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THE PROJECT

This is a joint project with William J. Husen and Kay Magaard.
Classify the pairs (G, G — SL(V)) such that
© G is afinite quasisimple group,
@ V a finite dimensional vector space over some field K,
@ G — SL(V) is absolutely irreducible and imprimitive.

v

@ G is quasisimple, if G= G and G/Z(G) is simple.

@ G — SL(V) isimprimitive, if V=V &---& Vi, m> 1, and
the action of G permutes the V; transitively.
We call H := Stabg( V1) a block stabilizer.

We have V = Ind§(V;) := KG @k V4 as KG-modules.
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MOTIVATION I: MAXIMAL SUBGROUPS

Let K be a finite field and V a f.d. K-vector space.
Let X < SL(V) be a classical group, e.g., X = Sp(V),SO(V).
Let G < X be finite, quasisimple, such that
Q@ ¢©: G— X <SL(V)is absolutely irreducible, and
@ not realizable over a smaller field.
[¢ : G— SL(V) is realizable over a smaller field, if ¢ factors as

G—2>SL(V)

o}

SL(Vo)

for some proper subfield Ky < K, a Kyp-vector space Vy with
V = K ®k, Vo, and a representation g : G — SL(Vp).]

Is Nx(G) a maximal subgroup of X?



THE PROJECT AND ITS MOTIVATION

SOME OBSTRUCTIONS

The following obstructions (for the maximality of Nx(G)), and
many more, arise from Aschbacher’s subgroup classification
(1984).



THE PROJECT AND ITS MOTIVATION

SOME OBSTRUCTIONS

The following obstructions (for the maximality of Nx(G)), and

many more, arise from Aschbacher’s subgroup classification
(1984).

Co-obstruction: ¢ : Nx(G) — X < SL(V) is imprimitive.



THE PROJECT AND ITS MOTIVATION

SOME OBSTRUCTIONS

The following obstructions (for the maximality of Nx(G)), and
many more, arise from Aschbacher’s subgroup classification
(1984).

Co-obstruction: ¢ : Nx(G) — X < SL(V) is imprimitive.
Then Nx(G) < Stabx({V4,..., Vn}) < X.



THE PROJECT AND ITS MOTIVATION

SOME OBSTRUCTIONS

The following obstructions (for the maximality of Nx(G)), and
many more, arise from Aschbacher’s subgroup classification
(1984).

Co-obstruction: ¢ : Nx(G) — X < SL(V) is imprimitive.
Then Nx(G) < Stabx({V4,..., Vn}) < X.

C4-obstruction: ¢ : Nx(G) — X < SL(V) is tensor
decomposabile,



THE PROJECT AND ITS MOTIVATION

SOME OBSTRUCTIONS

The following obstructions (for the maximality of Nx(G)), and
many more, arise from Aschbacher’s subgroup classification
(1984).

Co-obstruction: ¢ : Nx(G) — X < SL(V) is imprimitive.
Then Nx(G) < Stabx({V4,..., Vn}) < X.

C4-obstruction: ¢ : Nx(G) — X < SL(V) is tensor
decomposabile,

i.e., V=Uw®k W and ¢ is equivalent to oy ® v .



THE PROJECT AND ITS MOTIVATION

SOME OBSTRUCTIONS

The following obstructions (for the maximality of Nx(G)), and
many more, arise from Aschbacher’s subgroup classification
(1984).

Co-obstruction: ¢ : Nx(G) — X < SL(V) is imprimitive.
Then Nx(G) < Stabx({V4,..., Vn}) < X.

C4-obstruction: ¢ : Nx(G) — X < SL(V) is tensor
decomposabile,

i.e., V=Uw®k W and ¢ is equivalent to oy ® v .
Then Nx(G) < XN (SL(U) @k SL(W)) < X.



THE PROJECT AND ITS MOTIVATION

SOME OBSTRUCTIONS

The following obstructions (for the maximality of Nx(G)), and
many more, arise from Aschbacher’s subgroup classification
(1984).

Co-obstruction: ¢ : Nx(G) — X < SL(V) is imprimitive.
Then Nx(G) < Stabx({V4,..., Vn}) < X.

C4-obstruction: ¢ : Nx(G) — X < SL(V) is tensor
decomposabile,

i.e., V=Uw®k W and ¢ is equivalent to oy ® v .
Then Nx(G) < XN (SL(U) @k SL(W)) < X.

S-obstruction: There is a quasisimple group H such that
Nx(G) < H< X.



THE PROJECT AND ITS MOTIVATION

SOME OBSTRUCTIONS

The following obstructions (for the maximality of Nx(G)), and
many more, arise from Aschbacher’s subgroup classification
(1984).

Co-obstruction: ¢ : Nx(G) — X < SL(V) is imprimitive.
Then Nx(G) < Stabx({V4,..., Vn}) < X.

C4-obstruction: ¢ : Nx(G) — X < SL(V) is tensor
decomposabile,

i.e., V=Uw®k W and ¢ is equivalent to oy ® v .
Then Nx(G) < XN (SL(U) @k SL(W)) < X.

S-obstruction: There is a quasisimple group H such that
Nx(G) < H < X. (Thus Resg(V) is absolutely irreducible.)
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Let X be a finite classical group.

Let ¢ : M1 — X be absolutely irreducible, faithful, and not
realizable over a smaller field. (All such (¢, X) are known.)
Put G := ¢(Mj1). Then Nx(G) = Z(X) x G.

Is Z(X) x G maximal in X?

NO, except for ¢ : My; — SLs(3).

EXAMPLES

(1) M1 — A1 — SO{,(3) (S-obstruction).

(2) My1 — SOss(¢) is imprimitive, £ > 5 (Co-obstruction).
(3) Also: Myy — Mya — Aya — SO14(¢) — SOss(£), £ > 5.
(4) Myy — 2.M;2 — SL4o(3) (S-obstruction).

(5) My1 — SLs(3) — SO,,(3)’ (S-obstruction).

What about ¢ : M — SOjggge0(2)?  (M: Monster)
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The following algorithmic problem arises in the "matrix groups
computation" project.

Let K be a finite field, xq,..., X, € GLy(K), G := (X1,..., X;).

Through preliminary computations one knows
© G acts absolutely irreducibly on V = K",
@ Gis "nearly" simple,

@ the isomorphism type of the non-abelian simple
composition factor of G.

Decide whether G acts primitively on V.

A table look-up in our lists might help to answer this question.
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A SAMPLE OF RESULTS

Let K be algebraically closed. All irreducible, imprimitive
KG-modules are known for

Q char(K)=0and G=2A,
(Djokovic-Malzan, Nett-Noeske).

@ char(K) arbitrary and
e G sporadic;

e @ afinite reductive group if G has an exceptional Schur
multiplier or if G has two distinct defining characteristics

(finitely many groups);

e G a Suzuki or Ree group, G = G»(q), or G a Steinberg
triality group

(Seitz, H.-Husen-Magaard).
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THEOREM (DANIEL NETT, FELIX NOESKE, 2009)

Suppose that G = 2.A,, n > 10, is the covering group of Ay,
and let ¢ € Irr(G) be imprimitive.

Thenn=1+m(m+1)/2, and ¢ = Res% (o) with
A=(m+1,m—-1m-2,...,

Also, 1 = Ind§ , _ (1) with v a constituent of Ress 5" " (ot

g o= (mm—1,...,1)8
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Let G denote a reductive algebraic group over F, an
algebraically closed field, char(F) = p > 0.

Let F denote a Frobenius morphism of G with respect to some
[Fq-structure of G.

Then G := GF is a finite reductive group of characteristic p.

An F-stable Levi subgroup L of G is split, if L is a Levi
complement in an F-stable parabolic subgroup P of G.

Such a pair (L, P) gives rise to a parabolic subgroup P = PF
of G with Levi complement L = LF.
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REDUCTIVE GROUPS IN DEFINING CHARACTERISTICS

The following result of Seitz contains the classification in
defining characteristic.

THEOREM (GARY SEITZ, 1988)

Let G be a finite reductive, quasisimple group of
characteristic p.

Suppose that V is an irreducible, imprimitive F G-module.

Then G is one of

SL2(5), SLa(7), SLs(2), Sp4(3),

and V is the Steinberg module.

Thus it remains to study finite reductive groups in non-defining
characteristics (including 0).



REDUCTIONS
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.



REDUCTIONS
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.
Suppose that G

@ is quasisimple,



REDUCTIONS
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.
Suppose that G

@ is quasisimple,

@ does not have an exceptional Schur multiplier,



REDUCTIONS
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.
Suppose that G

@ is quasisimple,

@ does not have an exceptional Schur multiplier,

@ is not isomorphic to a finite reductive group of a different
characteristic.



REDUCTIONS
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.
Suppose that G

@ is quasisimple,

@ does not have an exceptional Schur multiplier,

@ is not isomorphic to a finite reductive group of a different
characteristic.

Let K be an algebraically closed field with char(K) # p.



REDUCTIONS
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.
Suppose that G

@ is quasisimple,

@ does not have an exceptional Schur multiplier,

@ is not isomorphic to a finite reductive group of a different
characteristic.

Let K be an algebraically closed field with char(K) # p.

THEOREM (H.-HUSEN-MAGAARD, 2013)
Let G and K be as above. Let H < G be a maximal subgroup.




REDUCTIONS
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.
Suppose that G

@ is quasisimple,

@ does not have an exceptional Schur multiplier,

@ is not isomorphic to a finite reductive group of a different
characteristic.

Let K be an algebraically closed field with char(K) # p.

THEOREM (H.-HUSEN-MAGAARD, 2013)

Let G and K be as above. Let H < G be a maximal subgroup.
Suppose that Indﬁ( V1) is irreducible for some KH-module V.




REDUCTIONS
THE MAIN REDUCTION THEOREM

Let G be a finite reductive group of characteristic p.
Suppose that G

@ is quasisimple,

@ does not have an exceptional Schur multiplier,

@ is not isomorphic to a finite reductive group of a different
characteristic.

Let K be an algebraically closed field with char(K) # p.

THEOREM (H.-HUSEN-MAGAARD, 2013)

Let G and K be as above. Let H < G be a maximal subgroup.
Suppose that Indﬁ( V1) is irreducible for some KH-module V.

Then H = P is a parabolic subgroup of G.
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Let G be a finite group, H < G, and K a field.
Let V4 be a KH-module such that V := Indﬁ(v1) is irreducible.
Then

O [G: H] <dim(V).

@ |H)? > |Gl.

@ Forall t € G\ H, the group 'H N H is not centralized by t.
In particular HN H # {1} forall t € G.

© Suppose that H = Cg(a) for some a < G. Then t ¢ (!a, a)
forallte G\ H.

Proof of 1: Clear, since dim(V) = [G : H]dim(Vj).

Proof of 2: [G: H]? < dim(V)? < |G|.

Proof of 3: This is a consequence of Mackey’s theorem.
Proof of 4: For t € G, 'HN H = Cg(a, a). Hence t ¢ ('a, a) for
t € G\ H, since such a t does not centralize {H N H by 3.
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Large subgroups of finite reductive groups are in general
parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

EXAMPLE
Let G = Sp,,,(q) with m even and q > 3 odd, and let

H= <H07 S> with Hy = Spm(q) X Spm(q) and s = [ IO /81 ]
m

0 a 'l

Putt::[l’" N] WithN::[? 8].

Then Hy = Cg(a) with a = [ ], where () = Fy,.

N In
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EXAMPLE
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NON-PARABOLIC BLOCK STABILIZERS

Large subgroups of finite reductive groups are in general
parabolic subgroups.

There are, however, many exceptions, causing a lot of trouble.

EXAMPLE
Let G = Sp,,,(q) with m even and q > 3 odd, and let

H= <H07 S> with Hy = Spm(q) X Spm(q) and s = [ IO /81 ]
m

. al 0 5
Then Hy = Cg(a) with a = [ Om a1, ], where (o) = F,.
_|'Im N . 100
Putt.—[N lm]WIThN.—[1 0].

Then't € (1a, a), hence t centralizes Hy N Hp.
Finally, t € Cg(s) and Hy N sHy = 0, thus t € Cg(*H N H).
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Let G be a finite reductive, quasisimple group of characteristic
p, and let K be an algebraically closed field with char(K) # p.

According to our main reduction theorem, we may restrict our
investigation to parabolic subgroups.

PROPOSITION (H.-HUSEN-MAGAARD, 2013)

Let P be a parabolic subgroup of G with unipotent radical U.

Let V; be a KP-module such that IndS(V;) is irreducible.
Then U is in the kernel of V.

In other words, Ind$(V;) is Harish-Chandra induced.

This allows to apply Harish-Chandra theory to our classification
problem, reducing certain aspects to Weyl groups.
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SKETCH PROOF OF PROPOSITION

PROPOSITION

Let P be a parabolic subgroup of G with unipotent radical U.
Let V4 be a KP-module such that Ind$( V) is irreducible.
Then U is in the kernel of V.

Proof: (Sketch) Let L be a Levi complement of U in P.
Chose a head composition factor V5 of Res} (V4).

Let Q be the opposite parabolic subgroup of P, so PN Q = L.
Mackey’s theorem yields a non-trivial homomorphism
Ind&(V4) — Ind§(V2), where o = Infid(Vs).

As Ind§(V4) is simple, and dim(Ind§(¥,)) < dim(Ind§(V4)), this
implies that ~
IndS( V1) 2 Ind§( %).

It follows that dim(V4) = dim(V5).
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Let X be a finite classical group on the vector space V.
Let G < X be a quasisimple reductive group such that
Q@ ¢©: G— X <SL(V)is absolutely irreducible,
Q V= Ind,C;’( V) for some parabolic subgroup P of G,
@ the G-conjugacy class of P is invariant under Nx(G).
Then Nx(G) is not a maximal subgroup of X.
Indeed, putting H := Nx(G), we get H = GNy(P) by 3.
We have V = V; & --- & Vp, the V; being permuted by G.

By the proposition, Vi = Cy(U), where U is the unipotent
radical of P.

Now Ny(P) stabilizes U, hence fixes Vj.
Thus H = GNg(P) permutes the V;.
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Let G be a finite reductive, quasisimple group of characteristic
p, and let K be an algebraically closed field with char(K) # p.
By Harish-Chandra theory, a large proportion of irreducible
KG-modules are imprimitive.

Let L be a Levi subgroup of G, and let V; be an irreducible
cuspidal KL-module in general position. (The latter means,
roughly, that the stabilizer of V in Ng(L) equals L.)

Then IndS(Infif’ (V4)) is irreducible.

G = GLx(q), L =GLm(q) x GLo—m(q) withm # n— m.
Then every irreducible cuspidal KL-module is in general
position.




HARISH-CHANDRA INDUCTION

ASYMPTOTICS

Assume from now on that K = C (our results are best in this
case).



HARISH-CHANDRA INDUCTION

ASYMPTOTICS

Assume from now on that K = C (our results are best in this
case).

Let Gm(q) = SLm(q) or Gm(q) = Sp2m(Q).



HARISH-CHANDRA INDUCTION

ASYMPTOTICS

Assume from now on that K = C (our results are best in this
case).

Let Gm(q) = SLm(q) or Gm(q) = Spap,(q)- Put

_Iri(Gm(9))
Hm. Q) = T Gl

where Irri(Gm(q)) = {x € Irr(Gm(q)) | x is imprimitive}.



HARISH-CHANDRA INDUCTION

ASYMPTOTICS

Assume from now on that K = C (our results are best in this

case).
Let Gim(q) = SLm(q) or Gm(q) = Spam(q)- Put
_ Imi(Gm(q))|
@)= (G @)

where Irri(Gm(q)) = {x € Irr(Gm(q)) | x is imprimitive}.
Then f(m) := limg_. f(m, q) exists an we have:

Q@ f(m)=1-1/mif Gn(q) = SLn(q),



HARISH-CHANDRA INDUCTION

ASYMPTOTICS

Assume from now on that K = C (our results are best in this

case).
Let Gim(q) = SLm(q) or Gm(q) = Spam(q)- Put
_ Imi(Gm(q))|
@)= (G @)

where Irri(Gm(q)) = {x € Irr(Gm(q)) | x is imprimitive}.
Then f(m) := limg_. f(m, q) exists an we have:
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@ f(m)=1-135:Cm=) i G (q) — Sp,.(q) [Libeck].
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where Irri(Gm(q)) = {x € Irr(Gm(q)) | x is imprimitive}.
Then f(m) := limg_. f(m, q) exists an we have:

Q@ f(m)=1-1/mif Gn(q) = SLn(q),

@ f(m)=1-135:Cm=) i G (q) — Sp,.(q) [Libeck].

In each case, limpy_o f(m) = 1.

Analogous results hold for the other classical groups.
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G G Cs(a) Ca(b)
X1 1 1 1 1
X2 q 0 1 —1
xs(m) |qg+1 1 (&4 ¢7am 0
x4(n) |g—1 -1 0 —gbn —¢—bn

am=1,...,(g—2)/2, b,n=1,...,q9/2,
The characters x3(m) are imprimitive, the others are primitive.
Number of irreducible characters: g + 1.

Number of imprimitive irreducible characters: q/2 — 1.
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LUSZTIG SERIES

Let G = GF be a finite reductive group.
Let G* = G*F denote a dual reductive group.
We have
Im(G) = | J€(G, [s]),
[s]
a disjoint union into rational Lusztig series ([s] runs through the
G*-conjugacy classes of semisimple elements of G*).

THEOREM (H.-HUSEN-MAGAARD, 2013)

If Cg+(S) is contained in a proper split Levi subgroup of G*,
every element of £(G, [s]) is Harish-Chandra induced.

Suppose that Cg-(S) is connected and not contained in a
proper split Levi subgroup of G*.
Then every element of £(G, [s]) is Harish-Chandra primitive.

In particular, the elements of £(G, [1]) are HC-primitive.
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THE CLASSIFICATION FOR GL;(q)

Let G = GLu(q). Then G = G*.

Let s € G* = G be semisimple. Then Cg-(S) is connected.

THEOREM (H.-HUSEN-MAGAARD, 2013)

If the minimal polynomial of s is irreducible, then every element
of £(G, [s]) is Harish-Chandra primitive.

Otherwise, every element of £(G, [s]) is Harish-Chandra
induced.

Notice that the minimal polynomial of s is irreducible if and only
if Ca(s) = GLm(q9) for integers m, d with md = n.
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EXAMPLE FOR THE DESCENT FROM GL,(q) TO SL,(Q)

The descent from GL;(q) to SL(q) is not so easy to describe.

EXAMPLE (CEDRIC BONNAFE)

Suppose that q is odd, let G = GL4(q) and P a parabolic
subgroup with Levi complement L = GL»(q) x GL2(q).

Let 1 denote the trivial character and 1~ the unique linear
character of GL»(q) of order 2.

Then x := Ind§(InfI (1 @ 17)) is irreducible, hence imprimitive.

However, ResgL4(q)(X) = 11 + 1o, with irreducible, primitive
characters 14, 1.

THEOREM (H.-HUSEN-MAGAARD, 2013)

Let x € Irr(GLA(q)) be Harish-Chandra primitive.
Then Resgll_‘”(g)) (x) is irreducible and Harish-Chandra primitive.
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DESCENT FROM GL,(q) TO SL,(q)

Let G = SLn(q), s € G* = PGL,(q) semisimple.
There is a bijection

Irr(W(s)F) = E(G,[s]), n— Xn»

where W(s) is the “Weyl group” of Cg-(s) (Bonnafé).

Suppose that £(G, [s]) contains Harish-Chandra primitive and
imprimitive characters.

Then W(s)F = S: (y), with S = Sy, x - - - x Sp,, and y permuting
the e factors Sy, of S transitively, and em | n.

THEOREM (H.-MAGAARD)

X € (G, [8]) is primitive, if and only if Resg () is
irreducible.




Thank you for listening!
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