Sharp isoperimetric inequalities for Steklov eigenvalues

Alexandre Girouard

Université Laval

July 2013
The *Steklov spectral problem* on a bounded domain $\Omega \subset \mathbb{R}^d$ is

$$\Delta u = 0 \text{ in } \Omega, \quad \partial_n u = \sigma u \text{ on } \partial \Omega.$$

\[
0 = \sigma_0 < \sigma_1 \leq \sigma_2 \leq \cdots \uparrow \infty
\]
The **Steklov spectral problem** on a bounded domain $\Omega \subset \mathbb{R}^d$ is

$$\Delta u = 0 \text{ in } \Omega, \quad \partial_n u = \sigma u \text{ on } \partial \Omega.$$

$$0 = \sigma_0 < \sigma_1 \leq \sigma_2 \leq \cdots \nearrow \infty$$

The Steklov eigenvalues are the eigenvalues of the **Dirichlet–to–Neumann operator** $\Lambda : C^\infty(\partial \Omega) \to C^\infty(\partial \Omega)$, defined by

$$\Lambda f = \partial_n u$$

where $\Delta u = 0$ in Ω and $u = f$ on $\partial \Omega$.

The Steklov spectral problem on a bounded domain $\Omega \subset \mathbb{R}^d$ is

$$\Delta u = 0 \text{ in } \Omega, \quad \partial_n u = \sigma u \text{ on } \partial \Omega.$$

$$0 = \sigma_0 < \sigma_1 \leq \sigma_2 \leq \cdots \nearrow \infty$$

The Steklov eigenvalues are the eigenvalues of the Dirichlet–to–Neumann operator $\Lambda : C^\infty(\partial \Omega) \to C^\infty(\partial \Omega)$, defined by

$$\Lambda f = \partial_n u$$

where $\Delta u = 0$ in Ω and $u = f$ on $\partial \Omega$.

The operator Λ is an elliptic self-adjoint Ψdo of order 1, with principal symbol $|\xi|$. It follows that

$$\sigma_k \sim C(d) \left(\frac{k}{|\partial \Omega|} \right)^{1/(d-1)} \text{ as } k \nearrow \infty.$$
Isoperimetric problems for Steklov eigenvalues

Problem

Maximize $\sigma_k(\Omega)$ among domains $\Omega \subset \mathbb{R}^d$ with $|\partial \Omega| = 1$.

Given $c > 0$, it is clear that $\sigma_k(c\Omega) = 1/c \sigma_k(\Omega)$. Therefore, the functional $\Omega \mapsto \tilde{\sigma}_k(\Omega) := \sigma_k(\Omega) / |\partial \Omega|^{1/d - 1}$ is scaling invariant.

Equivalent problem

Maximize $\tilde{\sigma}_k(\Omega)$ among all regular domains $\Omega \subset \mathbb{R}^d$.

3 / 11
Isoperimetric problems for Steklov eigenvalues

Problem

Maximize $\sigma_k(\Omega)$ among domains $\Omega \subset \mathbb{R}^d$ with $|\partial \Omega| = 1$.

Given $c > 0$, it is clear that

$$\sigma_k(c\Omega) = \frac{1}{c} \sigma_k(\Omega).$$

Therefore, the functional

$$\Omega \mapsto \tilde{\sigma}_k(\Omega) := \sigma_k(\Omega)|\partial \Omega|^{1/d-1}$$

is scaling invariant.
Isoperimetric problems for Steklov eigenvalues

Problem

Maximize $\sigma_k(\Omega)$ among domains $\Omega \subset \mathbb{R}^d$ with $|\partial\Omega| = 1$.

Given $c > 0$, it is clear that

$$\sigma_k(c\Omega) = \frac{1}{c} \sigma_k(\Omega).$$

Therefore, the functional

$$\Omega \mapsto \tilde{\sigma}_k(\Omega) := \sigma_k(\Omega)|\partial\Omega|^{1/d-1}$$

is scaling invariant.

Equivalent problem

Maximize $\tilde{\sigma}_k(\Omega)$ among all regular domains $\Omega \subset \mathbb{R}^d$.
Variational characterization of σ_k

The starting point of many strategies to obtain isoperimetric results is to use a variational characterization. . .

Let

$$\mathcal{H}_k = \{ V \subset H^1(\Omega) : \dim V = k \}.$$

$$\sigma_k = \min_{V \in \mathcal{H}_k} \max_{f \in V \setminus \{0\}} \frac{\int_{\Omega} |\nabla f|^2 \, dx}{\int_{\partial \Omega} f^2 \, dS}$$
Variational characterization of σ_k

The starting point of many strategies to obtain isoperimetric results is to use a variational characterization. . .

Let

$$\mathcal{H}_k = \{ V \subset H^1(\Omega) : \dim V = k \}.$$

$$\sigma_k = \min_{V \in \mathcal{H}_k} \max_{f \in V \setminus \{0\}} \frac{\int_\Omega |\nabla f|^2 \, dx}{\int_{\partial \Omega} f^2 \, dS}$$

Observation

The *infimum* of $\sigma_k(\Omega)$ among domains with $|\partial \Omega| = 1$ is zero.
Variational characterization of σ_k

The starting point of many strategies to obtain isoperimetric results is to use a variational characterization. . .

Let

$$\mathcal{H}_k = \{ V \subset H^1(\Omega) : \dim V = k \}.$$

$$\sigma_k = \min_{V \in \mathcal{H}_k} \max_{f \in V \setminus \{0\}} \frac{\int_{\Omega} |\nabla f|^2 \, dx}{\int_{\partial \Omega} f^2 \, dS}$$

Observation

The *infimum* of $\sigma_k(\Omega)$ among domains with $|\partial \Omega| = 1$ is *zero*.

This is related to loss of compactness for the trace map

$$H^1(\Omega) \to L^2(\partial \Omega)$$

Channels, cusps, . . .
Physical interpretation in two dimension

The *non homogeneous Neumann* spectral problem with density $0 < \rho \in C^\infty(\Omega)$ is

$$-\Delta u = \mu \rho u \text{ in } \Omega, \quad \partial_n u = 0 \text{ on } \partial \Omega.$$

$$0 = \mu_0 < \mu_1(\rho) \leq \mu_2(\rho) \leq \ldots \uparrow \infty$$
Physical interpretation in two dimension

The *non homogeneous Neumann* spectral problem with density $0 < \rho \in C^\infty(\overline{\Omega})$ is

$$-\Delta u = \mu \rho u \text{ in } \Omega, \quad \partial_n u = 0 \text{ on } \partial \Omega.$$

These are characterized using the Rayleigh quotient

$$0 = \mu_0 < \mu_1(\rho) \leq \mu_2(\rho) \leq \cdots \uparrow \infty$$

One can think of the Steklov problem as a free membrane with its mass uniformly distributed along its boundary.
Physical interpretation in two dimension

The *non homogeneous Neumann* spectral problem with density $0 < \rho \in C^\infty(\Omega)$ is

$$-\Delta u = \mu \rho u \text{ in } \Omega, \quad \partial_n u = 0 \text{ on } \partial \Omega.$$

These are characterized using the Rayleigh quotient

$$\int_\Omega |\nabla f|^2 \, dx \quad \text{subject to} \quad \int_\Omega f^2 \rho \, dx$$

If $\rho_n dx \overset{n \to \infty}{\longrightarrow} dS$, then for $f \in H^1(\Omega)$

$$\lim_{n \to \infty} \frac{\int_\Omega |\nabla f|^2 \, dx}{\int_\Omega f^2 \rho_n \, dx} = \frac{\int_\Omega |\nabla f|^2 \, dx}{\int_{\partial \Omega} f^2 \, dS}$$
Physical interpretation in two dimension

The non homogeneous Neumann spectral problem with density $0 < \rho \in C^\infty(\overline{\Omega})$ is

$$-\Delta u = \mu \rho u \text{ in } \Omega, \quad \partial_n u = 0 \text{ on } \partial \Omega.$$

These are characterized using the Rayleigh quotient

$$0 = \mu_0 < \mu_1(\rho) \leq \mu_2(\rho) \leq \cdots \uparrow \infty$$

If $\rho_n dx \xrightarrow{n \to \infty} dS$, then for $f \in H^1(\Omega)$

$$\lim_{n \to \infty} \frac{\int_\Omega |\nabla f|^2 \, dx}{\int_\Omega f^2 \rho_n \, dx} = \frac{\int_\Omega |\nabla f|^2 \, dx}{\int_{\partial \Omega} f^2 \, dS}$$

One can think of the Steklov problem as a free membrane with its mass uniformly distributed along its boundary.
Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^2$ is simply connected,

$$\sigma_1(\Omega)|\partial \Omega| \leq \sigma_1(\mathbb{D})|\partial \mathbb{D}| = 2\pi.$$

Szegő, 1954
If $\Omega \subset \mathbb{R}^2$ is simply connected,

$$\mu_1(\Omega)|\Omega| \leq \mu_1(\mathbb{D})|\mathbb{D}|.$$

Observation
Let $A \in \mathbb{D} \setminus B(0,\epsilon)$. Then for small $\epsilon > 0$ one has

$$\sigma_1(A|\partial A| > 2\pi.$$

Simple-connectedness is not merely a technical assumption!

What can we say for multiply connected domains?
Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^2$ is \textit{simply connected},

$$\sigma_1(\Omega) |\partial \Omega| \leq \sigma_1(\mathbb{D}) |\partial \mathbb{D}| = 2\pi.$$

Weinberger, 1956.
If $\Omega \subset \mathbb{R}^2$ is \textit{simply connected},

$$\mu_1(\Omega) |\Omega| \leq \mu_1(\mathbb{D}) |\mathbb{D}|.$$
Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^2$ is \textit{simply connected},

$$\sigma_1(\Omega) |\partial \Omega| \leq \sigma_1(\mathbb{D}) |\partial \mathbb{D}| = 2\pi.$$

Weinberger, 1956.
If $\Omega \subset \mathbb{R}^2$ is \textit{simply connected},

$$\mu_1(\Omega) |\Omega| \leq \mu_1(\mathbb{D}) |\mathbb{D}|.$$

Observation
Let $A_\varepsilon = \mathbb{D} \setminus B(0, \varepsilon)$. Then for small $\varepsilon > 0$ one has

$$\sigma_1(A_\varepsilon) |\partial A_\varepsilon| > 2\pi.$$
Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^2$ is *simply connected*,

$$\sigma_1(\Omega)|\partial\Omega| \leq \sigma_1(\mathbb{D})|\partial\mathbb{D}| = 2\pi.$$

Weinberger, 1956.
If $\Omega \subset \mathbb{R}^2$ is *simply connected*,

$$\mu_1(\Omega)|\Omega| \leq \mu_1(\mathbb{D})|\mathbb{D}|.$$

Observation
Let $A_\epsilon = \mathbb{D} \setminus B(0, \epsilon)$. Then for small $\epsilon > 0$ one has

$$\sigma_1(A_\epsilon)|\partial A_\epsilon| > 2\pi$$

Simple-connectedness is not merely a technical assumption!
Isoperimetric inequalities for planar domains.

Weinstock, 1954
If $\Omega \subset \mathbb{R}^2$ is simply connected,

$$\sigma_1(\Omega)|\partial\Omega| \leq \sigma_1(\mathbb{D})|\partial\mathbb{D}| = 2\pi.$$

Weinberger, 1956.
If $\Omega \subset \mathbb{R}^2$ is simply connected,

$$\mu_1(\Omega)|\Omega| \leq \mu_1(\mathbb{D})|\mathbb{D}|.$$

Observation
Let $A_\epsilon = \mathbb{D} \setminus B(0, \epsilon)$. Then for small $\epsilon > 0$ one has

$$\sigma_1(A_\epsilon)|\partial A_\epsilon| > 2\pi$$

Simple-connectedness is not merely a technical assumption!

What can we say for multiply connected domains?
Normalized eigenvalues of A_ϵ
Higher eigenvalues for simply connected domains

If $\Omega \subset \mathbb{R}^2$ is simply connected, then for each $k \in \mathbb{N}$,

$$\sigma_k(\Omega)|\partial \Omega| \leq k\sigma_1(\mathbb{D})|\partial \mathbb{D}| = 2k\pi.$$
Higher eigenvalues for simply connected domains

If \(\Omega \subset \mathbb{R}^2 \) is simply connected, then for each \(k \in \mathbb{N} \),

\[
\sigma_k(\Omega) |\partial \Omega| \leq k \sigma_1(\mathbb{D}) |\partial \mathbb{D}| = 2k\pi.
\]

This inequality is sharp, and attained in the limit by a family of domains \(\Omega_\varepsilon \) degenerating to \(k \) disjoint identical disks.

\(k = 4 \)

This contrasts with Neumann eigenvalues...
Upper bounds for surfaces

Fraser–Schoen, 2011.
If Ω is a smooth compact surface of genus γ with l boundary components, then

$$\sigma_1(\Omega)|\partial \Omega| \leq 2(\gamma + l)\pi.$$
Upper bounds for surfaces

G.–Polterovich, 2012

If Ω is a smooth compact surface of genus γ with l boundary components, then for each $k \in \mathbb{N}$

$$\sigma_k(\Omega)|\partial\Omega| \leq 2\pi(\gamma + l)k.$$
Upper bounds for surfaces

G.–Polterovich, 2012

If Ω is a smooth compact surface of genus γ with l boundary components, then for each $k \in \mathbb{N}$

$$\sigma_k(\Omega)|\partial\Omega| \leq 2\pi(\gamma + l)k.$$

- **Weinstock**: $\gamma = 0, l = 1, k = 1$.
- **Hersch–Payne–Schiffer**: $\gamma = 0, l = 1$, arbitrary $k \in \mathbb{N}$.
- **Fraser–Schoen, 2011**: $k = 1$, arbitrary γ and l.

These inequality are in general not sharp. For instance, Fraser–Schoen, 2011 For $l = 2$ and $\gamma = 0$, the maximum of $\sigma_1(\Omega)|\partial\Omega|$ is attained at the critical catenoid. (max $\approx 4\pi/\sqrt{2}$). Also, not sharp for large l. . .
Upper bounds for surfaces

G.–Polterovich, 2012

If \(\Omega \) is a smooth compact surface of genus \(\gamma \) with \(l \) boundary components, then for each \(k \in \mathbb{N} \)

\[
\sigma_k(\Omega)|\partial \Omega| \leq 2\pi(\gamma + l)k.
\]

- **Weinstock:** \(\gamma = 0, \ l = 1, \ k = 1. \)
- **Hersch–Payne–Schiffer:** \(\gamma = 0, \ l = 1, \) arbitrary \(k \in \mathbb{N}. \)
- **Fraser–Schoen, 2011:** \(k = 1, \) arbitrary \(\gamma \) and \(l. \)

These inequality are in general not sharp. For instance,

Fraser–Schoen, 2011

For \(l = 2 \) and \(\gamma = 0, \) the maximum of \(\sigma_1(\Omega)|\partial \Omega| \) is attained at the critical catenoid. (max \(\approx \frac{4\pi}{1.2} \))
Upper bounds for surfaces

G.–Polterovich, 2012
If Ω is a smooth compact surface of genus γ with l boundary components, then for each $k \in \mathbb{N}$

$$\sigma_k(\Omega)|\partial\Omega| \leq 2\pi(\gamma + l)k.$$

• Weinstock: $\gamma = 0$, $l = 1$, $k = 1$.
• Hersch–Payne–Schiffer: $\gamma = 0$, $l = 1$, arbitrary $k \in \mathbb{N}$.
• Fraser–Schoen, 2011: $k = 1$, arbitrary γ and l.

These inequality are in general not sharp. For instance,

Fraser–Schoen, 2011
For $l = 2$ and $\gamma = 0$, the maximum of $\sigma_1(\Omega)|\partial\Omega|$ is attained at the critical catenoid. (max $\approx 4\pi/1.2$)
Also, not sharp for large l...
Open problems/projects

Let Ω is a smooth compact surface of genus γ with l boundary components.

\[\sigma_k(\Omega) |\partial \Omega| \leq 2\pi (\gamma + l)k \]
Open problems/projects

Let Ω is a smooth compact surface of genus γ with l boundary components.

\[\sigma_k(\Omega)|\partial \Omega| \leq 2\pi(\gamma + l)k \]

Problem
Find sharp upper bounds in the general case

Ongoing project with Bruno Colbois
There exists a sequence Ω_n of surfaces such that $\sigma_1(\Omega_n)|\partial \Omega_n| \to \infty$.
(In this situation, the genus will have to diverge.)
Open problems/projects

Let Ω is a smooth compact surface of genus γ with l boundary components.

$$\sigma_k(\Omega)|\partial\Omega| \leq 2\pi(\gamma + l)k$$

Problem
Find sharp upper bounds in the general case (*good luck!*).
Let Ω is a smooth compact surface of genus γ with l boundary components.

$$\sigma_k(\Omega)|\partial \Omega| \leq 2\pi(\gamma + l)k$$

Problem

Find sharp upper bounds in the general case (*good luck!*)

Ongoing project with Bruno Colbois

There exists a sequence Ω_n of surfaces such that

$$\sigma_1(\Omega_n)|\partial \Omega_n| \nearrow \infty.$$

(In this situation, the genus will have to diverge.)
Thank you for your attention!