
Towards Coding for
Max Errors in

Interactive
Communication

Mark Braverman [Princeton University]
Anup Rao [University of Washington]

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

E(x)

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

E(x) y=E(x) + errors

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

E(x) y=E(x) + errors

x = D(y)

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

E(x) y=E(x) + errors

x = D(y)

State of art: E(x) = Oε(n) bits
D(y)=x, if (1/4-ε) errors

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

E(x) y=E(x) + errors

x = D(y)

State of art: E(x) = Oε(n) bits
D(y)=x, if (1/4-ε) errors

NOTE: Throughout
this talk: errors are

‘adversarial’!

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

NOTE: Throughout
this talk: errors are

‘adversarial’!

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

E(x)

NOTE: Throughout
this talk: errors are

‘adversarial’!

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

E(x) y=E(x) + errors

NOTE: Throughout
this talk: errors are

‘adversarial’!

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

E(x) y=E(x) + errors

x = D(y)

NOTE: Throughout
this talk: errors are

‘adversarial’!

Wednesday, January 18, 12

Classical Error Correction

x ∈ {0,1}n

E(x) y=E(x) + errors

x = D(y)

State of art: |E(x)| = Oε(n)
D(y)=x, if (1/2-ε) errors

Oε(1) size alphabet

NOTE: Throughout
this talk: errors are

‘adversarial’!

Wednesday, January 18, 12

Interaction given by: m1,m2,...

x y

Wednesday, January 18, 12

Interaction given by: m1,m2,...

x y

m1(x)

Wednesday, January 18, 12

Interaction given by: m1,m2,...

x y

m1(x)

m2(y,m1)

Wednesday, January 18, 12

Interaction given by: m1,m2,...

x y

m1(x)

m2(y,m1)

Wednesday, January 18, 12

Interaction given by: m1,m2,...

x y

m1(x)

m2(y,m1)

Wednesday, January 18, 12

Aside

• How to compress interactive
communication? - Applications to hardness
amplification.

Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0
Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0
Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

1

1 1

0

0

0
0

1

0

0

Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

1

1

0

0

1

0

Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0
0

1

1

0

0

0

1 0
0

1 1

0

Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

1

1

0

0

0

1

1

0

0

Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

0

1

1

0

0

1
0

1

1

0

0

Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

1

1

0

0

1

1

0

0

0

Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

0

1

1

0

0

1

1

0

0

0

0

Wednesday, January 18, 12

AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

1

1

0

0

1

1

0

0

0

0

Wednesday, January 18, 12

n wires

Wednesday, January 18, 12

n wires

Want resilient version:

Want circuit to work even if 10%
of wires fail

O(n) wires

Wednesday, January 18, 12

Error Correction

• First attempt: use code for each round of
communication.

• Adversary can corrupt single round
completely, to ruin entire outcome. If
#rounds is ω(1), subconstant fraction of
corruption.

Wednesday, January 18, 12

[Schulman]

x y yx

n bit interaction
O(n) interaction

using constant sized
alphabet

encoded protocol has same effect,
as long

as errors are at most 1/240
Wednesday, January 18, 12

[Schulman]

x y yx

n bit interaction
O(n) interaction

using constant sized
alphabet

encoded protocol has same effect,
as long

as errors are at most 1/240 for good
reasons

Wednesday, January 18, 12

Our Results

x y yx

n bit interaction
O(n/ε) interaction

using binary alphabet

encoded protocol has same effect,
as long

as errors are at most 1/8 - ε
Wednesday, January 18, 12

Our Results

x y yx

n bit interaction
O(n/ε) interaction

using Oε(1) size
alphabet

encoded protocol has same effect,
as long

as errors are at most 1/4 - ε
Wednesday, January 18, 12

Pointer Jumping

Goal: find the red-blue path
Party 1

(knows even
edges)

Party 2
(knows odd

edges)

n

Wednesday, January 18, 12

Pointer Jumping

Goal: find the red-blue path
Party 1

(knows even
edges)

Party 2
(knows odd

edges)0

n

Wednesday, January 18, 12

Pointer Jumping

Goal: find the red-blue path
Party 1

(knows even
edges)

Party 2
(knows odd

edges)0

n

Wednesday, January 18, 12

Pointer Jumping

Goal: find the red-blue path
Party 1

(knows even
edges)

Party 2
(knows odd

edges)

1

0

n

Wednesday, January 18, 12

Pointer Jumping

Goal: find the red-blue path
Party 1

(knows even
edges)

Party 2
(knows odd

edges)

1

0

n

Wednesday, January 18, 12

Pointer Jumping

Goal: find the red-blue path
Party 1

(knows even
edges)

Party 2
(knows odd

edges)0

1

1

n

Wednesday, January 18, 12

Pointer Jumping

Goal: find the red-blue path
Party 1

(knows even
edges)

Party 2
(knows odd

edges)0

1

1

n

Wednesday, January 18, 12

Pointer Jumping

Goal: find the red-blue path
Party 1

(knows even
edges)

Party 2
(knows odd

edges)0

1

1

0

1

n

Wednesday, January 18, 12

Jumping Over Errors

Goal: find the red-blue
path despite errors:

transmitted symbols may
be corrupted.

Solve this, and you get
results for every protocol!

Party 1
(knows even

edges)

Party 2
(knows odd

edges)

n

Wednesday, January 18, 12

Jumping Over Errors

Plan
1. Solve the problem with huge alphabet
2. Solve the problem with reasonable alphabet
3. Solve the problem with constant sized alphabet

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2
Problem: B is

not known, since
there can be

errors!

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2
Problem: B is

not known, since
there can be

errors!

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2
Problem: B is

not known, since
there can be

errors!

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2
Problem: B is

not known, since
there can be

errors!

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2
Problem: B is

not known, since
there can be

errors!

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2
Problem: B is

not known, since
there can be

errors!

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2
Problem: B is

not known, since
there can be

errors!

A B

Wednesday, January 18, 12

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that
extends path in A∪B, if such an
edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2n)

B: edges announced by Player 2
Problem: B is

not known, since
there can be

errors!

A B

Wednesday, January 18, 12

d-ary Tree Codes
[Schulman]

d

• Edges labeled by symbols from
alphabet

Wednesday, January 18, 12

d-ary Tree Codes
[Schulman]

d

• Edges labeled by symbols from
alphabet

u v
Wednesday, January 18, 12

d-ary Tree Codes
[Schulman]

d

• Edges labeled by symbols from
alphabet

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6
a7

a8
b7

b6

b8

u v

a = a1a2...a8

b = b1b2...b8

• Distance = 1-ε means for
every u,v at same depth
Δ(a,b) > (1-ε) |a|

Wednesday, January 18, 12

d-ary Tree Codes
[Schulman]

d

• Edges labeled by symbols from
alphabet

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6
a7

a8
b7

b6

b8

u v

a = a1a2...a8

b = b1b2...b8

• Distance = 1-ε means for
every u,v at same depth
Δ(a,b) > (1-ε) |a|

• alphabet of size dO(1/ε)
enough!

Wednesday, January 18, 12

d-ary Tree Codes
d

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6
a7

a8
b7

b6

b8

u v

a = a1a2...a8

b = b1b2...b8

• Distance = 1-ε means for
every u,v

Δ(a,b) > (1-ε) |a|

Using Tree Codes

Party 1
path to u

Party 2
^&^*#&(

• alphabet of size dO(1/ε)
enough!

Wednesday, January 18, 12

d-ary Tree Codes
d

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

a6
a7

a8
b7

b6

b8

u v

a = a1a2...a8

b = b1b2...b8

• Distance = 1-ε means for
every u,v

Δ(a,b) > (1-ε) |a|

Using Tree Codes

Party 1
path to u

Party 2
^&^*#&(

If v is decoded instead of u,
#errors in last |a|

transmissions must exceed
(1-ε)|a|/2

• alphabet of size dO(1/ε)
enough!

Wednesday, January 18, 12

d

n

Depth O(n/ε). d = 2n

Vertex at depth k = set of at
most k edges. H

J
∩

Tree Code

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

Distance = 1-ε,

Wednesday, January 18, 12

1 2

3 4 5 6

Party 1 Party 2
1

4

Before

9

()

(1) (4)

Party 1 Party 2
a

b

Using Tree Codes

f

(1,9)

a b

f

Assuming no errors....

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A

B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A

B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A
B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

AB’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A

B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A

B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A

B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

AB’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A
B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A

B’

Distance = 1-ε,

Wednesday, January 18, 12

d

Depth O(n/ε). d = 2n

Vertex at depth k = list of at
most k edges. H

J
∩

Tree Code

n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Send edge that
extends path in A∪B’, if
possible.

B’: decoding of edges
announced by Player 2

A B’

A B’

Distance = 1-ε,

Wednesday, January 18, 12

Open Problems

• Explicitly encodable and decodable Tree
Codes? (This would make everything
explicit). poly(n) alphabet possible [EKS]

• What if error rate is bounded per party,
not globally?

Wednesday, January 18, 12

Questions?

Wednesday, January 18, 12

