Interactive Codes for Synchronization

Ramji Venkataramanan

Yale University

Joint work with H. Zhang, K. Ramchandran and S. Tatikonda

File Synchronization

- Alice and Bob edit document separately
- Modify some portions, Delete some portions, Insert new info
- Bob wants Alice's updated version
- RSYNC: Unix utility for exact bit-level synchronization

Video Synchronization

- Alice and Bob want their versions to roughly match - Within prescribed level of distortion and resolution
- VSync [Zhang et al '08]: Distance-aware hashing

Uploading Data to the Cloud

DNA Sequencing Caught in Deluge of Data - NYT, Nov. 2011
...there is now so much raw data that it is becoming not feasible to re-analyze it. In the case of human genomes, they might store even less - only the difference between a particular genome and some reference genome.

Uploading Data to the Cloud

Incremental Upload: Dropbox, HP JumboStore

Model

- Binary length- n string \mathbf{Y} is edited version of \mathbf{X}
- - Insertions and deletions of bits or small bursts of bits
- includes block transpositions

$$
\left\{\begin{array}{l}
\mathbf{X}=\ldots \text { abraca dabradum dumdum ababab.... } \\
\mathbf{Y}=\ldots \text { abacad dabradum ababab } \ldots,
\end{array}\right.
$$

- Update \mathbf{Y} so that it exactly or approximately equals \mathbf{X}
- with minimal communication rate (information exchange)

In this talk...

Two Cases

- Small number of edits: $O(n)$
- Optimal rate
- Computationally efficient codes
- Large number of edits: $\sim \alpha n$
- Bounds on optimal rate

Info-theoretic Model

'Source coding with side-information'

Lower bound (for zero-error code)

If \mathbf{X} knew the locations of the s edits, rate at least $\frac{\log _{2}\binom{n}{s}}{n}$

$$
\begin{aligned}
& \approx \frac{s \log _{2} n}{n} \quad \text { for } \quad s=\log n \\
& \approx \frac{0.5 s \log _{2} n}{n} \quad \text { for } \quad s=\sqrt{n}
\end{aligned}
$$

Closely related problem

GOAL: Communicate over an edit channel

Levenshtein '65

To correct s insertions + deletions in large block of length n
$1-\frac{2 s \log _{2} n / s}{n} \lesssim$ Rate of optimal zero-error code $\lesssim 1-\frac{s \log _{2} n / s}{n}$

Fundamental limit

Synchronize from s insertions + deletions:

Lev's result + [Orlitsky-Viswanathan '03] \Rightarrow

- For large n, there exists zero-error code of rate $\sim \frac{1}{n} 2 s \log _{2} n / s$
- Near-optimal!

Fundamental limit

Synchronize from s insertions + deletions:

Lev's result + [Orlitsky-Viswanathan '03] \Rightarrow

- For large n, there exists zero-error code of rate $\sim \frac{1}{n} 2 s \log _{2} n / s$
- Near-optimal!
- How to find the code? (Exhaustive search)
- Encoding and Decoding ? (Prohibitively complex) Still open for $s>1$

In this talk...

Computationally efficient codes at near-optimal rate:

- Prob. error $\rightarrow 0$ as $n \rightarrow \infty$
- By allowing a small amount of interaction

Rate $=$ Rate(encoder \rightarrow decoder $)+$ Rate(decoder \rightarrow encoder $)$

Interaction measured by:

- Rate from decoder \rightarrow encoder
- Number of rounds

Related Work

- Rsync [Trigdell, Mackaras '98]
- VSync [Zhang, Ramchandran '08]
- Comm. complexity of synchronization: [Cormode et al '00]
- String Reconciliation: [Trachtenberg et al '06]

Coding and Capacity for deletion/insertion channels:

- Gallager ['61]
- Dobrushin ['67]
- Mackay et al ['01]
- Schulman \& Zuckerman ['02]
- Diggavi \& Grossglauser ['06]
- Mitzenmacher \& others ['06-'10]

Correcting 1 deletion

What we want:

Closely related problem:

Optimal channel code to correct 1- deletion: VT code

Varshamov-Tenengolts Codes

Position sum

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)
$$

- Define $P(\mathbf{x})=$ sum of positions of ones
- Example: $\mathbf{x}=(1,0,1,1) \Rightarrow P(\mathbf{x})=1+3+4=8$

Varshamov-Tenengolts Codes

Position sum

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)
$$

- Define $P(\mathbf{x})=$ sum of positions of ones
- Example: $\mathbf{x}=(1,0,1,1) \Rightarrow P(\mathbf{x})=1+3+4=8$

Code

- $V T(n)$ - code of block length n
- All \mathbf{x} such that $P(\mathbf{x}) \bmod (n+1) \equiv 0$
- $V T(4)=\{0000,1001,0110,1111\}-$ Rate $\frac{\log _{2} 4}{4}=0.5$

VT Decoder

Decoder [Levenshtein '65] computes
(1) Weight W of received word
(2) Position sum of received word

Compute deficiency D in the position sum

VT Decoder

Decoder [Levenshtein '65] computes
(1) Weight W of received word
(2) Position sum of received word

Compute deficiency D in the position sum
$D \leq W \Rightarrow 0$ was deleted

$$
1001 \Rightarrow 101 \Rightarrow(W=2, D=1)
$$

Insert 0 after D ones from the right $\Rightarrow 1001$
$D>W \Rightarrow 1$ was deleted

$$
1001 \Rightarrow 100 \Rightarrow(W=1, D=4)
$$

Insert 1 after $(D-W-1)$ zeros from the left $\Rightarrow 1001$

VT Partition

$V T_{0}(n)=$ All \mathbf{x} such that $P(\mathbf{x}) \bmod (n+1) \equiv 0$

VT Partition

$V T_{1}(n)=$ All \mathbf{x} such that $P(\mathbf{x}) \bmod (n+1) \equiv 1$

VT Partition

$V T_{a}(n)=$ All \mathbf{x} such that $P(\mathbf{x}) \bmod (n+1) \equiv a, \quad a=0, \ldots, n$

VT Cosets

- $\left\{V T_{a}(n)\right\}$ partition the space into 'cosets'
- Any $\left\{V T_{a}(n)\right\}$ can be used to correct 1-deletion!
- Each coset has $\sim \frac{2^{n}}{n}$ points \Rightarrow Rate of $V T_{a}(n) \sim 1-\frac{\log _{2} n}{n}$
- Optimal 1-deletion correcting codes (non-linear)

Synchronizing from 1 deletion

- $P(\mathbf{X}) \bmod (n+1) \equiv a \quad \Leftrightarrow \quad \mathbf{X}$ is in $V T_{a}$
- Encoder sends $a \in\{0, \ldots, n\}$ VT syndrome
- Decode \mathbf{Y} to a codeword in $V T_{a}$
[Orlitsky '93]
- $\log _{2}(n+1)$ bits to correct one deletion - Optimal!
- No interaction - One-way
- Similar algorithm can correct one insertion

Burst Deletion

$$
\begin{gathered}
\text { X } \\
001011011101 \longrightarrow 001011101
\end{gathered}
$$

- Split X into 3 bit-planes:

$$
\begin{gathered}
001011011101 \\
000 \mathbf{1} \longrightarrow \mathbf{0 0 1} \\
\mathbf{0 1 1 \mathbf { 0 }} \longrightarrow \mathbf{0 1 0} \\
1111 \longrightarrow 001
\end{gathered}
$$

- Exactly one deletion in each bit-plane

Correcting a burst

- Send VT-syndrome for each bit-plane:

$$
\begin{aligned}
& 0001 \xrightarrow{a_{1}} 001 \text { decoded to } V T_{a_{1}} \\
& 0110 \xrightarrow{a_{2}} \mathbf{0 1 0} \text { decoded to } V T_{a_{2}} \\
& 1111 \xrightarrow{a_{3}} 001 \text { decoded to } V T_{a_{3}}
\end{aligned}
$$

- Decoder reconstructs bit-planes \& reassembles to recover \mathbf{X}

Performance

Number of bits $=B \log _{2}\left(1+\frac{n}{B}\right)$
Genie lower bound $=B+\log _{2} n$

Multiple Deletions

- VT syndrome to synchronize single deletion
- 2 or more deletions?

$$
\begin{array}{cc}
\mathbf{X} & \mathbf{Y} \\
00100101011011101 \\
\text { length } n
\end{array} \longrightarrow \underset{\substack{\text { length } n-3}}{0100101010110}
$$

- Channel codes for even two deletions known only for small n

What if we allow some interaction ?

Synchronization Algorithm

(1) Encoder sends a few bits around center of \mathbf{X}

$$
\begin{gathered}
11000100101011011001101 \\
\text { Position } \frac{n}{2}
\end{gathered}
$$

Decoder matches these bits as close as possible to center of \mathbf{Y}

$$
\begin{gathered}
110010010 \underset{\substack{v}}{1} 0111001101 \\
\text { Position } \frac{n}{2}-1
\end{gathered}
$$

Synchronization Algorithm

(1) Encoder sends a few bits around center of \mathbf{X}

$$
\begin{gathered}
11000100101011011001101 \\
\text { Position } \frac{n}{2}
\end{gathered}
$$

Decoder matches these bits as close as possible to center of \mathbf{Y}

$$
\begin{gathered}
110010010 \underset{1}{1} 01111001101 \\
\text { Position } \frac{n}{2}-1
\end{gathered}
$$

(2) Offset \Rightarrow decoder knows one deletion in left half, two in right
(3) Encoder sends VT syndrome a of left half of \mathbf{X}

- Decoder synchronizes left half of \mathbf{Y} by decoding to $V T_{a}\left(\frac{n}{2}\right)$

Next stage

- Send a few bits around its center of right piece of \mathbf{X}

$$
\ldots . . \left\lvert\, \begin{array}{cc}
011 & 1 \\
\\
\text { Position } \frac{3 n}{4}
\end{array}\right.
$$

Decoder tries to match these bits ...

$$
\ldots . . \left\lvert\, \begin{gathered}
01111001101 \\
\text { Position } \frac{3 n}{4}-1
\end{gathered}\right.
$$

Next stage

- Send a few bits around its center of right piece of \mathbf{X}

$$
\ldots . . \left\lvert\, \begin{array}{cc}
011 & 1 \\
\\
\text { Position } \frac{3 n}{4}
\end{array}\right.
$$

Decoder tries to match these bits ...

$$
\ldots . . \begin{gathered}
01111001101 \\
\\
\text { Position } \frac{3 n}{4}-1
\end{gathered}
$$

- One deletion in left half, and one in right half
- Send VT syndromes a_{1}, a_{2} of the two halves
- Decode left half to $V T_{a_{1}}(n / 4)$, right half to $V T_{a_{2}}(n / 4)$

Multiple Deletions \& Insertions

$$
\begin{aligned}
& 110001001010101^{\downarrow} 100110 \text { \& } \\
& \text { Position } \frac{n}{2} \\
& \text { Y: } \quad 11000100101011010100110
\end{aligned}
$$

No offset \Rightarrow cannot detect insertion + del in same half

Guess-and-Check

$$
\begin{aligned}
& \text { X: } \quad 1100010010101101^{\downarrow} 100110 \mathbb{1} \\
& \text { Position } \frac{n}{2} \\
& \text { Y: } 11000100101011010100110
\end{aligned}
$$

- Hash left halves of \mathbf{X} and \mathbf{Y} - hashes agree
- Hash right halves of \mathbf{X} and \mathbf{Y} - hashes disagree

Synchronization Algorithm

Work on right half:

$$
\begin{aligned}
& \text { X: ... } 11011 \underset{\text { Position } \frac{3 n}{4}}{\substack{t}} 0101 \\
& \text { Y: } \quad . \quad 111010100110
\end{aligned}
$$

- Detect an offset of 1 to the right
- One net insertion on the left, one net deletion on the right
- Exchange VT syndromes for each of these parts
- Check hash to confirm match

Algorithm for Insertions + Deletions

In each round

- Encoder: Send center-bits for unsynchronized pieces
- Decoder: For each unsynchronized piece, Align centers
- If offset is 0 , request hashes
- If offset is 1 , request VT syndrome + hashes
- If offset for either half is >1, request center-bits
- Continue until all pieces are synchronized

Performance

Theorem (RV-Zhang-Ramchandran, Allerton '10)

- s insertions + deletions in random locations ($s \sim o(n)$)
- Number of center-bits $=$ number of hash-bits $=c \log _{2} n$
(a) The probability of error $<\frac{s \log n}{n^{c}}$
(b)

$$
\begin{aligned}
& E R_{1 \rightarrow 2}(s)<(4 c+1) \frac{s \log _{2} n}{n}, \\
& E R_{2 \rightarrow 1}(s)<10 \frac{(s-1)}{n}
\end{aligned}
$$

(c) The expected number of rounds is $<4+2 \log _{2} s$

Experiments

Config.		Rate $\mathbf{X} \rightarrow \mathbf{Y}$		Rate $\mathbf{Y} \rightarrow \mathbf{X}$		No. of rounds	
n	$d=i$	Sim.	Theo.	Sim.	Theo.	Sim.	Theo.
10^{7}	100	$2.1 e^{-3}$	$2.1 e^{-3}$	$1.6 e^{-4}$	$2.0 e^{-4}$	14.9	19.3
10^{7}	1000	$2.0 e^{-2}$	$2.1 e^{-2}$	$1.6 e^{-3}$	$2.0 e^{-3}$	21.3	25.9

No. of center bits $=$ No. of hash bits $=20$
(1000 random simulations for each case)

Burst edits?

11000100101011011001101

Worst-case scenario for the algorithm:

- Tries to separate the deletions in the burst
- Number of rounds $\sim \log _{2} n$ (avg. case $\log _{2} s$)
- Rate $R_{1 \rightarrow 2} \sim \frac{s\left(\log _{2} n\right)^{2}}{n}$ (avg. case $\frac{s \log _{2} n}{n}$)

Rate $R_{2 \rightarrow 1} \sim \frac{s \log _{2} n}{n}$ (avg. case $\frac{s}{n}$)

But burst edits are common!

Adapting to bursts

10100100101011011001101

If offset does not change after T rounds, hypothesize a burst:

- Send syndromes for bit-planes, correct as if it were a burst
- Use hashes to check
- If not continue splitting

Summary

When the number of edits is small
A small amount of interaction can help:

- Primitive- single deletion/insertion or single burst
- Isolate primitive pieces
- Use VT syndromes for primitive, check with hashes

Large number of edits

IID edit model relating \mathbf{X} and \mathbf{Y} :

Large number of edits

Optimal Synchronization Rate R^{*}

Minimum rate of W such that $P(\hat{\mathbf{X}} \neq \mathbf{X}) \rightarrow 0$ as $n \rightarrow \infty$

- $R^{*}=\lim _{n \rightarrow \infty} \frac{1}{n} H(\mathbf{X} \mid \mathbf{Y}) \Rightarrow$ hard to compute.

$$
\mathbf{X}=0001110^{\downarrow} 0 \quad \mathbf{Y}=0010
$$

- Bounds on R^{*} [ITA '11]
- Bounds on capacity of channels with deletions and insertions [ISIT '11]

Ideas for the future

- Hard restriction on number of rounds
- Higher rate algorithm that works with 1 round of interaction
- Synchronize from a few large bursts of length $\sim \alpha n$
- Use for video synchronization
- Sync within targeted distortion: distance-aware hashing
- Combine with outer error-correcting code
- To correct a large number of insertions + deletions
- LDPC-like codes using VT-primitive?

