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Interactive Information Theory Workshop,
BIRS, Banff, Canada, Jan 17, 2012

0 / 26



Bidirectional Broadcast Channel

Restricted decode & for-
ward bidirectional relaying

1. Phase: MAC
2. Phase: BiBC: BC with RX

message cognition

BiBC capacity region
R1 ≤ I(XR; Y1)
R2 ≤ I(XR; Y2)

Practically relevant since

supports modularization

gains are easily realized
B i d i r e c t i o n a l
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(Some) Related Literature

Early results: Decode & forward strategies based on
superposition coding [Rankov et al. ’05], [Oechtering et al.,’06], et al.
XOR operation [Larsson et al. ’04], [Wu et al. ’04], [Yeung ’05], et. al.

w optimal channel coding approach based on network coding idea
(single information flow) found by many groups independently
[Knopp ’06], [Oechtering et al. ’07], [Kim et al. ’07], [Xie ’07], [Wu ’07]

Closely related problems:
Common message BC (multicast) among others [Khisti ’04]
Compound channel [Blackwell et al ’59], [Wolfowitz ’60], et al.
Slepian-Wolf coding over BC [Tuncel ’06]
Physical-layer NC [Zhang et al. ’06], [Popovski et al. ’06], et al.

Extensions: Compress or compute & forward strategies
[Schnurr et al ’07], [Kim et al, ’08], [Günduz et al.’08], [Wilson et al, ’08],
[Nam et al. ’08], [Nazer et al. ’08], [Ong et al. ’10], [Lim et al. ’10], et al.
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Gaussian Multi-Antenna Bidirectional Relaying
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Capacity Region of Bidirectional Broadcast Channel

CBC :=
⋃

tr Q≤P, Q�0

{
[R1,R2] ∈ R2

+ : R1 ≤ C1(Q),R2 ≤ C2(Q)
}

with
Ci(Q) := log det

(
INi + 1

σ2 HH
i QHi

)
, i = 1, 2.
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Transmit Covariance Optimization Problem

arg max
tr Q≤P,Q�0

2∑
i=1

wi log det
(
INi+

1
σ2 HH

i QHi

)

w Let’s study this opt. problem! 0 0.2 0.4 0.6 0.8 1
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1 Optimal Transmit Strategies for the MISO case

2 Optimal Transmit Strategies for the MIMO case

3 Latest Results and Conclusion
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First Study – MISO Case N1 = N2 = 1

MISO optimization problem

Qopt(w) = arg max
tr Q≤P,Q�0

2∑
i=1

wi log
(
1 + 1

σ2 hH
i Qhi

)
Outline:

Subspace optimality and orthogonal channels
Single-beam optimality and its consequences
Optimal beamforming vector

Results are published in [Trans SP ’09].
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First Observations

Proposition: Subspace optimality
An optimal transmit strategy transmits only into the subspace
spanned by the channels, otherwise transmit power can be reduced
while achieving the same rates.

w Optimal transmit strategy Qopt has always rank(Qopt) ≤ 2!

Proposition: Orthogonal channels
For orthogonal channels any rate pair can be achieved with a
single-beam as well as with a two-beam strategy.

w For orthogonal channels the capacity region can be also
achieved using the superposition encoding strategy.

6 / 26



Optimality of the Single-Beam Strategy

Theorem: Single-beam optimality
For the MISO case we can always find an optimal single-beam
transmit strategy (rank(Qopt) = 1).

Proof outline:
- Orthogonal channels: Optimality follows immediately from

previous propositions.
- Non-orthogonal channels: Any rank-two transmit strategy

contradicts with the Karush-Kuhn-Tucker conditions so that the
optimal transmit strategy has to have rank one. �

w Optimal strategy is to perform a single beam onto the
subspace spanned by the channels!

7 / 26



Consequences of Single-Beam Optimality

For the bidirectional broadcast channel ...

Signal Processing
... the relay forms a single beam instead of individual beams for
each user as for the classical MISO broadcast.

w Correlated channels will be beneficial (result not shown).

Channel Coding
... it is sufficient to use an one-dimensional Gaussian codebook
instead of a codebook with a dimension equal to the number of
transmit antennas.

w Reduction of coding complexity!

8 / 26



Optimal Beamforming Vector

Theorem: Property of Optimal Beamforming Vector

Q := PqqH, q = a1u1 + a2u2, hi = |hi|ui, ai ∈ C,

then
arg(a1) − arg(a2) = ϕ |ρ|eiϕ = uH

1 u2

w Normalized beamforming vector

q(t) =
tu1 + (1 − t)e− ϕu2

‖tu1 + (1 − t)e− ϕu2‖
, t ∈ [0, 1]

w [R1(t),R2(t)] with Ri(t) := log(1 + P
σ2 |h

H
k q(t)|2), t ∈ [0, 1]

parametrizes the curved section of the capacity region!
Egalitarian solution easily calculated from R1(teg) = R2(teg).
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Extended Study – MIMO Case

MIMO optimization problem

Qopt(w) = arg max
tr Q≤P,Q�0

2∑
i=1

wi log det
(
INi + 1

σ2 HH
i QHi

)
Outline:

Subspace optimality and ’Orthogonal’ channels
Karush-Kuhn-Tucker conditions – Unsymmetric Riccati equation
Special case: Full rank transmission
Special case: Parallel channels

Results are published in [Trans Com ’09].
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First Observations

Proposition: Subspace optimality
An optimal transmit strategy transmits only into the vector space
spanned by the set of column vectors of H1 and H2.

Proposition: ’Orthogonal channels’
Pi projector onto the vector space spanned by the set of column
vectors of Hi, i = 1, 2.

Any rate pair achievable with Q can be achieved with equivalent
transmit strategies Q̂ with rank r̂ satisfying

max{r1, r2} ≤ r̂ ≤ min{r1 + r2,NR}, ri := rank (PiQPi).

In general an optimal solution Qopt will be not unique!

w Makes analysis of the general optimization problem difficult.
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Special Case: Invertible Channels

Lagrangian

L(Q, µ,Ψ) = −
2∑

i=1
wiCi(Q) − µ

(
P − tr Q

)
− tr QΨ

Karush-Kuhn-Tucker conditions
2∑

i=1
wiHi(σ2INi + HH

i QHi)−1HH
i = µINR −Ψ (1)

Q � 0, P ≥ tr Q,
Ψ � 0, µ ≥ 0,

tr QΨ = 0, µ
(
P − tr Q

)
= 0

If H−1
i exists, then (1) can be expressed as...
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Special Case: Invertible Channels

Lagrangian

L(Q, µ,Ψ) = −
2∑

i=1
wiCi(Q) − µ

(
P − tr Q

)
− tr QΨ

Karush-Kuhn-Tucker conditions
2∑

i=1
wi(σ2H−H

i H−1
i + Q)−1 = µINR −Ψ

Q � 0, P ≥ tr Q,
Ψ � 0, µ ≥ 0,

tr QΨ = 0, µ
(
P − tr Q

)
= 0

with substitutions Ai := σ2H−H
i H−1

i and B := µINR −Ψ ...
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Special Case: Invertible Channels

Lagrangian

L(Q, µ,Ψ) = −
2∑

i=1
wiCi(Q) − µ

(
P − tr Q

)
− tr QΨ

Karush-Kuhn-Tucker conditions

w1(A1 + Q)−1 + w2(A2 + Q)−1 = B

Q � 0, P ≥ tr Q,
Ψ � 0, µ ≥ 0,

tr QΨ = 0, µ
(
P − tr Q

)
= 0

multiplication with (A1 + Q) and (A2 + Q) we get...
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Special Case: Invertible Channels

Lagrangian

L(Q, µ,Ψ) = −
2∑

i=1
wiCi(Q) − µ

(
P − tr Q

)
− tr QΨ

Karush-Kuhn-Tucker conditions

QBQ + QBA2 + A1BQ −Q = w1A2 + w2A1 − A1BA2,

Q � 0, P ≥ tr Q,
Ψ � 0, µ ≥ 0,

tr QΨ = 0, µ
(
P − tr Q

)
= 0

... a quadratic matrix equation (also known as unsymmetric
Riccati equation). A solution method exists, but further
analytical results are not available so far (we do not know).
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Special Case: Invertible Channels

Lagrangian

L(Q, µ,Ψ) = −
2∑

i=1
wiCi(Q) − µ

(
P − tr Q

)
− tr QΨ

Karush-Kuhn-Tucker conditions

w1(A1 + Q)−1 + w2(A2 + Q)−1 = B (2)

Q � 0, P ≥ tr Q,
Ψ � 0, µ ≥ 0,

tr QΨ = 0, µ
(
P − tr Q

)
= 0

Notice, at this step we can multiply (A1 + Q) and (A2 + Q)
from the left or from the right!
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Special Case: ... and Full Rank Transmission

Full Rank Transmission and Invertible Channels
Assume: H−1

i exists & the optimal covariance matrix has rank Q = N

w Ψ = 0 and therefore B = µIN

Interchanging multiplications from the left and the right ...

w1(A2 + Q) + w2(A1 + Q) = µ(A1 + Q)(A2 + Q) = µ(A2 + Q)(A1 + Q)

shows that matrices (A1 + Q) and (A2 + Q) commute!

w Both have the same eigenspace, i.e., (Ai + Q) = UΣiUH, i = 1, 2,
which can be computed from

(A2 + Q) − (A1 + Q) = A2 − A1︸   ︷︷   ︸
=σ2((H2HH

2 )−1−(H1HH
1 )−1)

= U(Σ2 − Σ1)UH
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Optimal Eigenvalues

Proposition: Quadratic Equation Condition
U = [u1,u2, . . . ,uN] diagonalizes matrix equation

w1(δ2,k + εk) + w2(δ1,k + εk)︸                             ︷︷                             ︸
linear in εk

= µ(δ1,k + εk)(δ2,k + εk)︸                    ︷︷                    ︸
quadratic in εk

with δi,k = uH
k Aiuk > 0 and εk = uH

k Quk > 0, k = 1, 2, . . . ,N.

k

µ

µ

ε

increasing

increasing 

Solution: Intersection between
line and parabola.
(negative sol. can be excluded)

Choose µ such that
N∑

k=1
εk = P
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Optimal Transmit Covariance Matrix

Optimal Transmit Covariance Matrix
The optimal transmit covariance for the case of invertible channels
and a full rank transmission is given by

Q = Udiag
[
δi,1 + ε1, δi,2 + ε2, . . . , δi,N + εN

]
UH
− Ai, i = 1, 2,

which can be completely calculated by the previous procedure.

Possible extension to case where Q−1, (H1HH
1 )−1, and (H2HH

2 )−1

exist (Sherman-Morrison-Woodbury formula).

Open Problem: Generalization
Non-full rank transmission & channels with different subspaces
Problem: Ψ , 0
Potential difficulty: Optimal solution may be not unique!
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Complete Solution for Special Case: Parallel Channels

Definition: Parallel Channels (e.g. OFDM)

H1HH
1 = WS1WH H2HH

2 = WS2WH

with Si = diag(si,1, si,2, . . . , si,N) � 0, i = 1, 2, and W unitary.

Optimal eigenvectors
w Hadamard Inequality: Q = WΣQWH, ΣQ = diag(λ1, λ2, . . . , λN)

Optimal eigenvalues
w Weighted rate sum maximization:

RΣ(w) = max
λ

N∑
k=1

2∑
i=1

wi log(1 + 1
σ2 si,kλk) s.t. ‖λ‖1 ≤ P, λk ≥ 0

Previous procedure solves even non-full rank case. Details
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BiBC Under Channel Uncertainty

Channel uncertainty is a ubiquitous phenomenon in practical
systmes
w Assume that it is only known that the exact channel realization

belongs to a pre-specified set of channels S
w We need universal strategies that work for all realizations

simultaneously

Theorem: Capacity Region of Compound BiBC [TCom’10]

R1 ≤ inf
s∈S

I(XR; Y1,s) and R2 ≤ inf
s∈S

I(XR; Y2,s)

Yi,s channel output at node i for channel realization s ∈ S.

Results are extended to arbitrary varying channels.
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Robust Transmit Strategies for the MISO case

CSI uncertainty: hi,0 nominal (known) channel, [Loyka et al.’08]

yi = (hi,0 + di)x + ni, i = 1, 2

perturbation di ∈ Di

Di := {di : σ1(di) = ‖di‖ ≤ εi}

Optimal Robust Transmit Strategy
Worst case capacity region of the MISO BiBC under channel
uncertainty Di is given by set of rate pairs

R1 ≤ log
(
1 + 1

σ2 (|hH
1,0q| − ε1)2

)
, R2 ≤ log

(
1 + 1

σ2 (|hH
2,0q| − ε2)2

)
for some transmit strategy Q = qqH with tr(Q) ≤ P.
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Worst-Case Perturbation
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Worst-case perturbations can explicitly be characterized as

di(q) = −εi e− jϕi uq with uq = q/‖q‖ and ϕi = arg(hH
i,0uq)

w Worst-case di are anti-parallel to transmit strategy q

Some extensions to MIMO case possible.
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Conclusion

Bidirectional broadcast channel is an appealing problem which
is practically relevant

modularization, realizes some network coding gains,

is closely related to multicast, P2P channel,
allows derivation of closed form results in the Gaussian case

MISO: single-beam optimaity manifests single information flow view,
favors correlated channels

MIMO: closed-form procedure to find full rank solution
→ extension open,

has many interesting extensions, e.g.,
compound and arbitrary varying channel versions
→ robust transmit strategies.

Thank you for your attention!
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Optimal eigenvalues

Lagrangian: L(λ, µ,ν) = µ(P−‖λ‖1) +
N∑

k=1

[
νkλk −

2∑
i=1

wi log(1 + 1
σ2 si,kλk)

]
,

Optimal λk follows from the Karush-Kuhn-Tucker conditions

w1s1,k(σ2 + s2,kλk) + w2s2,k(σ2 + s1,kλk) = (µ − νk)(σ2 + s1,kλk)(σ2 + s2,kλk)

Quadratic equation in λk; negative solution can be excluded
µ has to be chosen so that power constraint is fulfilled
νk controls positivity condition of λk

The case νk = λk = 0 defines a thresholds µk(w) where mode k is
activated, i.e., for larger P⇒ smaller µ, we will have λk > 0,

µk(w) = σ−2(w1s1,k + w2s2,k).
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Modes Areas of Parallel Channels with
N1 = N2 = NR = 3
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Eigenvalue si,k corresponds to the k-th eigenvector of HiHH
i

w The activated modes, λk > 0, change with the weights. At the
weights corresponding to ’◦’ beamforming is never optimal.
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