
Interactive Codes for Synchronization

Ramji Venkataramanan

Yale University

Joint work with H. Zhang, K. Ramchandran and S. Tatikonda

File Synchronization

Edits Edits
FILE

Alice and Bob edit document separately

- Modify some portions, Delete some portions, Insert new info

Bob wants Alice’s updated version

RSYNC: Unix utility for exact bit-level synchronization

Video Synchronization

Alice and Bob want their versions to roughly match

- Within prescribed level of distortion and resolution

VSync [Zhang et al ’08]: Distance-aware hashing

Uploading Data to the Cloud

DATA

DNA Sequencing Caught in Deluge of Data - NYT, Nov.2011

. . . there is now so much raw data that it is becoming not
feasible to re-analyze it. In the case of human genomes,
they might store even less – only the difference between a
particular genome and some reference genome.

Uploading Data to the Cloud

DATA

Incremental Upload: Dropbox, HP JumboStore

Model

X Y

W
X̂

Binary length-n string Y is edited version of X

- Insertions and deletions of bits or small bursts of bits

- includes block transpositions{
X = . . . abraca dabradum dumdum ababab
Y = . . . abacad dabradum ababab . . . ,

Update Y so that it exactly or approximately equals X

- with minimal communication rate (information exchange)

In this talk . . .

Two Cases

Small number of edits: o(n)

- Optimal rate

- Computationally efficient codes

Large number of edits: ∼ αn

- Bounds on optimal rate

Info-theoretic Model

Encoder Decoder

X Y

W

Edits

X̂

‘Source coding with side-information’

Lower bound (for zero-error code)

If X knew the locations of the s edits, rate at least
log2 (ns)

n

≈ s log2 n

n
for s = log n

≈ 0.5 s log2 n

n
for s =

√
n

Closely related problem

GOAL: Communicate over an edit channel

Edit ChannelEncoder DecoderW Ŵ
A B

Levenshtein ’65

To correct s insertions + deletions in large block of length n

1−2s log2 n/s

n
. Rate of optimal zero-error code . 1− s log2 n/s

n

Fundamental limit

Synchronize from s insertions + deletions:

Encoder Decoder

X Y

W

Edits

X̂

Lev’s result + [Orlitsky-Viswanathan ’03] ⇒

- For large n, there exists zero-error code of rate ∼ 1
n 2s log2 n/s

- Near-optimal!

How to find the code ? (Exhaustive search)

Encoding and Decoding ? (Prohibitively complex)

Still open for s > 1

Fundamental limit

Synchronize from s insertions + deletions:

Encoder Decoder

X Y

W

Edits

X̂

Lev’s result + [Orlitsky-Viswanathan ’03] ⇒

- For large n, there exists zero-error code of rate ∼ 1
n 2s log2 n/s

- Near-optimal!

How to find the code ? (Exhaustive search)

Encoding and Decoding ? (Prohibitively complex)

Still open for s > 1

In this talk . . .

Computationally efficient codes at near-optimal rate:

Prob. error → 0 as n→∞
By allowing a small amount of interaction

Rate = Rate(encoder → decoder) + Rate(decoder → encoder)

Interaction measured by:

- Rate from decoder → encoder

- Number of rounds

Related Work

Rsync [Trigdell, Mackaras ’98]

VSync [Zhang, Ramchandran ’08]

Comm. complexity of synchronization: [Cormode et al ’00]

String Reconciliation: [Trachtenberg et al ’06]

Coding and Capacity for deletion/insertion channels:

Gallager [’61]

Dobrushin [’67]

Mackay et al [’01]

Schulman & Zuckerman [’02]

Diggavi & Grossglauser [’06]

Mitzenmacher & others [’06-’10]
...

Correcting 1 deletion

What we want:

Encoder Decoder

X Y

W

1 deletion

Closely related problem:

Channel that

deletes 1 bit
VT encoder VT decoderW Ŵ

A B

Optimal channel code to correct 1- deletion: VT code

Varshamov-Tenengolts Codes

Position sum
x = (x1, . . . , xn)

Define P(x) = sum of positions of ones

Example: x = (1, 0, 1, 1)⇒ P(x) = 1 + 3 + 4 = 8

Code

VT (n) - code of block length n

- All x such that P(x) mod (n + 1) ≡ 0

VT (4) = {0000, 1001, 0110, 1111} − Rate log2 4
4 = 0.5

Varshamov-Tenengolts Codes

Position sum
x = (x1, . . . , xn)

Define P(x) = sum of positions of ones

Example: x = (1, 0, 1, 1)⇒ P(x) = 1 + 3 + 4 = 8

Code

VT (n) - code of block length n

- All x such that P(x) mod (n + 1) ≡ 0

VT (4) = {0000, 1001, 0110, 1111} − Rate log2 4
4 = 0.5

VT Decoder

Decoder [Levenshtein ’65] computes

1 Weight W of received word

2 Position sum of received word

Compute deficiency D in the position sum

D ≤ W ⇒ 0 was deleted

1 0 0 1 ⇒ 1 0 1 ⇒ (W = 2,D = 1)

Insert 0 after D ones from the right ⇒ 1 0 0 1

D > W ⇒ 1 was deleted

1 0 0 1 ⇒ 1 0 0 ⇒ (W = 1,D = 4)

Insert 1 after (D −W − 1) zeros from the left ⇒ 1 0 0 1

VT Decoder

Decoder [Levenshtein ’65] computes

1 Weight W of received word

2 Position sum of received word

Compute deficiency D in the position sum

D ≤ W ⇒ 0 was deleted

1 0 0 1 ⇒ 1 0 1 ⇒ (W = 2,D = 1)

Insert 0 after D ones from the right ⇒ 1 0 0 1

D > W ⇒ 1 was deleted

1 0 0 1 ⇒ 1 0 0 ⇒ (W = 1,D = 4)

Insert 1 after (D −W − 1) zeros from the left ⇒ 1 0 0 1

VT Partition

V T0

VT0(n) = All x such that P(x) mod (n + 1) ≡ 0

VT Partition

V T0
V T1

VT1(n) = All x such that P(x) mod (n + 1) ≡ 1

VT Partition

V T0
V T1

V Tn

VTa(n) = All x such that P(x) mod (n + 1) ≡ a, a = 0, . . . , n

VT Cosets
V T0

V T1

V Tn

{VTa(n)} partition the space into ‘cosets’

Any {VTa(n)} can be used to correct 1-deletion!

Each coset has ∼ 2n

n points ⇒ Rate of VTa(n) ∼ 1− log2 n
n

Optimal 1-deletion correcting codes (non-linear)

Synchronizing from 1 deletion

Encoder Decoder

X Y

W

1 deletion

P(X) mod (n + 1) ≡ a ⇔ X is in VTa

- Encoder sends a ∈ {0, . . . , n} VT syndrome

Decode Y to a codeword in VTa

[Orlitsky ’93]

log2(n + 1) bits to correct one deletion - Optimal!

No interaction - One-way

Similar algorithm can correct one insertion

Burst Deletion

X Y

0 0 1 0 1 1 0 1 1 1 0 1 −→ 0 0 1 0 1 1 1 0 1

Split X into 3 bit-planes:

0 0 1 0 1 1 0 1 1 1 0 1

0 0 0 1 −→ 0 0 1

0 1 1 0 −→ 0 1 0

1 1 1 1 −→ 0 0 1

Exactly one deletion in each bit-plane

Correcting a burst

Encoder Decoder

X Y

W

Burst deletion of B bits

Send VT-syndrome for each bit-plane:

0 0 0 1
a1−→ 0 0 1 decoded to VTa1

0 1 1 0
a2−→ 0 1 0 decoded to VTa2

1 1 1 1
a3−→ 0 0 1 decoded to VTa3

Decoder reconstructs bit-planes & reassembles to recover X

Performance

Number of bits = B log2(1 + n
B)

Genie lower bound = B + log2 n

Multiple Deletions

VT syndrome to synchronize single deletion

2 or more deletions?

X Y

00100101011011101 −→ 0100101010110

length n length n − 3

Channel codes for even two deletions known only for small n

What if we allow some interaction ?

Synchronization Algorithm

1 Encoder sends a few bits around center of X

1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1

Position n
2

Decoder matches these bits as close as possible to center of Y

1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1

Position n
2 − 1

2 Offset ⇒ decoder knows one deletion in left half, two in right

3 Encoder sends VT syndrome a of left half of X

- Decoder synchronizes left half of Y by decoding to VTa(n2)

Synchronization Algorithm

1 Encoder sends a few bits around center of X

1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1

Position n
2

Decoder matches these bits as close as possible to center of Y

1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1

Position n
2 − 1

2 Offset ⇒ decoder knows one deletion in left half, two in right

3 Encoder sends VT syndrome a of left half of X

- Decoder synchronizes left half of Y by decoding to VTa(n2)

Next stage

Send a few bits around its center of right piece of X

. 0 1 1 0 1 1 0 0 1 1 0 1

Position 3n
4

Decoder tries to match these bits . . .

. 0 1 1 1 1 0 0 1 1 0 1

Position 3n
4 − 1

One deletion in left half, and one in right half

Send VT syndromes a1, a2 of the two halves

- Decode left half to VTa1(n/4), right half to VTa2(n/4)

Next stage

Send a few bits around its center of right piece of X

. 0 1 1 0 1 1 0 0 1 1 0 1

Position 3n
4

Decoder tries to match these bits . . .

. 0 1 1 1 1 0 0 1 1 0 1

Position 3n
4 − 1

One deletion in left half, and one in right half

Send VT syndromes a1, a2 of the two halves

- Decode left half to VTa1(n/4), right half to VTa2(n/4)

Multiple Deletions & Insertions

X1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1

Position n
2

0

X:

1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0

Position n
2

Y:

No offset ⇒ cannot detect insertion + del in same half

Guess-and-Check

X1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1

Position n
2

0

X:

1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0

Position n
2

Y:

Hash left halves of X and Y - hashes agree

Hash right halves of X and Y - hashes disagree

Synchronization Algorithm

Work on right half:

. . . 1 1 0 1 1 0 0 1 1 0 1
Position 3n

4

X :

. . . 1 1 0 1 0 1 0 0 1 1 0

Position 3n
4 + 1

Y :

Detect an offset of 1 to the right

- One net insertion on the left, one net deletion on the right

Exchange VT syndromes for each of these parts

Check hash to confirm match

Algorithm for Insertions + Deletions

In each round . . .

Encoder: Send center-bits for unsynchronized pieces

Decoder: For each unsynchronized piece, Align centers

- If offset is 0, request hashes

- If offset is 1, request VT syndrome + hashes

- If offset for either half is > 1, request center-bits

Continue until all pieces are synchronized

Performance

Theorem (RV-Zhang-Ramchandran, Allerton ’10)

s insertions + deletions in random locations (s ∼ o(n))

Number of center-bits = number of hash-bits = c log2 n

(a) The probability of error < s log n
nc

(b)

ER1→2(s) < (4c + 1)
s log2 n

n
,

ER2→1(s) < 10
(s − 1)

n

(c) The expected number of rounds is < 4 + 2 log2 s

Experiments

Config. Rate X→ Y Rate Y → X No. of rounds

n d = i Sim. Theo. Sim. Theo. Sim. Theo.

107 100 2.1e−3 2.1e−3 1.6e−4 2.0e−4 14.9 19.3

107 1000 2.0e−2 2.1e−2 1.6e−3 2.0e−3 21.3 25.9

No. of center bits = No. of hash bits = 20

(1000 random simulations for each case)

Burst edits?

1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1

Worst-case scenario for the algorithm:

Tries to separate the deletions in the burst

Number of rounds ∼ log2 n (avg. case log2 s)

Rate R1→2 ∼ s(log2 n)
2

n (avg. case s log2 n
n)

Rate R2→1 ∼ s log2 n
n (avg. case s

n)

But burst edits are common!

Adapting to bursts

1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1

If offset does not change after T rounds, hypothesize a burst:

Send syndromes for bit-planes , correct as if it were a burst

Use hashes to check

If not continue splitting

Summary

When the number of edits is small . . .

A small amount of interaction can help:

Primitive- single deletion/insertion or single burst

Isolate primitive pieces

Use VT syndromes for primitive, check with hashes

Large number of edits

Encoder Decoder

X Y

W

Edits

X̂

IID edit model relating X and Y:

X Symbol

d

Deletion

i
Insertion

1− d − i
No change

Large number of edits

Encoder Decoder

X Y

W

Edits

X̂

Optimal Synchronization Rate R∗

Minimum rate of W such that P(X̂ 6= X)→ 0 as n→∞

R∗ = limn→∞
1
nH(X|Y) ⇒ hard to compute.

X = 0 0 0 1 1 1 0
1
↓ 0 Y = 0 0 1 0

Bounds on R∗ [ITA ’11]

Bounds on capacity of channels with deletions and insertions
[ISIT ’11]

Ideas for the future

Hard restriction on number of rounds

- Higher rate algorithm that works with 1 round of interaction

Synchronize from a few large bursts of length ∼ αn

Use for video synchronization

- Sync within targeted distortion: distance-aware hashing

- Combine with outer error-correcting code

To correct a large number of insertions + deletions

- LDPC-like codes using VT-primitive?

