Towards Coding for

 Max Errors in InteractiveCommunication

Mark Braverman [Princeton University]
Anup Rao [University of Washington]

Classical Error Correction

$x \in\{0,1\}^{n}$

Classical Error Correction

$\mathrm{E}(\mathrm{x})$
$x \in\{0,1\}^{n}$

Classical Error Correction

$E(x)$
$\mathrm{y}=\mathrm{E}(\mathrm{x})+$ errors
$x \in\{0,1\}^{n}$

Classical Error Correction

$x \in\{0,1\}^{n}$
$\mathrm{y}=\mathrm{E}(\mathrm{x})+$ errors
$E(x)$

Classical Error Correction

$E(x)$
$y=E(x)+$ errors
$x \in\{0,1\}^{n}$

State of art: $\quad E(x)=O_{\varepsilon}(n)$ bits
$D(y)=x$, if $(1 / 4-\varepsilon)$ errors

Classical Error Correction

$x \in\{0,1\}^{n}$
$E(x)$
$y=E(x)+$ errors
NOTE:Throughout this talk: errors are 'adversarial'!

$E(x)=O_{\varepsilon}(n)$ bits
$D(y)=x$, if $(1 / 4-\varepsilon)$ errors

Classical Error Correction

$x \in\{0,1\}^{n}$

NOTE:Throughout this talk: errors are 'adversarial'!

Classical Error Correction

$\mathrm{E}(\mathrm{x})$
NOTE:Throughout this talk: errors are 'adversarial!!

$x \in\{0,1\}^{n}$

Classical Error Correction

$x \in\{0,1\}^{n}$

Classical Error Correction

$x \in\{0,1\}^{n}$
$y=E(x)+$ errors
NOTE:Throughout this talk: errors are 'adversarial!'

Classical Error Correction

$x \in\{0,1\}^{n}$

$E(x)$

$y=E(x)+$ errors

State of art: $\quad|E(x)|=O_{\varepsilon}(n) \quad O_{\varepsilon}(1)$ size alphabet $D(y)=x$, if $(1 / 2-\varepsilon)$ errors

Interaction given by: ml,m2,...

Aside

- How to compress interactive communication? - Applications to hardness amplification.

n wires

Want resilient version:

$\mathrm{O}(\mathrm{n})$ wires

Want circuit to work even if 10% of wires fail

Error Correction

- First attempt: use code for each round of communication.
- Adversary can corrupt single round completely, to ruin entire outcome. If \#rounds is $\omega(\mathrm{I})$, subconstant fraction of corruption.

[Schulman]

n bit interaction

$\mathrm{O}(\mathrm{n})$ interaction using constant sized alphabet
encoded protocol has same effect, as long
as errors are at most $1 / 240$

[Schulman]

n bit interaction

$\mathrm{O}(\mathrm{n})$ interaction using constant sized alphabet
encoded protocol has same effect, as long as errors are at most $1 / 240$
for good reasons

Our Results

encoded protocol has same effect, as long
as errors are at most $1 / 8-\varepsilon$

Our Results

encoded protocol has same effect, as long
as errors are at most $1 / 4-\varepsilon$

Pointer Jumping

Goal: find the red-blue path

Party I

(knows even
edges)

Party 2
(knows odd edges)

Pointer Jumping

Party I

(knows even edges)

Goal: find the red-blue path

0

Party 2
(knows odd edges)

Pointer Jumping

Party I
(knows even

Goal: find the red-blue path

Party 2
(knows odd edges)

Pointer Jumping

Party I
(knows even edges)

Goal: find the red-blue path

Party 2
(knows odd edges)

Pointer Jumping

Party I
(knows even edges)

Goal: find the red-blue path

1

Party 2
(knows odd edges)

Pointer Jumping

Party I

Goal: find the red-blue path
(knows even

1

Party 2
(knows odd edges)

Pointer Jumping

Party I
(knows even edges)
 ven

Goal: find the red-blue path

Party 2
(knows odd

Pointer Jumping

Party I
(knows even
edges)

Goal: find the red-blue path

10

Jumping Over Errors

Goal: find the red-blue path despite errors: transmitted symbols may be corrupted.

Party 2
(knows odd edges)
(knows even edges)

Party 1

Jumping Over Errors

Plan

I. Solve the problem with huge alphabet
2. Solve the problem with reasonable alphabet
3. Solve the problem with constant sized alphabet

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Problem: B is

 not known, since there can be errors!

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Problem: B is

 not known, since there can be errors!

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I
A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Problem: B is not known, since there can be errors!

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Problem: B is

 not known, since there can be errors!

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Problem: B is

 not known, since there can be errors!

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Problem: B is

 not known, since there can be errors!

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Problem: B is not known, since there can be errors!

Alphabet: each symbol represents distinct edge (size 2^{n})

Protocol for Party I

A: edges announced by Player I
B: edges announced by Player 2
Repeat:Announce the edge that extends path in $A \cup B$, if such an edge exists. Else send NULL.

Problem: B is

 not known, since there can be errors!
d-ary Tree Codes [Schulman]

- Edges labeled by symbols from alphabet

d-ary Tree Codes [Schulman]

- Edges labeled by symbols from alphabet

d-ary Tree Codes [Schulman]

- Edges labeled by symbols from alphabet
- Distance $=1-\varepsilon$ means for every u, v at same depth $\Delta(a, b)>(1-\varepsilon)|a|$

d-ary Tree Codes [Schulman]

- Edges labeled by symbols from alphabet
- Distance $=1-\varepsilon$ means for every u, v at same depth $\Delta(a, b)>(1-\varepsilon)|a|$
$a=a_{1} a_{2} \ldots a_{8}$
$b=b_{1} b_{2} \ldots b_{8}$
- alphabet of size $\mathrm{d}^{\mathrm{O}(1 / \varepsilon)}$ enough!

d-ary Tree Codes

- Distance $=1-\varepsilon$ means for

every u, v
 $\Delta(a, b)>(1-\varepsilon)|a|$

 alphabet of size $\mathrm{d}^{\mathrm{O}(1 / \varepsilon)}$ enough!
Using Tree Codes

d-ary Tree Codes

- Distance $=1-\varepsilon$ means for

every u, v
 $\Delta(a, b)>(1-\varepsilon)|a|$ alphabet of size $\mathrm{d}^{0(1 / \varepsilon)}$ enough!

Using Tree Codes

If v is decoded instead of u, \#errors in last |a| transmissions must exceed $(1-\varepsilon)|a| / 2$

Party I
Before
Party 2

Assuming no errors....
Party I
Using Tree Codes
Party 2

Open Problems

- Explicitly encodable and decodable Tree Codes? (This would make everything explicit). poly(n) alphabet possible [EKS]
- What if error rate is bounded per party, not globally?

Questions?

