Monodromy and Arithmetic Groups

T.N.Venkataramana

School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India. venky@math.tifr.res.in

16 April, 2013

I thank the organisers for their invitation to take part in this workshop.

I thank the organisers for their invitation to take part in this workshop.

I will talk about hypergeometric functions and the monodromy group associated to them. To set up the notation, I will recall some very elementary results from differential equations.

Differential Equations on the Unit Disc

Let $z \in \Delta$ where Δ be the open unit disc in the plane. Suppose f_{0}, \cdots, f_{r-1} are holomorphic functions on the disc. Consider the differential equation

$$
\frac{d^{r} X}{d z^{r}}+f_{r-1}(z) \frac{d^{r-1} X}{d z^{r-1}}+\cdots+f_{0}(z) X=0
$$

Differential Equations on the Unit Disc

Let $z \in \Delta$ where Δ be the open unit disc in the plane. Suppose f_{0}, \cdots, f_{r-1} are holomorphic functions on the disc. Consider the differential equation

$$
\frac{d^{r} X}{d z^{r}}+f_{r-1}(z) \frac{d^{r-1} X}{d z^{r-1}}+\cdots+f_{0}(z) X=0
$$

Then
Theorem 1
(Cauchy) There are r linearly independent solutions X of the foregoing equation, which are all holomorphic on the disc Δ.

Differential Equations on the Unit Disc

Let $z \in \Delta$ where Δ be the open unit disc in the plane. Suppose f_{0}, \cdots, f_{r-1} are holomorphic functions on the disc. Consider the differential equation

$$
\frac{d^{r} X}{d z^{r}}+f_{r-1}(z) \frac{d^{r-1} X}{d z^{r-1}}+\cdots+f_{0}(z) X=0
$$

Then
Theorem 1
(Cauchy) There are r linearly independent solutions X of the foregoing equation, which are all holomorphic on the disc Δ.

Almost the same is true if we assume that $f_{i}(z)$ have at most a simple pole at 0 but are holomorphic elsewhere on the disc.

Theorem 2

There are $n-1$ linearly independent solutions which are holomorphic on the disc Δ to the foregoing equation.

Differential Equations

Suppose $q \in \Delta^{*}$ lies in the punctured unit disc (punctured at 0) and for each $i, f_{i}(q)=\frac{P_{i}(q)}{q^{n-i}}$, where P_{i} are holomorphic in q. We write $q=e^{2 \pi i z}$ where z is on the upper half plane. By Cauchy's theorem, the equation above has n linearly independent solutions on \mathfrak{h}, which are holomorphic on \mathfrak{h}.

Differential Equations

Suppose $q \in \Delta^{*}$ lies in the punctured unit disc (punctured at 0) and for each $i, f_{i}(q)=\frac{P_{i}(q)}{q^{n-i}}$, where P_{i} are holomorphic in q. We write $q=e^{2 \pi i z}$ where z is on the upper half plane. By Cauchy's theorem, the equation above has n linearly independent solutions on \mathfrak{h}, which are holomorphic on \mathfrak{h}.

The exponential map $\mathfrak{h} \rightarrow \Delta^{*}$ given by $z \mapsto q$ is a covering map and the functions $f_{i}(q)$ are invariant under the deck transformation group, which is a cyclic group generated by $g_{0}: z \mapsto z+1$.

Differential Equations

Suppose $q \in \Delta^{*}$ lies in the punctured unit disc (punctured at 0) and for each $i, f_{i}(q)=\frac{P_{i}(q)}{q^{n-i}}$, where P_{i} are holomorphic in q. We write $q=e^{2 \pi i z}$ where z is on the upper half plane. By Cauchy's theorem, the equation above has n linearly independent solutions on \mathfrak{h}, which are holomorphic on \mathfrak{h}.

The exponential map $\mathfrak{h} \rightarrow \Delta^{*}$ given by $z \mapsto q$ is a covering map and the functions $f_{i}(q)$ are invariant under the deck transformation group, which is a cyclic group generated by $g_{0}: z \mapsto z+1$.

Thus the space of solutions X of the differential equation is invariant under the group $g_{0}^{\mathbb{Z}}$. This action is the "local monodrmy action". If a solution X is actually holomorphic in q even at 0 , then the monodromy action is trivial on X.

Local Monodromy

If $f_{i}(q)$ have at most a simple pole at $q=0$, then by a result mentioned earlier, the space of holomorphic solutions in z is n dimensional and has an $n-1$ dimensional subspace which consists of solutions holomorphic in q, on the disc Δ. In particular, the monodromy action on this subspace is trivial. Hence there exists a basis of solutions X, such that the matrix of g_{0} is of the form

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & a_{r} \\
0 & 1 & 0 & \cdots & 0 & a_{r-1} \\
& \cdots & \cdots & \cdots & \cdots & \\
0 & 0 & 0 & \cdots & 1 & a_{2} \\
0 & 0 & 0 & \cdots & 0 & a_{1}
\end{array}\right)
$$

where $a_{1} \neq 0$ is called the exceptional eigenvalue of the local monodromy element g_{0}. The matrix g_{0} is called a complex refelction.

Gauss' Hypergeometric Function

Let us begin with Gauss's Hypergeometric function. Let a, b, c be real numbers with c not a non-negative integer. Denote, for an integer $n \geq 0$ by

$$
(a)_{n}=a(a+1) \cdots(a+n-1)
$$

the Pochhammer Symbol, with $(a)_{0}=1$.

Gauss' Hypergeometric Function

Let us begin with Gauss's Hypergeometric function. Let a, b, c be real numbers with c not a non-negative integer. Denote, for an integer $n \geq 0$ by

$$
(a)_{n}=a(a+1) \cdots(a+n-1)
$$

the Pochhammer Symbol, with $(a)_{0}=1$.
The Gauss hypergeometric function is

$$
F(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}
$$

Theorem 3

This series converges absolutely and uniformly on compact sets in the region $|z|<1$.

Gauss' Hypergeometric Function

Let us begin with Gauss's Hypergeometric function. Let a, b, c be real numbers with c not a non-negative integer. Denote, for an integer $n \geq 0$ by

$$
(a)_{n}=a(a+1) \cdots(a+n-1)
$$

the Pochhammer Symbol, with $(a)_{0}=1$.
The Gauss hypergeometric function is

$$
F(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}
$$

Theorem 3

This series converges absolutely and uniformly on compact sets in the region $|z|<1$.

Proof.

This is a simple consequence of the ratio test.

Analytic Continuation

We may view the open unit disc Δ^{*} punctured at 0 , as a subset of the thrice punctured projective line: $\Delta^{*} \subset \mathbb{P}^{1} \backslash\{0,1, \infty\}$. The latter is covered by the upper half plane \mathfrak{h} and so we may write $z=\lambda(\tau)$ for $z \in \Delta$, with $\tau \in \lambda^{-1}(\Delta) \subset \mathfrak{h}$. Then it is known that $F(z)$ admits an analytic continuation to the whole of \mathfrak{h}.

Differential Equation satisfied by F

Write $\theta=q \frac{d}{d q}$. We will view θ as a differential operator on
$C=\mathbb{P}^{1} \backslash\{0,1, \infty\}$. The Gauss hypergeometric function F satisfies the differential equation

$$
q(\theta+a)(\theta+b) F=(\theta+c-1) \theta F
$$

Differential Equation satisfied by F

Write $\theta=q \frac{d}{d q}$. We will view θ as a differential operator on
$C=\mathbb{P}^{1} \backslash\{0,1, \infty\}$. The Gauss hypergeometric function F satisfies the differential equation

$$
q(\theta+a)(\theta+b) F=(\theta+c-1) \theta F
$$

On the (two dimensional) space of solutions of this differential equation (viewd as functions on the upper half plane in the variable τ with $q=e^{2 \pi i \tau}$), the deck-transformation group Γ operates and hence we get a two dimensional representation of Γ. This is called the monodromy representation of Γ.

Differential Equation satisfied by F

Write $\theta=q \frac{d}{d q}$. We will view θ as a differential operator on $C=\mathbb{P}^{1} \backslash\{0,1, \infty\}$. The Gauss hypergeometric function F satisfies the differential equation

$$
q(\theta+a)(\theta+b) F=(\theta+c-1) \theta F
$$

On the (two dimensional) space of solutions of this differential equation (viewd as functions on the upper half plane in the variable τ with $q=e^{2 \pi i \tau}$), the deck-transformation group Γ operates and hence we get a two dimensional representation of Γ. This is called the monodromy representation of Γ.

The group 「 may be identified with the fundamental group of the curve C, which is free on two generators g_{0} and g_{∞}, two small loops in C going counterclockwise exactly once around 0 and ∞ respectively

Monodromy Representation

The monodromy representation has the property that g_{0} fixes the solution F since F is analytic at the puncture 0 . One can then describe the monodromy representation by two matrices A and B^{-1} namely the images of g_{0} and g_{∞}. It can be shown that there exists a basis of solutions for which The images of g_{0} and g_{∞} are of the form
$A=\left(\begin{array}{ll}0 & -a_{0} \\ 1 & -a_{1}\end{array}\right) \quad B=\left(\begin{array}{ll}0 & -b_{0} \\ 1 & -b_{1}\end{array}\right)$.

Generalised Hypergeometric Functions in one variable

Suppose that $q \in C=\mathbb{P}^{1} \backslash\{0,1, \infty\}$, and put $\theta=q \frac{d}{d q}$. Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{r}\right) \in \mathbb{C}^{r}, \gamma=\left(\gamma_{1}, \cdots, \gamma_{r-1}\right) \in \mathbb{C}^{r-1}$. We then have the (one variable) generalised hypergeometric function of type ${ }_{r} F_{r-1}$:

$$
F(\alpha, \gamma): q)=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{r}\right)_{n}}{\left(\gamma_{1}\right)_{n} \cdots\left(\gamma_{r-1}\right)_{n}} \frac{q^{n}}{n!} .
$$

Clausen-Thomae Differential Equation

Theorem 4

The function ${ }_{r} F_{r-1}(q)$ satisfies the differential equation

$$
q\left(\theta+\alpha_{1}\right) \cdots\left(\theta+\alpha_{r}\right) F=\left(\theta+\gamma_{1}\right) \cdots\left(\theta+\gamma_{r-1}\right) \theta F .
$$

Clausen-Thomae Differential Equation

Theorem 4

The function ${ }_{r} F_{r-1}(q)$ satisfies the differential equation

$$
q\left(\theta+\alpha_{1}\right) \cdots\left(\theta+\alpha_{r}\right) F=\left(\theta+\gamma_{1}\right) \cdots\left(\theta+\gamma_{r-1}\right) \theta F
$$

Written out, the differential equation may be seen to be of the form

$$
\frac{d^{r} F}{d q^{r}}+f_{r-1}(q) \frac{d^{r-1} F}{d q^{r-1}}+\cdots+f_{0}(q) F=0
$$

Here, $f_{i}(q)$ are holomorphic on C but have simple poles at $q=1$. In that case, the local monodromy matrix g_{1} is a complex reflection.

A Theorem of Levelt

Write $g(X)=\prod_{j=1}^{r}\left(X-e^{2 \pi i \alpha_{j}}\right)$ and $f(X)=(X-1) \prod_{j=1}^{r-1}\left(X-e^{2 \pi i \beta_{j}}\right)$. Let A and B be the companion matrices of f, g respectively. We have a representation of $\left.\pi_{1}(C)=<g_{0}, g_{\infty}\right)$ into $G L_{r}(\mathbb{C})$ given by $g_{0} \mapsto A$ and $g_{\infty} \mapsto B^{-1}$.

A Theorem of Levelt

Write $g(X)=\prod_{j=1}^{r}\left(X-e^{2 \pi i \alpha_{j}}\right)$ and $f(X)=(X-1) \prod_{j=1}^{r-1}\left(X-e^{2 \pi i \beta_{j}}\right)$. Let A and B be the companion matrices of f, g respectively. We have a representation of $\left.\pi_{1}(C)=<g_{0}, g_{\infty}\right)$ into $G L_{r}(\mathbb{C})$ given by $g_{0} \mapsto A$ and $g_{\infty} \mapsto B^{-1}$.

Theorem 5

(Levelt) There exists a basis of solutions of the differential equation satisfied by the hypergeometric equation ${ }_{r} F_{r-1}$ such that the monodromy representation on the space of solutions of this equation is the above representation.

A Theorem of Levelt

Write $g(X)=\prod_{j=1}^{r}\left(X-e^{2 \pi i \alpha_{j}}\right)$ and $f(X)=(X-1) \prod_{j=1}^{r-1}\left(X-e^{2 \pi i \beta_{j}}\right)$. Let A and B be the companion matrices of f, g respectively. We have a representation of $\left.\pi_{1}(C)=<g_{0}, g_{\infty}\right)$ into $G L_{r}(\mathbb{C})$ given by $g_{0} \mapsto A$ and $g_{\infty} \mapsto B^{-1}$.

Theorem 5

(Levelt) There exists a basis of solutions of the differential equation satisfied by the hypergeometric equation ${ }_{r} F_{r-1}$ such that the monodromy representation on the space of solutions of this equation is the above representation.

Moreover, if $\rho: \Gamma \rightarrow G L_{r}(\mathbb{C})$ is any representation such that the characteristic polynomials of g_{0} and g_{∞}^{-1} are f and g, and such that $g_{0} g_{\infty}$ is a complex reflection, then ρ is equivalent to this representation.

A Theorem of Beukers and Heckman

Suppose now that $f(X)$ and $g(X)$ are reciprocal, have no common factors, and have integral coefficients with $f(0)=g(0)= \pm 1$. We also assume that (f, g) is primitive pair i.e. there do not exist polynomials f_{1}, g_{1} and an integer $k \geq 2$ such that $f_{1}\left(X^{k}\right)=f(X)$ and $g_{1}\left(X^{k}\right)=g(X)$. Then

A Theorem of Beukers and Heckman

Suppose now that $f(X)$ and $g(X)$ are reciprocal, have no common factors, and have integral coefficients with $f(0)=g(0)= \pm 1$. We also assume that (f, g) is primitive pair i.e. there do not exist polynomials f_{1}, g_{1} and an integer $k \geq 2$ such that $f_{1}\left(X^{K}\right)=f(X)$ and $g_{1}\left(X^{k}\right)=g(X)$. Then

Theorem 6

(Beukers-Heckman) The identity connected component of the Zariski closure of A and B is $\operatorname{Sp}_{r}(\mathbb{C})$ if $f(0)=g(0)=1$ and SO_{r} otherwise.

Question

Beukers and Heckman also determine when the monodromy group is finite (this is the same thing as saying that $F(z)$ is an algebraic function). The next question is when the monodromy group an arithmetic group?

Question

Beukers and Heckman also determine when the monodromy group is finite (this is the same thing as saying that $F(z)$ is an algebraic function). The next question is when the monodromy group an arithmetic group?

We will say that a subgroup $\Gamma \subset S L_{n}(\mathbb{Z})$ is an arithmetic group, if Γ has finite index in the integral points of its Zariski closure in $S L_{n}$. Otherwise, we will say that Γ is thin.

Question

Beukers and Heckman also determine when the monodromy group is finite (this is the same thing as saying that $F(z)$ is an algebraic function). The next question is when the monodromy group an arithmetic group?

We will say that a subgroup $\Gamma \subset S L_{n}(\mathbb{Z})$ is an arithmetic group, if Γ has finite index in the integral points of its Zariski closure in $S L_{n}$. Otherwise, we will say that Γ is thin.

It is hoped that for most of monodromy groups are thin.

Results

Suppose $f, g \in \mathbb{Z}[X]$ have no common root, are primitive of degree r, with $f(0)=g(0)=1$. Suppose that the difference $f-g$ is monic, or has leading coefficient not exceding two in absolute value. Under these assumptions, we have the

Theorem 7

(S.Singh and V.) The monodromy group $\Gamma(f, g) \subset S p_{r}(\mathbb{Z})$ has finite index.

Other Results

There are infinitely many examples (Sarnak-Fuchs-Meiri) for which the real Zariski closure is $S O(r-1,1)$ and the monodromy group is thin (has infinite index in its integral Zariski closure).

Other Results

There are infinitely many examples (Sarnak-Fuchs-Meiri) for which the real Zariski closure is $S O(r-1,1)$ and the monodromy group is thin (has infinite index in its integral Zariski closure).

Brav-Thomas give examples of f, g with thin monodromy in $S p_{4}(\mathbb{Z})$. Among them is $f=\left(X^{5}-1\right) /(X-1)$ and $g=(X-1)^{4}$. (The leading coefficient of the difference is 5). They also give 6 other pairs f with $\left.g=(X-1)^{4}\right)$ with thin monodromy.

Other Results

There are infinitely many examples (Sarnak-Fuchs-Meiri) for which the real Zariski closure is $S O(r-1,1)$ and the monodromy group is thin (has infinite index in its integral Zariski closure).

Brav-Thomas give examples of f, g with thin monodromy in $S p_{4}(\mathbb{Z})$. Among them is $f=\left(X^{5}-1\right) /(X-1)$ and $g=(X-1)^{4}$. (The leading coefficient of the difference is 5). They also give 6 other pairs f with $\left.g=(X-1)^{4}\right)$ with thin monodromy.

There are 14 examples of f, g with $g=(X-1)^{4}$ (families of Calabi-Yau 3 folds) whose monodromy lies in $S p_{4}(\mathbb{Z})$; of these, 7 are thin by Brav-Thomas. The criterion above by Singh and V., shwsh that 3 are arithmetic. The other 4 are unknown.

Sketch of Proof for $n=4$

Suppose $\Gamma \subset S p_{4}(\mathbb{Z}$ is a subgroup. In order that Γ have finite index, it is necessary that Γ is Zariksi dense in $S p_{4}$.

Sketch of Proof for $n=4$

Suppose $\Gamma \subset S p_{4}(\mathbb{Z}$ is a subgroup. In order that Γ have finite index, it is necessary that Γ is Zariksi dense in $S p_{4}$.

Secondly, it is necessary that Γ intersects the unipotent radical of a parabolic \mathbb{Q}-subgroup of $S p_{4}$. A result of Tits implies that these two conditions are both necessary and sufficient.

Sketch of Proof for $n=4$

Suppose $\Gamma \subset S p_{4}(\mathbb{Z}$ is a subgroup. In order that Γ have finite index, it is necessary that Γ is Zariksi dense in $S p_{4}$.

Secondly, it is necessary that Γ intersects the unipotent radical of a parabolic \mathbb{Q}-subgroup of Sp_{4}. A result of Tits implies that these two conditions are both necessary and sufficient.

We need only prove that the reflection subgroup generated by the conjugates of $C=A^{-1} B$ by the elements $1, A, A^{2}, A^{3}$ has finite index. But one can show that $C, A C A^{-1}$ and $A^{2} C A^{-2}$ lie in a maximal parabolic subgroup P and that under the assumption on the leading coefficient of the difference $f-g$ not exceeding two, the group generated by these two elements contain a finite index subgroup of the integral points of the unipotent rdical of P. Now by appealing to the result of Tits, we see that Γ has finite index.

Sketch of Proof

First of all, the elements A and B have the same effect on E_{1}, e_{2}, e_{3} since they are companion matrices. Hence $C=A^{-1} B$ fixes e1, e_{2}, e_{3}. Therefore, the conjugate $A C A^{-1}$ also fixes a three dimensional subspace. Hence, in \mathbb{Q}^{4}, the group Δ generated by the three elements $C, A C A^{-1}$ and $A^{2} C A^{-2}$ has at least a one dimensional space of fixed vectors.

Sketch of Proof

First of all, the elements A and B have the same effect on E_{1}, e_{2}, e_{3} since they are companion matrices. Hence $C=A^{-1} B$ fixes e1, e_{2}, e_{3}. Therefore, the conjugate $A C A^{-1}$ also fixes a three dimensional subspace. Hence, in \mathbb{Q}^{4}, the group Δ generated by the three elements $C, A C A^{-1}$ and $A^{2} C A^{-2}$ has at least a one dimensional space of fixed vectors.

Now, consider the parabolic subgroup P of $S S p_{4}$, which fixes the flag

$$
\mathbb{Q} v \subset v^{\perp} \subset \mathbb{Q}^{4}
$$

It is easy to see that the semi-simple part of the Levi subgroup of P is $S L_{2}$. Hence Δ lies in P.

Sketch of Proof

First of all, the elements A and B have the same effect on E_{1}, e_{2}, e_{3} since they are companion matrices. Hence $C=A^{-1} B$ fixes e1, e_{2}, e_{3}. Therefore, the conjugate $A C A^{-1}$ also fixes a three dimensional subspace. Hence, in \mathbb{Q}^{4}, the group Δ generated by the three elements $C, A C A^{-1}$ and $A^{2} C A^{-2}$ has at least a one dimensional space of fixed vectors.

Now, consider the parabolic subgroup P of $S S p_{4}$, which fixes the flag

$$
\mathbb{Q} v \subset v^{\perp} \subset \mathbb{Q}^{4}
$$

It is easy to see that the semi-simple part of the Levi subgroup of P is $S L_{2}$. Hence Δ lies in P.

The condition on coefficients ensures that the projection of the elements C and $A C A^{-1}$ to $S L_{2}(\mathbb{Q})$ contains the unipotent generators of $S L_{2}(2 \mathbb{Z})$. Hence Δ intersects the unipotent radical of P non-trivially.

Table: List of primitive Symplectic pairs of polynomials of degree 4 (which are products of cyclotomic polynomials), for which arithmeticity follows from Main Theorem

No.	$f(X)$	$g(X)$	α	β	$f(X)-g(X)$
1	$\mathbf{X}^{4}-4 X^{3}+\mathbf{6} \mathbf{X}^{2}-\mathbf{4 X}+\mathbf{1}$	$\mathbf{X}^{4}-\mathbf{2 X ^ { 3 } + 3 X ^ { 2 } - \mathbf { 2 X } + \mathbf { 1 }}$	$\mathbf{0 , 0 , 0 , 0}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$-\mathbf{2 X ^ { 3 }}+\mathbf{3} \mathbf{X}^{2}-\mathbf{2 X}$
2	$X^{4}-2 X^{2}+1$	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$0,0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$-2 X^{3}-5 X^{2}-2 X$
3	$X^{4}-2 X^{2}+1$	$X^{4}+X^{3}+2 X^{2}+X+1$	$0,0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{3}, \frac{2}{3}$	$-X^{3}-4 X^{2}-X$
4	$X^{4}-2 X^{2}+1$	$X^{4}+X^{3}+X^{2}+X+1$	$0,0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$-X^{3}-3 X^{2}-X$
5	$X^{4}-2 X^{2}+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$0,0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$2 X^{3}-5 X^{2}+2 X$
6	$X^{4}-2 X^{2}+1$	$X^{4}-X^{3}+2 X^{2}-X+1$	$0,0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	$X^{3}-4 X^{2}+X$
7	$X^{4}-2 X^{2}+1$	$X^{4}-X^{3}+X^{2}-X+1$	$0,0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$X^{3}-3 X^{2}+X$
8	$X^{4}+4 X^{3}+6 X^{2}+4 X+1$	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$2 X^{3}+3 X^{2}+2 X$
9	$X^{4}-X^{3}-X+1$	$X^{4}+2 X^{2}+1$	$0,0, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$-X^{3}-2 X^{2}-X$
10	$X^{4}-X^{3}-X+1$	$X^{4}+X^{3}+X^{2}+X+1$	$0,0, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$-2 X^{3}-X^{2}-2 X$
11	$X^{4}-X^{3}-X+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$0,0, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$X^{3}-3 X^{2}+X$
12	$X^{4}-X^{3}-X+1$	$X^{4}+X^{3}+X+1$	$0,0, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	$-2 X^{3}-2 X$
13	$X^{4}-X^{3}-X+1$	$X^{4}-X^{3}+2 X^{2}-X+1$	$0,0, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	
14	$X^{4}-X^{3}-X+1$	$X^{4}+1$	$0,0, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$-2 X^{2}$
15	$X^{4}-X^{3}-X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$0,0, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$-X^{3}-X$
16	$X^{4}-X^{3}-X+1$	$X^{4}-X^{2}+1$	$0,0, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$-X^{3}+X^{2}-X$
17	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}+2 X^{2}+1$	$\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$2 X^{3}+X^{2}+2 X$

Table: Continued...

No.	$f(X)$	$g(X)$	α	β	$f(X)-g(X)$
18	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}+2 X^{3}+2 X^{2}+2 X+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	X^{2}
19	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}+X^{3}+X^{2}+X+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$X^{3}+2 X^{2}+X$
20	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}+X^{3}+X+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	$X^{3}+3 X^{2}+X$
21	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$2 X^{3}+3 X^{2}+2 X$
22	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}-X^{2}+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$2 X^{3}+4 X^{2}+2 X$
23	$X^{4}+3 X^{3}+4 X^{2}+3 X+1$	$X^{4}+X^{3}+X^{2}+X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$2 X^{3}+3 X^{2}+2 X$
24	$X^{4}-2 X^{3}+2 X^{2}-2 X+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$0,0, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	
25	$X^{4}-2 X^{3}+2 X^{2}-2 X+1$	$X^{4}+X^{2}+1$	$0,0, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{6}$	$-2 X^{3}+X^{2}-2 X$
26	$X^{4}-2 X^{3}+2 X^{2}-2 X+1$	$X^{4}+1$	$0,0, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$-2 X^{3}+2 X^{2}-2 X$
27	$X^{4}-2 X^{3}+2 X^{2}-2 X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$0,0, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$-X^{3}+X^{2}-X$
28	$X^{4}-2 X^{3}+2 X^{2}-2 X+1$	$X^{4}-X^{2}+1$	$0,0, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$-2 X^{3}+3 X^{2}-2 X$
29	$X^{4}+2 X^{2}+1$	$X^{4}+X^{3}+X^{2}+X+1$	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$-X^{3}+X^{2}-X$
30	$X^{4}+2 X^{2}+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$2 X^{3}-X^{2}+2 X$
31	$X^{4}+2 X^{2}+1$	$X^{4}+X^{3}+X+1$	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	$-X^{3}+2 X^{2}-X$
32	$X^{4}+2 X^{2}+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$X^{3}+X^{2}+X$
33	$X^{4}+2 X^{3}+2 X^{2}+2 X+1$	$X^{4}+X^{3}+X^{2}+X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$X^{3}+X^{2}+X$
34	$X^{4}+2 X^{3}+2 X^{2}+2 X+1$	$X^{4}+X^{2}+1$	$\frac{1}{2}, \frac{1}{4}$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{6}$	$2 X^{3}+X^{2}+2 X$

Table: Continued...

No.	$f(X)$	$g(X)$	α	β	$f(X)-g(X)$
35	$X^{4}+2 X^{3}+2 X^{2}+2 X+1$	$X^{4}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$2 X^{3}+2 X^{2}+2 X$
36	$X^{4}+2 X^{3}+2 X^{2}+2 X+1$	$X^{4}-X^{2}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$2 X^{3}+3 X^{2}+2 X$
37	$X^{4}+X^{3}+2 X^{2}+X+1$	$X^{4}+X^{3}+X^{2}+X+1$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	X^{2}
38	$X^{4}+X^{3}+2 X^{2}+X+1$	$X^{4}+X^{3}+X+1$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	$2 X^{2}$
39	$X^{4}+X^{3}+2 X^{2}+X+1$	$X^{4}+1$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$X^{3}+2 X^{2}+X$
40	$X^{4}+X^{3}+2 X^{2}+X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$2 X^{3}+X^{2}+2 X$
41	$X^{4}+X^{3}+2 X^{2}+X+1$	$X^{4}-X^{2}+1$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$X^{3}+3 X^{2}+X$
42	$X^{4}+X^{3}+X^{2}+X+1$	$X^{4}+X^{3}+X+1$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	
43	$X^{4}+X^{3}+X^{2}+X+1$	$X^{4}+X^{2}+1$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{6}$	X^{2}
44	$X^{4}+X^{3}+X^{2}+X+1$	$X^{4}-X^{3}+2 X^{2}-X+1$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	$2 X^{3}-X^{2}+2 X$
45	$X^{4}+X^{3}+X^{2}+X+1$	$X^{4}+1$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$X^{3}+X^{2}+X$
46	$X^{4}+X^{3}+X^{2}+X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$2 X^{3}+2 X$
47	$X^{4}+X^{3}+X^{2}+X+1$	$X^{4}-X^{2}+1$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$X^{3}+2 X^{2}+X$
48	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$0,0, \frac{1}{6}, \frac{5}{6}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$-2 X^{3}+3 X^{2}-2 X$
49	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$X^{4}+1$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$-2 X^{3}+3 X^{2}-2 X$
50	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$-X^{3}+2 X^{2}-X$
51	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$X^{4}-X^{2}+1$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$-2 X^{3}+4 X^{2}-2 X$

Table: Continued...

No.	$f(X)$	$g(X)$	α	β	$f(X)-g(X)$
52	$X^{4}+X^{3}+X+1$	$X^{4}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$X^{3}+X$
53	$X^{4}+X^{3}+X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$2 X^{3}-X^{2}+2 X$
54	$X^{4}+X^{3}+X+1$	$X^{4}-X^{2}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$X^{3}+X^{2}+X$
55	$X^{4}+X^{2}+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{6}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$X^{3}+X$
56	$X^{4}-X^{3}+2 X^{2}-X+1$	$X^{4}+1$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$-X^{3}+2 X^{2}-X$
57	$X^{4}-X^{3}+2 X^{2}-X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	X^{2}
58	$X^{4}-X^{3}+2 X^{2}-X+1$	$X^{4}-X^{2}+1$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$-X^{3}+3 X^{2}-X$
59	$X^{4}+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$X^{3}-X^{2}+X$
60	$X^{4}-X^{3}+X^{2}-X+1$	$X^{4}-X^{2}+1$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$-X^{3}+2 X^{2}-X$

Table: List of primitive Symplectic pairs of polynomials of degree 4 (which are products of cyclotomic polynomials), to which Main Theorem does not apply

No.	$f(X)$	$g(X)$	α	β	$f(X)-g(X)$
1*	$\mathrm{x}^{4}-4 \mathrm{X}^{3}+6 \mathrm{X}^{2}-4 \mathrm{X}+1$	$\mathrm{x}^{4}+4 \mathrm{X}^{3}+6 \mathrm{X}^{2}+4 \mathrm{X}+1$	$\mathbf{0 , 0 , 0 , 0}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$-8 \mathrm{X}^{3}-8 \mathrm{X}$
2	$x^{4}-4 x^{3}+6 x^{2}-4 x+1$	$x^{4}+2 x^{3}+3 x^{2}+2 x+1$	0,0,0,0	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$-6 X^{3}+3 x^{2}-6 x$
3*	$\mathrm{x}^{4}-4 \mathrm{x}^{3}+6 \mathrm{x}^{2}-4 \mathrm{x}+1$	$\mathrm{x}^{4}+3 \mathrm{x}^{3}+4 \mathrm{X}^{2}+3 \mathrm{x}+1$	$\mathbf{0 , 0 , 0 , 0}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$-7 \mathrm{X}^{3}+2 \mathrm{X}^{2}-7 \mathrm{X}$
4	$x^{4}-4 x^{3}+6 x^{2}-4 x+1$	$x^{4}+2 x^{2}+1$	0,0,0,0	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$-4 x^{3}+4 x^{2}-4 x$
5*	$\mathrm{x}^{4}-4 \mathrm{x}^{3}+6 \mathrm{X}^{2}-4 \mathrm{x}+1$	$\mathrm{x}^{4}+2 \mathrm{x}^{3}+2 \mathrm{x}^{2}+2 \mathrm{x}+1$	$\mathbf{0 , 0 , 0 , 0}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$-6 \mathrm{X}^{3}+4 \mathrm{X}^{2}-6 \mathrm{X}$
6	$x^{4}-4 x^{3}+6 x^{2}-4 x+1$	$x^{4}+x^{3}+2 x^{2}+x+1$	0,0,0,0	$\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}$	$-5 x^{3}+4 x^{2}-5 x$
7*	$\mathrm{x}^{4}-4 \mathrm{x}^{3}+6 \mathrm{x}^{2}-4 \mathrm{x}+1$	$\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$	0,0,0,0	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$-5 \mathrm{X}^{3}+5 \mathrm{X}^{2}-5 \mathrm{X}$
8*	$\mathrm{x}^{4}-4 \mathrm{x}^{3}+6 \mathrm{X}^{2}-4 \mathrm{x}+1$	$\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}+1$	$\mathbf{0 , 0 , 0 , 0}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	$-5 \mathrm{X}^{3}+6 \mathrm{X}^{2}-5 \mathrm{X}$
9	$x^{4}-4 x^{3}+6 x^{2}-4 x+1$	$x^{4}+x^{2}+1$	0,0,0,0	$\frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{6}$	$-4 x^{3}+5 x^{2}-4 x$
10	$\mathrm{x}^{4}-4 \mathrm{x}^{3}+6 \mathrm{x}^{2}-4 \mathrm{x}+1$	$\mathrm{x}^{4}-\mathrm{x}^{3}+2 \mathrm{x}^{2}-\mathrm{x}+1$	0,0,0,0	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	$-3 x^{3}+4 x^{2}-3 x$
11*	$x^{4}-4 x^{3}+6 x^{2}-4 x+1$	$\mathrm{x}^{4}+1$	0,0,0,0	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$-4 x^{3}+6 x^{2}-4 x$
12	$x^{4}-4 x^{3}+6 x^{2}-4 x+1$	$\mathrm{x}^{4}-\mathrm{x}^{3}+\mathrm{x}^{2}-\mathrm{x}+1$	0,0,0,0	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$-3 x^{3}+5 x^{2}-3 x$
13*	$\mathrm{x}^{4}-4 \mathrm{x}^{3}+6 \mathrm{x}^{2}-4 \mathrm{x}+1$	$\mathrm{x}^{4}-\mathrm{x}^{2}+1$	0,0,0,0	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$-4 \mathrm{X}^{3}+7 \mathrm{X}^{2}-4 \mathrm{X}$
14	$x^{4}+4 x^{3}+6 x^{2}+4 x+1$	$x^{4}-x^{3}-x+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	0,0, $\frac{1}{3}, \frac{2}{3}$	$5 x^{3}+6 x^{2}+5 x$
15	$x^{4}+4 x^{3}+6 x^{2}+4 x+1$	$x^{4}-2 x^{3}+2 x^{2}-2 x+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	0, 0, $\frac{1}{4}, \frac{3}{4}$	$6 x^{3}+4 x^{2}+6 x$
16	$x^{4}+4 x^{3}+6 x^{2}+4 x+1$	$x^{4}+2 x^{2}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$4 x^{3}+4 x^{2}+4 x$
17	$x^{4}+4 x^{3}+6 x^{2}+4 X+1$	$x^{4}+x^{3}+2 x^{2}+x+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{3}, \frac{2}{3}$	$3 x^{3}+4 x^{2}+3 x$

Table: Continued...

No.	$f(X)$	$g(X)$	α	β	$f(X)-g(X)$
18	$X^{4}+4 X^{3}+6 X^{2}+4 X+1$	$X^{4}+X^{3}+X^{2}+X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$3 X^{3}+5 X^{2}+3 X$
19	$X^{4}+4 X^{3}+6 X^{2}+4 X+1$	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$0,0, \frac{1}{6}, \frac{5}{6}$	$7 X^{3}+2 X^{2}+7 X$
20	$X^{4}+4 X^{3}+6 X^{2}+4 X+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$6 X^{3}+3 X^{2}+6 X$
21	$X^{4}+4 X^{3}+6 X^{2}+4 X+1$	$X^{4}+X^{2}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{6}, \frac{5}{6}$	$4 X^{3}+5 X^{2}+4 X$
22	$X^{4}+4 X^{3}+6 X^{2}+4 X+1$	$X^{4}-X^{3}+2 X^{2}-X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	$5 X^{3}+4 X^{2}+5 X$
23	$X^{4}+4 X^{3}+6 X^{2}+4 X+1$	$X^{4}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$4 X^{3}+6 X^{2}+4 X$
24	$X^{4}+4 X^{3}+6 X^{2}+4 X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$5 X^{3}+5 X^{2}+5 X$
25	$X^{4}+4 X^{3}+6 X^{2}+4 X+1$	$X^{4}-X^{2}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$4 X^{3}+7 X^{2}+4 X$
26	$X^{4}-X^{3}-X+1$	$X^{4}+2 X^{3}+2 X^{2}+2 X+1$	$0,0, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$-3 X^{3}-2 X^{2}-3 X$
27	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}-2 X^{3}+2 X^{2}-2 X+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$0,0, \frac{1}{4}, \frac{3}{4}$	$4 X^{3}+X^{2}+4 X$
28	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$0,0, \frac{1}{6}, \frac{5}{6}$	$5 X^{3}-X^{2}+5 X$
29	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$4 X^{3}+4 X$
30	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}-X^{3}+2 X^{2}-X+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	$3 X^{3}+X^{2}+3 X$
31	$X^{4}+2 X^{3}+3 X^{2}+2 X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$3 X^{3}+2 X^{2}+3 X$
32	$X^{4}+3 X^{3}+4 X^{2}+3 X+1$	$X^{4}-2 X^{3}+2 X^{2}-2 X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$0,0, \frac{1}{4}, \frac{3}{4}$	$5 X^{3}+2 X^{2}+5 X$
33	$X^{4}+3 X^{3}+4 X^{2}+3 X+1$	$X^{4}+2 X^{2}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$3 X^{3}+2 X^{2}+3 X$
34	$X^{4}+3 X^{3}+4 X^{2}+3 X+1$	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$0,0, \frac{1}{6}, \frac{5}{6}$	$6 X^{3}+6 X$

Table: Continued...

No.	$f(X)$	$g(X)$	α	β	$f(X)-g(X)$
35	$X^{4}+3 X^{3}+4 X^{2}+3 X+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$5 X^{3}+X^{2}+5 X$
36	$X^{4}+3 X^{3}+4 X^{2}+3 X+1$	$X^{4}-X^{3}+2 X^{2}-X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{6}, \frac{5}{6}$	$4 X^{3}+2 X^{2}+4 X$
37	$X^{4}+3 X^{3}+4 X^{2}+3 X+1$	$X^{4}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$3 X^{3}+4 X^{2}+3 X$
38	$X^{4}+3 X^{3}+4 X^{2}+3 X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$4 X^{3}+3 X^{2}+4 X$
39	$X^{4}+3 X^{3}+4 X^{2}+3 X+1$	$X^{4}-X^{2}+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$	$\frac{1}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$3 X^{3}+5 X^{2}+3 X$
40	$X^{4}-2 X^{3}+2 X^{2}-2 X+1$	$X^{4}+X^{3}+X^{2}+X+1$	$0,0, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$-3 X^{3}+X^{2}-3 X$
41	$X^{4}-2 X^{3}+2 X^{2}-2 X+1$	$X^{4}+X^{3}+X+1$	$0,0, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{5}{6}$	$-3 X^{3}+2 X^{2}-3 X$
42	$X^{4}+2 X^{2}+1$	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$0,0, \frac{1}{6}, \frac{5}{6}$	$3 X^{3}-2 X^{2}+3 X$
43	$X^{4}+2 X^{3}+2 X^{2}+2 X+1$	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$0,0, \frac{1}{6}, \frac{5}{6}$	$5 X^{3}-2 X^{2}+5 X$
44	$X^{4}+2 X^{3}+2 X^{2}+2 X+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$4 X^{3}-X^{2}+4 X$
45	$X^{4}+2 X^{3}+2 X^{2}+2 X+1$	$X^{4}-X^{3}+X^{2}-X+1$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}$	$3 X^{3}+X^{2}+3 X$
46	$X^{4}+X^{3}+2 X^{2}+X+1$	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}$	$0,0, \frac{1}{6}, \frac{5}{6}$	$4 X^{3}-2 X^{2}+4 X$
47	$X^{4}+X^{3}+2 X^{2}+X+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$3 X^{3}-X^{2}+3 X$
48	$X^{4}+X^{3}+X^{2}+X+1$	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$0,0, \frac{1}{6}, \frac{5}{6}$	$4 X^{3}-3 X^{2}+4 X$
49	$X^{4}+X^{3}+X^{2}+X+1$	$X^{4}-2 X^{3}+3 X^{2}-2 X+1$	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	$\frac{1}{6}, \frac{1}{6}, \frac{5}{6}, \frac{5}{6}$	$3 X^{3}-2 X^{2}+3 X$
50	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$X^{4}+1$	$0,0, \frac{1}{6}, \frac{5}{6}$	$\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$	$-3 X^{3}+4 X^{2}-3 X$
51	$X^{4}-3 X^{3}+4 X^{2}-3 X+1$	$X^{4}-X^{2}+1$	$\frac{1}{6}, \frac{5}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}$	$-3 X^{3}+5 X^{2}-3 X$	

