ,m− 1}.

Proof: ⇐ Sufficiency is clear by the previous Theorem.

⇒ Suppose that no (R1, . . . , Rm−1) as above exists.

• Then, by the convexity of C, for some i1 ∈ {1, . . . ,m− 1}, we must have that

Ri1 = 0 for every (R1, . . . , Rm−1) ∈ C.

• ⇒ W (xm|x1, . . . , xm−1) does not depend on i1.

• ⇒ SK capacity is 0 even if the terminals in M\{i1} were allowed to operate as a

consolidated team. �

Remark: Theorem 2 does not extend to DMCs with ≥ 2 outputs even if there is only

one input.



General Lower Bound for SK Capacity: Source Emulation
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• Simple source emulation: One way to generate an SK is to emulate a “source

model” obtained by the input terminals 1, . . . , k transmitting over the DMC W , n

i.i.d. repetitions of the rvs X1, . . . , Xk, with PX[1,k]
=

∏k

i=1PXi
.

• General source emulation: Let V be an auxiliary rv with values in a finite set V,

and such that

V −◦−X[1,k] −◦−X[k+1,m], PX[1,k]|V =
∏k

i=1
PXi|V .

One of the input terminals generates and reveals n i.i.d. repetitions of the rv V ,

and the input terminals 1, . . . , k transmit over the DMC W , n independent

versions of conditionally independent rvs as above.

• The SK capacity for a source model, even with additional secrecy from the

revealed V -sequence, is known [C-N 2004].



General Lower Bound for SK Capacity: General Source Emulation

Theorem 3:

CS ≥ max
PV,X[1,k]

as above

[

SK capacity of general source emulation model
]

= max
PV,X[1,k]

as above

[

minλ∈Λ

(

H(XM|V ) −
∑

B∈B

λBH(XB |XBc , V )
)]

.

The right side above is achievable by a simple “noninteractive communication”

protocol, i.e., with the input terminals not sending any public messages, and with

each output terminal sending at most one public message based only on its observed

(output) sequence.

Remarks: (i) General source emulation can yield larger SK rates than simple source

emulation.

(ii) For a channel model with a single input, simple source emulation suffices to

achieve SK capacity.

OP: Does general source emulation attain SK capacity?



Single Output Channel: Source Emulation and MAC Capacity Region
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Consider a MAC with a single output whose capacity region is C.

• Have seen that (R, . . . , R) ∈ C is sufficient for R to be an achievable SK rate; it is

unclear if this condition is necessary.

• However, larger SK rates cannot be achieved by general source emulation ...

Theorem 4: For a MAC W : X1 × · · · × Xm−1 → Xm, a necessary and sufficient

condition for R to be an achievable SK rate by general source emulation is that

(R, . . . , R) ∈ C.



General Upper Bound for SK Capacity: Two Technical Lemmas

Let XM = (X1, . . . , Xm). For every family B = {B : B ⊂ M, B 6= ∅}, and numbers

λB ≥ 0, B ∈ B, that satisfy
∑

B∈B:B∋i λB = 1 for each i ∈ M, the following hold.

Lemma 5: (Converse) Let K,Y be rvs such that K is ǫ-recoverable from (Xi, Y ) for

each i ∈ M. Then,

H(K|Y ) ≤ H(XM|Y )−
∑

B∈B

λBH(XB |XBc , Y ) + (m+ 1)(ǫ log |K|+ h(ǫ)).

Lemma 6: (Interactive communication) For interactive communication F of the

terminals i ∈ M, with terminal i ∈ M possessing “initial” knowledge Xi,

H (F ) ≥
∑

B∈B

λBH (F |XBc) .



General Upper Bound for SK Capacity
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Theorem 7:

CS ≤ max
PV,X[1,k]

min
λ∈Λ

[

{

H(XM|V ) −
∑

B∈B
λBH(XB |XBc ,V )

}

−

{

H(X[1,k|V ) −
∑

B∈B
λBH(X[1,k]∩B |X[1,k]∩Bc ,V )

}

]

,

where V −◦−X[1,k] −◦−X[k+1,m], but PX[1,k]|V need not be
∏k

i=1PXi|V .

Remark: For a channel model with a single input, the upper bound on SK capacity is

tight (coinciding with the lower bound in Theorem 3).

OP: What is the single letter formula for SK capacity?



Example: Binary Adder Channel with M = {1, 2, 3}
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• Consider the DMC W : {0, 1} × {0, 1} → {0, 1} given by x3 = x1 ⊕ x2.

• Achievability:

– For the MAC W , the rate pair (0.5, 0.5) lies on the boundary of the capacity

region C = {(R1, R2) : 0 ≤ R1 +R2 ≤ 1} so that by Theorem 1, CS ≥ 0.5, and

entails public communication only by the output terminal.

– By simple source emulation in Theorem 3, CS ≥ 0.5.

– Alternative scheme for SK generation with n = 2: As DMC inputs, terminal 1

transmits X11 = 0 or 1 w.p. (0.5, 0.5) and X12 = 0, while terminal 2

independently transmits X21 = 0 and X22 = 0 or 1 w.p. (0.5, 0.5). The output

terminal 3 then communicates publicly X31 ⊕X32. All the terminals recover

X11, which is independent of the public communication F = X31 ⊕X32, and is

uniform on {0, 1}. Hence, X11 is a perfect SK of rate 1
2H(X11) = 0.5.

• Converse: The upper bound in Theorem 7 yields CS ≤ 0.5.



Example: Binary “Noisy” Adder Channel with M = {1, 2, 3}
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• Consider the DMC W : {0, 1} × {0, 1} → {0, 1} given by

W (0|x1, x2) = W (1|x1, x2) = 0.5, if x1 = x2 = 1,

W (x3|x1, x2) = 1 (x3 = x1 ⊕ x2) otherwise.

• Achievability:

– The capacity region of the MAC W is C = {(R1, R2) : 0 ≤ R1 +R2 ≤ 1} so

that by Theorem 1, CS ≥ 0.5, and entails public communication only by the

output terminal.

– By Theorem 4, an SK rate of 0.5 is achievable also by general source

emulation. However, it is not achievable by simple source emulation.

• Converse: The upper bound in Theorem 7 yields CS ≤ 0.5.



Example: Arithmetic Adder Channel with M = {1, 2, 3}

DMC W

1Xn

1

Xn

3
3

Xn

2
2

• Consider the DMC W : {0, 1} × {0, 1} → {0, 1, 2} given by x3 = x1 + x2.

• Achievability:

– For the MAC W , the rate pair (0.75, 0.75) lies on the boundary of the capacity

region C = {(R1, R2) : R1 ≤ 1, R2 ≤ 1, R1 +R2 ≤ 1.5}. So, by Theorem 1,

0.75 is an achievable SK rate for the terminals 1, 2, 3, and requires public

communication only by the DMC output terminal.

– Alternatively, by simple source emulation in Theorem 3, we get CS ≥ 0.75.

• Converse: The upper bound in Theorem 7 yields CS ≤ 0.5 log 3 = 0.78.

OP: What is the SK capacity for this simple channel model?!


