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Classical Error Correction

x ∈ {0,1}n

E(x) y=E(x) + errors

x = D(y)

State of art: |E(x)| = Oε(n)
D(y)=x, if (1/2-ε) errors

Oε(1) size alphabet

NOTE: Throughout 
this talk: errors are 

‘adversarial’!
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Aside

• How to compress interactive 
communication? - Applications to hardness 
amplification.

Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0
Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0
Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

1

1 1

0

0

0
0

1

0

0

Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

1

1

0

0

1

0

Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0
0

1

1

0

0

0

1 0
0

1 1

0

Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

1

1

0

0

0

1

1

0

0

Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

0

1

1

0

0

1
0

1

1

0

0

Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

1

1

0

0

1

1

0

0

0

Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

0

1

1

0

0

1

1

0

0

0

0

Wednesday, January 18, 12



AND OR

NOT

OR

OR

NOTOR

AND AND

OR
AND

AND

OR

OR

AND

AND OR

0 1 1 0 1 1 0 0 1 1 1 0

0 1

0
1 1 0

0

1

1

0

0

1

1

0

0

0

0

Wednesday, January 18, 12



n wires

Wednesday, January 18, 12



n wires

Want resilient version:

Want circuit to work even if 10% 
of wires fail

O(n) wires
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Error Correction

• First attempt: use code for each round of 
communication.

• Adversary can corrupt single round 
completely, to ruin entire outcome. If 
#rounds is ω(1),  subconstant fraction of 
corruption. 
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[Schulman]

x y yx

n bit interaction
O(n) interaction 

using constant sized 
alphabet

encoded protocol has same effect, 
as long

as errors are at most 1/240
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n bit interaction
O(n) interaction 

using constant sized 
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encoded protocol has same effect, 
as long
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reasons
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Our Results

x y yx

n bit interaction
O(n/ε) interaction 

using binary alphabet

encoded protocol has same effect, 
as long

as errors are at most 1/8 - ε
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Our Results

x y yx

n bit interaction
O(n/ε) interaction 

using Oε(1) size 
alphabet

encoded protocol has same effect, 
as long

as errors are at most 1/4 - ε
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Jumping Over Errors

Goal: find the red-blue 
path despite errors: 

transmitted symbols may 
be corrupted.

Solve this, and you get 
results for every protocol!

Party 1 
(knows even 

edges) 

Party 2
(knows odd 

edges)

n
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Jumping Over Errors

Plan
1. Solve the problem with huge alphabet
2. Solve the problem with reasonable alphabet
3. Solve the problem with constant sized alphabet
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n

Protocol for Party 1
A: edges announced by Player 1

Repeat: Announce the edge that 
extends path in A∪B, if such an 
edge exists. Else send NULL.

Alphabet:  each symbol represents distinct edge (size 2n)

B: edges announced by Player 2

A B
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d-ary Tree Codes
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a = a1a2...a8

b = b1b2...b8

• Distance = 1-ε means for 
every u,v                            

Δ(a,b) > (1-ε) |a|

Using Tree Codes

Party 1
path to u

Party 2
^&^*#&(

If v is decoded instead of u, 
#errors in last |a| 

transmissions must exceed         
(1-ε)|a|/2

• alphabet of size dO(1/ε) 
enough!
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d

n

Depth O(n/ε). d = 2n

Vertex at depth k = set of at 
most k edges. H

J
∩

Tree Code

Protocol for Party 1
A: edges announced by Player 1

Repeat:  Send edge that 
extends path in A∪B’, if 
possible.

B’: decoding of edges 
announced by Player 2

Distance = 1-ε,
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Using Tree Codes

f

(1,9)

a b

f

Assuming no errors....
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Open Problems

• Explicitly encodable and decodable Tree 
Codes? (This would make everything 
explicit). poly(n) alphabet possible [EKS]

• What if error rate is bounded per party, 
not globally?
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