# Transmit Strategies for the Gaussian Bidirectional Broadcast Channel & Latest Results

Tobias Oechtering, KTH, Stockholm, Sweden

joint works with: Rafael Wyrembelski, Holger Boche, Clemens Schnurr, Igor Bjelaković, Eduard Jorswieck

> Interactive Information Theory Workshop, BIRS, Banff, Canada, Jan 17, 2012

## **Bidirectional Broadcast Channel**



 $R_1 \le I(X_R; Y_1)$  $R_2 \le I(X_R; Y_2)$ 

Practically relevant since

- supports modularization
- gains are easily realized



# (Some) Related Literature

#### • Early results: Decode & forward strategies based on

- superposition coding [Rankov et al. '05], [Oechtering et al.,'06], et al.
- XOR operation [Larsson et al. '04], [Wu et al. '04], [Yeung '05], et. al.
- optimal channel coding approach based on network coding idea (single information flow) found by many groups independently [Knopp '06], [Oechtering et al. '07], [Kim et al. '07], [Xie '07], [Wu '07]
- Closely related problems:
  - Common message BC (multicast) among others [Khisti '04]
  - Compound channel [Blackwell et al '59], [Wolfowitz '60], et al.
  - Slepian-Wolf coding over BC [Tuncel '06]
  - Physical-layer NC [Zhang et al. '06], [Popovski et al. '06], et al.
- Extensions: Compress or compute & forward strategies
  - [Schnurr et al '07], [Kim et al, '08], [Günduz et al.'08], [Wilson et al, '08], [Nam et al. '08], [Nazer et al. '08], [Ong et al. '10], [Lim et al. '10], et al.

## Gaussian Multi-Antenna Bidirectional Relaying



#### Capacity Region of Bidirectional Broadcast Channel

$$C_{\rm BC} := \bigcup_{\text{tr} \, Q \le P, \, Q \ge 0} \left\{ [R_1, R_2] \in \mathbb{R}^2_+ : R_1 \le C_1(Q), R_2 \le C_2(Q) \right\}$$

with

$$C_i(\mathbf{Q}) := \log \det \left( \mathbf{I}_{N_i} + \frac{1}{\sigma^2} \mathbf{H}_i^H \mathbf{Q} \mathbf{H}_i \right), \quad i = 1, 2.$$

## Transmit Covariance Optimization Problem

$$\arg \max_{\operatorname{tr} Q \leq P, Q \geq 0} \sum_{i=1}^{2} w_i \log \det \left( I_{N_i} + \frac{1}{\sigma^2} H_i^H Q H_i \right)$$

$$\underset{\operatorname{tr} Q \leq P, Q \geq 0}{\operatorname{tr} Q \leq P, Q \geq 0} \sum_{i=1}^{2} w_i \log \det \left( I_{N_i} + \frac{1}{\sigma^2} H_i^H Q H_i \right)$$

Optimal Transmit Strategies for the MISO case

- Optimal Transmit Strategies for the MIMO case
- Latest Results and Conclusion

[w, w

1

₹

## First Study – MISO Case $N_1 = N_2 = 1$

## MISO optimization problem

$$Q_{\text{opt}}(w) = \underset{\text{tr} Q \leq P, Q \geq 0}{\operatorname{arg max}} \sum_{i=1}^{2} w_i \log \left(1 + \frac{1}{\sigma^2} \boldsymbol{h}_i^H \boldsymbol{Q} \boldsymbol{h}_i\right)$$

- Outline:
  - Subspace optimality and orthogonal channels
  - Single-beam optimality and its consequences
  - Optimal beamforming vector
- Results are published in [Trans SP '09].

## **First Observations**

## Proposition: Subspace optimality

An optimal transmit strategy transmits only into the subspace spanned by the channels, otherwise transmit power can be reduced while achieving the same rates.

••• Optimal transmit strategy  $Q_{opt}$  has always  $rank(Q_{opt}) \le 2!$ 

#### Proposition: Orthogonal channels

For orthogonal channels any rate pair can be achieved with a single-beam as well as with a two-beam strategy.

For orthogonal channels the capacity region can be also achieved using the superposition encoding strategy.

# Optimality of the Single-Beam Strategy

#### Theorem: Single-beam optimality

For the MISO case we can always find an optimal single-beam transmit strategy  $(rank(Q_{opt}) = 1)$ .

#### Proof outline:

- Orthogonal channels: Optimality follows immediately from previous propositions.
- *Non-orthogonal channels:* Any rank-two transmit strategy contradicts with the Karush-Kuhn-Tucker conditions so that the optimal transmit strategy has to have rank one.

Optimal strategy is to perform a single beam onto the subspace spanned by the channels!

# **Consequences of Single-Beam Optimality**

For the bidirectional broadcast channel ...

## Signal Processing

... the relay forms a single beam instead of individual beams for each user as for the classical MISO broadcast.

Correlated channels will be beneficial (result not shown).

## **Channel Coding**

... it is sufficient to use an one-dimensional Gaussian codebook instead of a codebook with a dimension equal to the number of transmit antennas.



# **Optimal Beamforming Vector**

Theorem: Property of Optimal Beamforming Vector

$$\boldsymbol{Q} := \boldsymbol{P} \boldsymbol{q} \boldsymbol{q}^{\boldsymbol{H}}, \qquad \boldsymbol{q} = a_1 \boldsymbol{u}_1 + a_2 \boldsymbol{u}_2, \qquad \boldsymbol{h}_i = |\boldsymbol{h}_i| \boldsymbol{u}_i, \ a_i \in \mathbb{C},$$

then

$$\arg(a_1) - \arg(a_2) = \varphi \qquad |\rho|e^{i\varphi} = u_1^H u_2$$

Normalized beamforming vector

$$q(t) = \frac{tu_1 + (1-t)e^{-j\varphi}u_2}{\|tu_1 + (1-t)e^{-j\varphi}u_2\|}, \qquad t \in [0,1]$$

- $[R_1(t), R_2(t)]$  with  $R_i(t) := \log(1 + \frac{p}{\sigma^2}|h_k^H q(t)|^2), t \in [0, 1]$ parametrizes the curved section of the capacity region!
- Egalitarian solution easily calculated from  $R_1(t_{eg}) = R_2(t_{eg})$ .

# Extended Study – MIMO Case

#### MIMO optimization problem

$$\mathbf{Q}_{\mathsf{opt}}(\boldsymbol{w}) = \underset{\operatorname{tr} \boldsymbol{Q} \leq \boldsymbol{P}, \boldsymbol{Q} \geq \boldsymbol{0}}{\operatorname{arg\,max}} \sum_{i=1}^{2} w_{i} \log \det \left( \mathbf{I}_{N_{i}} + \frac{1}{\sigma^{2}} \mathbf{H}_{i}^{H} \mathbf{Q} \mathbf{H}_{i} \right)$$

- Outline:
  - Subspace optimality and 'Orthogonal' channels
  - Karush-Kuhn-Tucker conditions Unsymmetric Riccati equation
  - Special case: Full rank transmission
  - Special case: Parallel channels
- Results are published in [Trans Com '09].

## **First Observations**

## Proposition: Subspace optimality

An optimal transmit strategy transmits only into the vector space spanned by the set of column vectors of  $H_1$  and  $H_2$ .

#### Proposition: 'Orthogonal channels'

 $P_i$  projector onto the vector space spanned by the set of column vectors of  $H_i$ , i = 1, 2.

Any rate pair achievable with Q can be achieved with equivalent transmit strategies  $\hat{Q}$  with rank  $\hat{r}$  satisfying

 $\max\{r_1, r_2\} \le \hat{r} \le \min\{r_1 + r_2, N_R\}, \quad r_i := \operatorname{rank}(P_i Q P_i).$ 

• In general an optimal solution Q<sub>opt</sub> will be not unique!

Makes analysis of the general optimization problem difficult.

#### Lagrangian

$$L(\mathbf{Q}, \mu, \Psi) = -\sum_{i=1}^{2} w_i C_i(\mathbf{Q}) - \mu \left( P - \operatorname{tr} \mathbf{Q} \right) - \operatorname{tr} \mathbf{Q} \Psi$$

#### Karush-Kuhn-Tucker conditions

$$\sum_{i=1}^{2} w_{i} H_{i} (\sigma^{2} I_{N_{i}} + H_{i}^{H} Q H_{i})^{-1} H_{i}^{H} = \mu I_{N_{R}} - \Psi$$
(1)  

$$Q \geq 0, \qquad P \geq \operatorname{tr} Q,$$
  

$$\Psi \geq 0, \qquad \mu \geq 0,$$
  

$$\operatorname{tr} Q \Psi = 0, \qquad \mu (P - \operatorname{tr} Q) = 0$$

• If  $H_i^{-1}$  exists, then (1) can be expressed as...

#### Lagrangian

$$L(\mathbf{Q},\mu,\mathbf{\Psi}) = -\sum_{i=1}^{2} w_i C_i(\mathbf{Q}) - \mu (P - \operatorname{tr} \mathbf{Q}) - \operatorname{tr} \mathbf{Q} \mathbf{\Psi}$$

#### Karush-Kuhn-Tucker conditions

$$\sum_{i=1}^{2} w_{i} (\sigma^{2} \boldsymbol{H}_{i}^{-H} \boldsymbol{H}_{i}^{-1} + \boldsymbol{Q})^{-1} = \mu \boldsymbol{I}_{N_{R}} - \boldsymbol{\Psi}$$
$$\boldsymbol{Q} \geq 0, \qquad P \geq \operatorname{tr} \boldsymbol{Q},$$
$$\boldsymbol{\Psi} \geq 0, \qquad \mu \geq 0,$$
$$\operatorname{tr} \boldsymbol{Q} \boldsymbol{\Psi} = 0, \qquad \mu (P - \operatorname{tr} \boldsymbol{Q}) = 0$$

• with substitutions  $A_i := \sigma^2 H_i^{-H} H_i^{-1}$  and  $B := \mu I_{N_R} - \Psi \dots$ 

## Lagrangian

$$L(\mathbf{Q}, \mu, \Psi) = -\sum_{i=1}^{2} w_i C_i(\mathbf{Q}) - \mu \left( P - \operatorname{tr} \mathbf{Q} \right) - \operatorname{tr} \mathbf{Q} \Psi$$

#### Karush-Kuhn-Tucker conditions

$$w_1(A_1 + Q)^{-1} + w_2(A_2 + Q)^{-1} = B$$

$$Q \ge 0, \qquad P \ge \operatorname{tr} Q,$$

$$\Psi \ge 0, \qquad \mu \ge 0,$$

$$\operatorname{tr} Q\Psi = 0, \qquad \mu (P - \operatorname{tr} Q) = 0$$

• multiplication with  $(A_1 + Q)$  and  $(A_2 + Q)$  we get...

#### Lagrangian

$$L(\mathbf{Q}, \boldsymbol{\mu}, \boldsymbol{\Psi}) = -\sum_{i=1}^{2} w_i C_i(\mathbf{Q}) - \boldsymbol{\mu} (P - \operatorname{tr} \mathbf{Q}) - \operatorname{tr} \mathbf{Q} \boldsymbol{\Psi}$$

#### Karush-Kuhn-Tucker conditions

 $QBQ + QBA_2 + A_1BQ - Q = w_1A_2 + w_2A_1 - A_1BA_2,$   $Q \ge 0, \qquad P \ge \operatorname{tr} Q,$   $\Psi \ge 0, \qquad \mu \ge 0,$  $\operatorname{tr} Q\Psi = 0, \qquad \mu (P - \operatorname{tr} Q) = 0$ 

 ... a quadratic matrix equation (also known as unsymmetric Riccati equation). A solution method exists, but further analytical results are not available so far (we do not know).

#### Lagrangian

$$L(\mathbf{Q}, \boldsymbol{\mu}, \boldsymbol{\Psi}) = -\sum_{i=1}^{2} w_i C_i(\mathbf{Q}) - \boldsymbol{\mu} (P - \operatorname{tr} \mathbf{Q}) - \operatorname{tr} \mathbf{Q} \boldsymbol{\Psi}$$

#### Karush-Kuhn-Tucker conditions

$$w_{1}(A_{1} + Q)^{-1} + w_{2}(A_{2} + Q)^{-1} = B$$

$$Q \ge 0, \qquad P \ge \operatorname{tr} Q,$$

$$\Psi \ge 0, \qquad \mu \ge 0,$$

$$\operatorname{tr} Q\Psi = 0, \qquad \mu (P - \operatorname{tr} Q) = 0$$

$$(2)$$

Notice, at this step we can multiply (A<sub>1</sub> + Q) and (A<sub>2</sub> + Q) from the left or from the right!

## Special Case: ... and Full Rank Transmission

#### Full Rank Transmission and Invertible Channels

Assume:  $H_i^{-1}$  exists & the optimal covariance matrix has rank Q = N

$$\Psi = \mathbf{0}$$
 and therefore  $B = \mu I_N$ 

• Interchanging multiplications from the left and the right ...  $w_1(A_2 + Q) + w_2(A_1 + Q) = \mu(A_1 + Q)(A_2 + Q) = \mu(A_2 + Q)(A_1 + Q)$ shows that matrices  $(A_1 + Q)$  and  $(A_2 + Q)$  commute!

## Special Case: ... and Full Rank Transmission

#### Full Rank Transmission and Invertible Channels

Assume:  $H_i^{-1}$  exists & the optimal covariance matrix has rank Q = N

$$\Psi = \mathbf{0}$$
 and therefore  $B = \mu I_N$ 

• Interchanging multiplications from the left and the right ...

 $w_1(A_2 + Q) + w_2(A_1 + Q) = \mu(A_1 + Q)(A_2 + Q) = \mu(A_2 + Q)(A_1 + Q)$ shows that matrices  $(A_1 + Q)$  and  $(A_2 + Q)$  commute!

Both have the same eigenspace, i.e.,  $(A_i + Q) = U\Sigma_i U^H$ , i = 1, 2, which can be computed from

$$(A_2 + Q) - (A_1 + Q) = \underbrace{A_2 - A_1}_{=\sigma^2 ((H_2 H_2^H)^{-1} - (H_1 H_1^H)^{-1})} = U(\Sigma_2 - \Sigma_1) U^H$$

## **Optimal Eigenvalues**

## Proposition: Quadratic Equation Condition

 $\boldsymbol{U} = [\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_N]$  diagonalizes matrix equation

$$w_1(\delta_{2,k} + \epsilon_k) + w_2(\delta_{1,k} + \epsilon_k) = \mu(\delta_{1,k} + \epsilon_k)(\delta_{2,k} + \epsilon_k)$$

linear in  $\epsilon_k$ 

quadratic in  $\epsilon_k$ 

with 
$$\delta_{i,k} = \boldsymbol{u}_k^H \boldsymbol{A}_i \boldsymbol{u}_k > 0$$
 and  $\boldsymbol{\epsilon}_k = \boldsymbol{u}_k^H \boldsymbol{Q} \boldsymbol{u}_k > 0, k = 1, 2, \dots, N.$ 



- **Solution:** Intersection between line and parabola. (negative sol. can be excluded)
- Choose  $\mu$  such that  $\sum_{k=1}^{N} \epsilon_k = P$

# **Optimal Transmit Covariance Matrix**

## **Optimal Transmit Covariance Matrix**

The optimal transmit covariance for the case of invertible channels and a full rank transmission is given by

 $\boldsymbol{Q} = \boldsymbol{U} \text{diag} \left[ \delta_{i,1} + \epsilon_1, \delta_{i,2} + \epsilon_2, \dots, \delta_{i,N} + \epsilon_N \right] \boldsymbol{U}^H - \boldsymbol{A}_i, \quad i = 1, 2,$ 

which can be completely calculated by the previous procedure.

• Possible extension to case where  $Q^{-1}$ ,  $(H_1H_1^H)^{-1}$ , and  $(H_2H_2^H)^{-1}$  exist (Sherman-Morrison-Woodbury formula).

# **Optimal Transmit Covariance Matrix**

## **Optimal Transmit Covariance Matrix**

The optimal transmit covariance for the case of invertible channels and a full rank transmission is given by

 $\boldsymbol{Q} = \boldsymbol{U} \text{diag} \left[ \delta_{i,1} + \epsilon_1, \delta_{i,2} + \epsilon_2, \dots, \delta_{i,N} + \epsilon_N \right] \boldsymbol{U}^H - \boldsymbol{A}_i, \quad i = 1, 2,$ 

which can be completely calculated by the previous procedure.

• Possible extension to case where  $Q^{-1}$ ,  $(H_1H_1^H)^{-1}$ , and  $(H_2H_2^H)^{-1}$  exist (Sherman-Morrison-Woodbury formula).

#### **Open Problem:** Generalization

Non-full rank transmission & channels with different subspaces **Problem:**  $\Psi \neq 0$ **Potential difficulty:** Optimal solution may be not unique!

# Complete Solution for Special Case: Parallel Channels

## Definition: Parallel Channels (e.g. OFDM)

$$\boldsymbol{H}_{1}\boldsymbol{H}_{1}^{H} = \boldsymbol{W}\boldsymbol{S}_{1}\boldsymbol{W}^{H} \qquad \boldsymbol{H}_{2}\boldsymbol{H}_{2}^{H} = \boldsymbol{W}\boldsymbol{S}_{2}\boldsymbol{W}^{H}$$

with  $S_i = \text{diag}(s_{i,1}, s_{i,2}, ..., s_{i,N}) \ge 0$ , i = 1, 2, and W unitary.

Optimal eigenvectors

Hadamard Inequality:  $\mathbf{Q} = \mathbf{W} \mathbf{\Sigma}_{Q} \mathbf{W}^{H}, \mathbf{\Sigma}_{Q} = \text{diag}(\lambda_{1}, \lambda_{2}, \dots, \lambda_{N})$ 

Optimal eigenvalues

Weighted rate sum maximization:

$$R_{\Sigma}(\boldsymbol{w}) = \max_{\lambda} \sum_{k=1}^{N} \sum_{i=1}^{2} w_i \log(1 + \frac{1}{\sigma^2} s_{i,k} \lambda_k) \text{ s.t. } \|\boldsymbol{\lambda}\|_1 \le P, \ \lambda_k \ge 0$$

• Previous procedure solves even non-full rank case.

## **BiBC Under Channel Uncertainty**

- Channel uncertainty is a ubiquitous phenomenon in practical systmes
  - Assume that it is only known that the exact channel realization belongs to a pre-specified set of channels *S*
  - We need universal strategies that work for all realizations simultaneously

Theorem: Capacity Region of Compound BiBC [TCom'10]

$$R_1 \leq \inf_{s \in \mathcal{S}} I(X_R; Y_{1,s})$$
 and  $R_2 \leq \inf_{s \in \mathcal{S}} I(X_R; Y_{2,s})$ 

 $Y_{i,s}$  channel output at node *i* for channel realization  $s \in S$ .

• Results are extended to arbitrary varying channels.

## Robust Transmit Strategies for the MISO case

• CSI uncertainty: h<sub>i,0</sub> nominal (known) channel, [Loyka et al.'08]

$$y_i = (h_{i,0} + d_i)x + n_i, \qquad i = 1, 2$$

perturbation  $d_i \in \mathcal{D}_i$ 

$$\mathcal{D}_i := \{ \boldsymbol{d}_i : \sigma_1(\boldsymbol{d}_i) = \| \boldsymbol{d}_i \| \le \epsilon_i \}$$

#### Optimal Robust Transmit Strategy

 Worst case capacity region of the MISO BiBC under channel uncertainty D<sub>i</sub> is given by set of rate pairs

$$R_1 \leq \log\left(1 + \frac{1}{\sigma^2}(|\boldsymbol{h}_{1,0}^H\boldsymbol{q}| - \epsilon_1)^2\right), \quad R_2 \leq \log\left(1 + \frac{1}{\sigma^2}(|\boldsymbol{h}_{2,0}^H\boldsymbol{q}| - \epsilon_2)^2\right)$$

for some transmit strategy  $Q = qq^H$  with  $tr(Q) \le P$ .

## Worst-Case Perturbation



Worst-case perturbations can explicitly be characterized as

$$d_i(q) = -\epsilon_i e^{-j\varphi_i} u_q$$
 with  $u_q = q/||q||$  and  $\varphi_i = arg(h_{i,0}^H u_q)$ 

Worst-case  $d_i$  are anti-parallel to transmit strategy q

• Some extensions to MIMO case possible.

## Conclusion

Bidirectional broadcast channel is an appealing problem which

- is practically relevant
  - modularization, realizes some network coding gains,
- is closely related to multicast, P2P channel,
- allows derivation of closed form results in the Gaussian case
- MISO: single-beam optimaity manifests single information flow view, favors correlated channels
- MIMO: closed-form procedure to find full rank solution  $\rightarrow$  extension open,
- has many interesting extensions, e.g.,
  - compound and arbitrary varying channel versions
    - $\rightarrow$  robust transmit strategies.

# Thank you for your attention!

# **Own Related References I**

- C. Schnurr, T. J. Oechtering, and S. Stańczak,
   On Coding for the Broadcast Phase in the Two-Way Relay Channel,
   Proc. 41st Annual Conf. on Inf. Sciences and Systems, Mar. 2007.
- T. J. Oechtering, C. Schnurr, I. Bjelaković, and H. Boche, Broadcast Capacity Region of Two-Phase Bidirectional Relaying, IEEE Transactions on Information Theory, vol. 54, no. 1, 2008, pp. 454-458.
- R. F. Wyrembelski, T. J. Oechtering, I. Bjelaković, C. Schnurr, and H. Boche Capacity of Gaussian MIMO Bidirectional Broadcast Channels *Proc. IEEE Int. Symp. on Inf. Theory*, July 2008, pp. 584–588
- T. J. Oechtering, R. F. Wyrembelski, and H. Boche Multi-Antenna Bidirectional Broadcast Channels - Optimal Transmit Strategies IEEE Trans. on Signal Proc., May 2009, pp. 1948–1958.
- T. J. Oechtering, E. A. Jorswieck, R. F. Wyrembelski, and H. Boche On the Optimal Transmission for the MIMO Bidirectional Broadcast Channel *IEEE Trans. on Com.*, vol. 57, Dec. 2009, pp. 3817-3826.

## **Own Related References II**

#### R. F. Wyrembelski, I. Bjelaković, T. J. Oechtering, and H. Boche

On the Capacity of Bidirectional Broadcast Channels under Channel Uncertainty

Proc. IEEE Int. Conf. Commun., pp. 1-5, June 2009.

#### R. F. Wyrembelski, I. Bjelaković, T. J. Oechtering, and H. Boche

Optimal Coding Strategies for Bidirectional Broadcast Channels under Channel Uncertainty

IEEE Trans. Commun., vol. 58, no. 10, pp. 2984-2994, Oct. 2010.

## **Optimal eigenvalues**

• Lagrangian: 
$$L(\lambda, \mu, \nu) = \mu(P - ||\lambda||_1) + \sum_{k=1}^{N} \left[ \nu_k \lambda_k - \sum_{i=1}^{2} w_i \log(1 + \frac{1}{\sigma^2} s_{i,k} \lambda_k) \right],$$

Optimal λ<sub>k</sub> follows from the Karush-Kuhn-Tucker conditions

 $w_1s_{1,k}(\sigma^2 + s_{2,k}\lambda_k) + w_2s_{2,k}(\sigma^2 + s_{1,k}\lambda_k) = (\mu - \nu_k)(\sigma^2 + s_{1,k}\lambda_k)(\sigma^2 + s_{2,k}\lambda_k)$ 

- Quadratic equation in  $\lambda_k$ ; negative solution can be excluded
- µ has to be chosen so that power constraint is fulfilled
- $v_k$  controls positivity condition of  $\lambda_k$

The case  $\nu_k = \lambda_k = 0$  defines a thresholds  $\mu_k(w)$  where mode *k* is activated, i.e., for larger  $P \Rightarrow$  smaller  $\mu$ , we will have  $\lambda_k > 0$ ,

$$\mu_k(w) = \sigma^{-2}(w_1s_{1,k} + w_2s_{2,k}).$$

# Modes Areas of Parallel Channels with $N_1 = N_2 = N_R = 3$



- Eigenvalue  $s_{i,k}$  corresponds to the k-th eigenvector of  $H_i H_i^H$
- The activated modes,  $\lambda_k > 0$ , change with the weights. At the weights corresponding to 'o' beamforming is never optimal.