Complex spectra of self-adjoint operator pencils

Michael Levitin

University of Reading

based on joint works with

Daniel Elton (Lancaster) and Iosif Polterovich (Montreal)
(http://arxiv.org/abs/1303.2185, now in revision)

and

with E Brian Davies (King’s College London)
(in preparation)
Let
\[P = P(\lambda) := A_0 + \lambda A_1 + \cdots + \lambda^n A_n \]
be a family of operators in a Hilbert space \(\mathcal{H} \), depending on a parameter \(\lambda \in \mathbb{C} \), with self-adjoint operator coefficients
\[A_j = (A_j)^*, \quad j = 1, \ldots, n \]
Let
\[P = P(\lambda) := A_0 + \lambda A_1 + \cdots + \lambda^n A_n \]
be a family of operators in a Hilbert space \mathcal{H}, depending on a parameter $\lambda \in \mathbb{C}$, with self-adjoint operator coefficients
\[A_j = (A_j)^*, \quad j = 1, \ldots, n \]
Such a family is called a \textit{self-adjoint (polynomial) operator pencil}.
Self-adjoint pencils

Let

$$\mathcal{P} = \mathcal{P}(\lambda) := A_0 + \lambda A_1 + \cdots + \lambda^n A_n$$

be a family of operators in a Hilbert space \mathcal{H}, depending on a parameter $\lambda \in \mathbb{C}$, with self-adjoint operator coefficients

$$A_j = (A_j)^*, \quad j = 1, \ldots, n$$

Such a family is called a self-adjoint (polynomial) operator pencil. I shall only deal in this talk with linear self-adjoint operator pencils written (with some abuse of notation) as

$$\mathcal{P}(\lambda) = A - \lambda B, \quad A = A^*, B = B^*.$$
Let
\[\mathcal{P} = \mathcal{P}(\lambda) := A_0 + \lambda A_1 + \cdots + \lambda^n A_n \]
be a family of operators in a Hilbert space \(\mathcal{H} \), depending on a parameter \(\lambda \in \mathbb{C} \), with self-adjoint operator coefficients
\[A_j = (A_j)^*, \quad j = 1, \ldots, n \]

Such a family is called a \textit{self-adjoint (polynomial) operator pencil}. I shall only deal in this talk with \textit{linear} self-adjoint operator pencils written (with some abuse of notation) as
\[\mathcal{P}(\lambda) = A - \lambda B, \quad A = A^*, B = B^*. \]
We say that $\lambda_0 \in \text{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(\mathcal{P}(\lambda_0))$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that B is positive. Then for an eigenvalue λ of \mathcal{P} we have $Au = \lambda Bu \iff B^{-1/2}AB^{-1/2}v = \lambda v$, with $v = B^{1/2}u$, and the problem is equivalent to a standard one for a self-adjoint operator; the spectrum is real! Thus, the interesting case is when both A and B are not sign-definite — the pencil spectrum can be non-real.
We say that $\lambda_0 \in \text{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an eigenvalue of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that B is positive. Then for an eigenvalue λ of \mathcal{P} we have $Au = \lambda Bu \iff B^{-1}/2 AB^{-1}/2 v = \lambda v$, with $v = B^{-1}/2 u$, and the problem is equivalent to a standard one for a self-adjoint operator; the spectrum is real!

Thus, the interesting case is when both A and B are not sign-definite — the pencil spectrum can be non-real.
We say that $\lambda_0 \in \text{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an eigenvalue of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that B is positive. Then for an eigenvalue λ of \mathcal{P} we have
Spectrum of a pencil

We say that $\lambda_0 \in \text{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an eigenvalue of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that B is positive. Then for an eigenvalue λ of \mathcal{P} we have

$$Au = \lambda Bu$$
Spectrum of a pencil

We say that $\lambda_0 \in \text{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an eigenvalue of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that B is positive. Then for an eigenvalue λ of \mathcal{P} we have

$$Au = \lambda Bu \iff B^{-1/2}AB^{-1/2}v = \lambda v,$$
We say that $\lambda_0 \in \text{spec}(P)$ if $P(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(P(\lambda_0))$.

We say that λ_0 is an eigenvalue of P if there exists $u \in H \setminus \{0\}$ such that $P(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $P(\lambda_0)$.

Let us look in more detail at a linear pencil $P = A - \lambda B$. Suppose that B is positive. Then for an eigenvalue λ of P we have

$$Au = \lambda Bu \iff B^{-1/2}AB^{-1/2}v = \lambda v,$$

with $v = B^{1/2}u$, and the problem is equivalent to a standard one for a self-adjoint operator.
Spectrum of a pencil

We say that \(\lambda_0 \in \text{spec}(P) \) if \(P(\lambda_0) \) is not invertible, or, equivalently, if \(0 \in \text{spec}(P(\lambda_0)) \).

We say that \(\lambda_0 \) is an \textit{eigenvalue} of \(P \) if there exists \(u \in \mathcal{H} \setminus \{0\} \) such that \(P(\lambda_0)u = 0 \), or, equivalently, if 0 is an eigenvalue of \(P(\lambda_0) \).

Let us look in more detail at a linear pencil \(P = A - \lambda B \). Suppose that \(B \) is positive. Then for an eigenvalue \(\lambda \) of \(P \) we have

\[
Au = \lambda Bu \iff B^{-1/2}AB^{-1/2}v = \lambda v,
\]

with \(v = B^{1/2}u \), and the problem is equivalent to a standard one for a self-adjoint operator; the spectrum is real!
Spectrum of a pencil

We say that $\lambda_0 \in \text{spec}(\mathcal{P})$ if $\mathcal{P}(\lambda_0)$ is not invertible, or, equivalently, if $0 \in \text{spec}(\mathcal{P}(\lambda_0))$.

We say that λ_0 is an eigenvalue of \mathcal{P} if there exists $u \in \mathcal{H} \setminus \{0\}$ such that $\mathcal{P}(\lambda_0)u = 0$, or, equivalently, if 0 is an eigenvalue of $\mathcal{P}(\lambda_0)$.

Let us look in more detail at a linear pencil $\mathcal{P} = A - \lambda B$. Suppose that B is positive. Then for an eigenvalue λ of \mathcal{P} we have

$$Au = \lambda Bu \iff B^{-1/2}AB^{-1/2}v = \lambda v,$$

with $v = B^{1/2}u$, and the problem is equivalent to a standard one for a self-adjoint operator; the spectrum is real!

Thus, the interesting case is when both A and B are not sign-definite — the pencil spectrum can be non-real.
Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ:

$$(Au, u) = \lambda(Bu, u)$$

and so,

$$Im\lambda \neq 0 \implies$$
Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ:

$$(Au, u) = \lambda (Bu, u)$$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.
Complex eigenvalues and typical questions

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ:

$$(Au, u) = \lambda(Bu, u)$$

and so,

$$\text{Im}\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include:
Complex eigenvalues and typical questions

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ:

$$(Au, u) = \lambda(Bu, u)$$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues,
Complex eigenvalues and typical questions

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ:

$$(Au, u) = \lambda (Bu, u)$$

and so,

$$\text{Im} \lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues, asymptotics of counting functions of all,
Complex eigenvalues and typical questions

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ:

$$ (Au, u) = \lambda (Bu, u) $$

and so,

$$ \text{Im}\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0 $$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues, asymptotics of counting functions of all, or only real eigenvalues,
Complex eigenvalues and typical questions

Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ:

$$(Au, u) = \lambda(Bu, u)$$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues, asymptotics of counting functions of all, or only real eigenvalues, dependence on parameters, etc., and often the use of complex analysis.
Little can be deduced about non-real eigenvalues from the general principles. E.g. variational approach gives for an eigenvalue λ:

$$(Au, u) = \lambda (Bu, u)$$

and so,

$$Im\lambda \neq 0 \implies (Au, u) = (Bu, u) = 0$$

just reduces the dimension slightly. We need to do real work in each particular case.

Typical problems include: localisation of non-real eigenvalues, asymptotics of counting functions of all, or only real eigenvalues, dependence on parameters, etc., and often the use of complex analysis. We look at two examples.
We consider the following class of problems. Fix an integer $N \in \mathbb{N}$, and define the classes of $N \times N$ matrices $H_{N;c}$ and $D_{m,n;\sigma,\tau}$, where

$$H_{N;c} = \begin{pmatrix} c & 1 & 0 & \ldots & 0 \\ 1 & c & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & 1 & c & 1 \\ 0 & \ldots & 0 & 1 & c \end{pmatrix}$$

is tri-diagonal, $c \in \mathbb{R}$ is a parameter, and
Simple matrix pencil (contd.)

\[D_{m,n;\sigma,\tau} = \begin{pmatrix} \sigma & \cdots & \cdot \cdot \cdot & \cdot \cdot \cdot \\ & & \sigma & \cdot \cdot \cdot \\ & & & & \tau \\ & & & & & \cdot \cdot \cdot \\ & & & & & & \tau \end{pmatrix} \]

is diagonal, where \(m, n \in \mathbb{N} \) and \(\sigma, \tau \in \mathbb{C} \) are parameters, and we assume \(m + n = N \).

We are only going to consider the case \(\sigma = -\tau = 1 \), and denote for brevity

\[D_{m,n} := D_{m,n;1,-1} \]

We study the eigenvalues of the linear operator pencil

\[\mathcal{P}_{m,n;c} = \mathcal{P}_{m,n;c}(\lambda) = H_{m+n;c} - \lambda D_{m,n} \]

as \(N = m + n \to \infty \).
We start with the following easy result on the localisation of eigenvalues of the pencil $\mathcal{P}_{m,n;c}$.

Theorem

(a) *The spectrum* $\text{spec} \mathcal{P}_{m,n;c}$ *is invariant under the symmetry* $\lambda \rightarrow \bar{\lambda}$.

(b) All the eigenvalues $\lambda \in \text{spec} \mathcal{P}_{m,n;c}$ satisfy $|\lambda| < 2 + |c|$.

(c) If $|c| \geq 2$, then $\text{spec} \mathcal{P}_{m,n;c} \subset \mathbb{R}$.

We start with the following easy result on the localisation of eigenvalues of the pencil $\mathcal{P}_{m,n;c}$.

Theorem

(a) *The spectrum* $\text{spec} \mathcal{P}_{m,n;c}$ *is invariant under the symmetry* $\lambda \rightarrow \bar{\lambda}$.

(b) *All the eigenvalues* $\lambda \in \text{spec} \mathcal{P}_{m,n;c}$ *satisfy*

$$|\lambda| < 2 + |c|.$$
We start with the following easy result on the localisation of eigenvalues of the pencil $P_{m,n;c}$.

Theorem

(a) *The spectrum* $\text{spec} P_{m,n;c}$ *is invariant under the symmetry* $\lambda \to \bar{\lambda}$.

(b) *All the eigenvalues* $\lambda \in \text{spec} P_{m,n;c}$ *satisfy*

$$|\lambda| < 2 + |c|.$$

(c) *If* $|c| \geq 2$, *then* $\text{spec} P_{m,n;c} \subset \mathbb{R}$.

M Levitin (Reading) Self-adjoint linear pencils Banff, 31 July 2013 7 / 32
Rough localisation

Rough asymptotics of eigenvalues as $N \to \infty$ is given by

Theorem

The non-real eigenvalues of $\mathcal{P}_{m,n;c}$ converge uniformly to the real axis as $n, m \to \infty$. More precisely,
Rough localisation

Rough asymptotics of eigenvalues as $N \to \infty$ is given by

Theorem

The non-real eigenvalues of $P_{m,n;c}$ converge uniformly to the real axis as $n, m \to \infty$. More precisely,

$$
\max \{ |\text{Im}(\lambda)| : \lambda \in \text{spec } P_{m,n;c} \}
\leq \max \left\{ \frac{\log(m)}{m}(1 + o(1)), \frac{\log(n)}{n}(1 + o(1)) \right\}
$$

as $m, n \to \infty$. (1)
Rough localisation

Rough asymptotics of eigenvalues as $N \to \infty$ is given by

Theorem

The non-real eigenvalues of $\mathcal{P}_{m,n;c}$ converge uniformly to the real axis as $n, m \to \infty$. More precisely,

$$\max\{|\text{Im}(\lambda)| : \lambda \in \text{spec} \mathcal{P}_{m,n;c}\} \leq \max \left\{ \frac{\log(m)}{m} (1 + o(1)), \frac{\log(n)}{n} (1 + o(1)) \right\}$$

(1)

*as $m, n \to \infty$.\n
Note that
Rough localisation

Rough asymptotics of eigenvalues as \(N \to \infty \) is given by

Theorem

The non-real eigenvalues of \(\mathcal{P}_{m,n;c} \) converge uniformly to the real axis as \(n, m \to \infty \). More precisely,

\[
\max\{|\text{Im}(\lambda)| : \lambda \in \text{spec} \mathcal{P}_{m,n;c}\} \leq \max\left\{ \frac{\log(m)}{m}(1 + o(1)), \frac{\log(n)}{n}(1 + o(1)) \right\}
\]

as \(m, n \to \infty \).

Note that the estimate is sharp in the following sense: it’s attained, and it needs both \(n, m \to \infty \).
Example, $c = 0, n = m = N/2$
Example, $c = 0$, $n = m = N/2$
Asymptotics, \(c = 0, \ n = m = N/2 \)

Theorem

Let \(c = 0, \ n = m = N/2 \to \infty \). The eigenvalues of \(P_{n,n;0} \) are all non-real, and satisfy

\[
\text{Im} \lambda = \pm 1/N \ast Y(|\text{Re} \lambda|) + o(N^{-1}),
\]

where

\[
Y(u) := \sqrt{4 - u^2} \log \cot(\pi/4 - \arccos(u/2)/2)
\]
Example, $c \neq 0$, $n = m = N/2$
Example, $c \neq 0$, $n = m = N/2$
Theorem

Let $c \neq 0$, $n = m = N/2 \to \infty$. The eigenvalues of $\mathcal{P}_{n,n;c}$ satisfy

$$|\text{Im} \, \lambda| \leq 1/N \ast Y_c(|\text{Re} \, \lambda|) + o(N^{-1}),$$

where Y_c is some explicitly described but complicated function.
Asymptotics, \(c \neq 0, \ n = m = N/2 \)

Theorem

Let \(c \neq 0, \ n = m = N/2 \rightarrow \infty \). The eigenvalues of \(P_{n,n;c} \) satisfy

\[
| \text{Im} \lambda | \leq \frac{1}{N} \ast Y_c(\text{Re} \lambda) + o(N^{-1}),
\]

where \(Y_c \) is some explicitly described but complicated function.
Idea of proof

Do not try to analyse directly a characteristic polynomial in \(\lambda \).

\[
\begin{align*}
\lambda - c &= \frac{z + 1}{z}, \\
\lambda + c &= \frac{w + 1}{w}
\end{align*}
\]

Then for non-real eigenvalues

\[
F_m(z) F_n(w) = -1
\]

where

\[
F_m(z) = z^n + 1 - z^{-n} - 1
\]

\[
\sinh((n+1) \log z) = \sinh(n \log z)
\]
Idea of proof

Do not try to analyse directly a characteristic polynomial in λ.

Set $\lambda - c = z + 1/z$, $\lambda + c = w + 1/w$. Then for non-real eigenvalues

$$F_m(z)F_n(w) = -1,$$

where

$$F_m(z) = \frac{z^{n+1} - z^{-n-1}}{z^n - z^{-n}} = \frac{\sinh((n + 1) \log z)}{\sinh(n \log z)}.$$
Define a self-adjoint operator

\[T_V = \begin{pmatrix} V + k & -\nabla \\ \nabla & V - k \end{pmatrix} = -i\sigma_2 \nabla + k\sigma_3 + V, \]

where \(\nabla = \frac{d}{dx}, \) \(\sigma_2, \sigma_3 \) are Pauli matrices, \(k \) is the mass, and \(V(x) \) is a potential.
1d Dirac operator

Define a self-adjoint operator

\[T_V = \begin{pmatrix} V + k & -\nabla \\ \nabla & V - k \end{pmatrix} = -i\sigma_2 \nabla + k\sigma_3 + V, \]

where \(\nabla = \frac{d}{dx} \), \(\sigma_2, \sigma_3 \) are Pauli matrices, \(k \) is the mass, and \(V(x) \) is a potential.

For a given potential \(V \), we denote by \(\Sigma_V \) the spectrum of the linear operator pencil

\[\gamma \mapsto T_0 + \gamma V = \begin{pmatrix} k & -\nabla \\ \nabla & -k \end{pmatrix} + \gamma \begin{pmatrix} V & 0 \\ 0 & V \end{pmatrix}. \]

(The spectral parameter is denoted \(\gamma \) in this problem for historical reasons.)
1d Dirac operator

Define a self-adjoint operator

\[
T_V = \begin{pmatrix} V + k & -\nabla \\ \nabla & V - k \end{pmatrix} = -i \sigma_2 \nabla + k \sigma_3 + V,
\]

where \(\nabla = \frac{d}{dx} \), \(\sigma_2, \sigma_3 \) are Pauli matrices, \(k \) is the mass, and \(V(x) \) is a potential.

For a given potential \(V \), we denote by \(\Sigma_V \) the spectrum of the linear operator pencil

\[
\gamma \mapsto T_0 + \gamma V = \begin{pmatrix} k & -\nabla \\ \nabla & -k \end{pmatrix} + \gamma \begin{pmatrix} V & 0 \\ 0 & V \end{pmatrix}.
\]

(The spectral parameter is denoted \(\gamma \) in this problem for historical reasons.)

Equivalently,

\[
\Sigma_V = \{ \gamma \in \mathbb{C} : 0 \in \text{spec}(T_{\gamma V}) \}.
\]

(zero modes)
Define a self-adjoint operator

\[T_V = \begin{pmatrix} V + k & -\nabla \\ \nabla & V - k \end{pmatrix} = -i\sigma_2 \nabla + k\sigma_3 + V, \]

where \(\nabla = \frac{d}{dx} \), \(\sigma_2, \sigma_3 \) are Pauli matrices, \(k \) is the mass, and \(V(x) \) is a potential.

For a given potential \(V \), we denote by \(\Sigma_V \) the spectrum of the linear operator pencil

\[\gamma \mapsto T_0 + \gamma V = \begin{pmatrix} k & -\nabla \\ \nabla & -k \end{pmatrix} + \gamma \begin{pmatrix} V & 0 \\ 0 & V \end{pmatrix}. \]

(The spectral parameter is denoted \(\gamma \) in this problem for historical reasons.)

Equivalently,

\[\Sigma_V = \{ \gamma \in \mathbb{C} : 0 \in \text{spec}(T_{\gamma V}) \}. \]

(zero modes)
Similar problems, as well as some other related questions, have been studied in a variety of situations in mathematical literature, e.g. [Birman Solomyak 1977], [Klaus 1980], [Gesztesy et al. 1988], [Birman Laptev 1994], [Safronov 2001], [Schmidt 2010].

In physical literature, our problem appears in the study of electron waveguides in graphene (see [Hartmann Robinson Portnoi 2010], [Stone Downing Portnoi 2012] and many references there).

It was shown in [Hartmann Robinson Portnoi 2010] that for the potential \(V_{\text{HRP}}(x) = -1/\cosh(x) \) the solutions can be found explicitly in terms of special functions. Moreover, there exists an infinite sequence of coupling constants \(\gamma \) such that 0 is an eigenvalue of the operator \(T_\gamma V_{\text{HRP}} \).
Function classes

All our potentials \mathcal{V} are real valued and locally L^2.

Function classes

All our potentials V are real valued and locally L^2.

Let V_0 denote the class of such potentials which additionally satisfy

$$\|V\|_{L^2(x-1, x+1)} \to 0 \text{ as } |x| \to \infty.$$

In the literature, V_0 is sometimes denoted as $c_0(L^2)$.
Function classes

All our potentials V are real valued and locally L^2.

Let V_0 denote the class of such potentials which additionally satisfy

$$\|V\|_{L^2(x-1,x+1)} \to 0 \text{ as } |x| \to \infty.$$

In the literature, V_0 is sometimes denoted as $c_0(L^2)$.

Let V_1 denote the class of real valued locally L^2 potentials which satisfy

$$\int_{\mathbb{R}} |V(x)| \, dx < +\infty;$$

that is, we require V to be integrable. Equivalently, we can define $V_1 = V_0 \cap L^1$. The class V_1 is sometimes denoted as $\ell^1(L^2)$.

M Levitin (Reading) Self-adjoint linear pencils Banff, 31 July 2013 16 / 32
Firstly we consider the number of points of Σ_V lying inside the disc $\{z \in \mathbb{C} : |z| \leq R\}$ of radius $R \geq 0$.

Theorem: Suppose $V \in V_1$. Then $\#(\Sigma_V \cap \{z \in \mathbb{C} : |z| \leq R\}) \leq C \|V\|_{L^1} R$ for any $R \geq 0$, where C is a universal constant (we can take $C = 4e/\pi$).
Firstly we consider the number of points of Σ_V lying inside the disc \(\{ z \in \mathbb{C} : |z| \leq R \} \) of radius \(R \geq 0 \).

Theorem

Suppose \(V \in \mathbb{V}_1 \). Then

\[
\#(\Sigma_V \cap \{ z \in \mathbb{C} : |z| \leq R \}) \leq C \| V \|_{L^1} R
\]

for any \(R \geq 0 \), where \(C \) is a universal constant (we can take \(C = 4e/\pi \)).
Restricting our attention to real points we have the following complementary lower bound

Theorem

Suppose $V \in V_1$. Then

$$\#(\Sigma_V \cap [0, R]) \geq \frac{R}{\pi} \left| \int_{\mathbb{R}} V(x) \, dx \right| + o(R)$$

as $R \to \infty$, while the same estimate holds for $\#(\Sigma_V \cap [-R, 0])$ (by symmetry).
Restricting our attention to real points we have the following complementary lower bound

Theorem

Suppose $V \in \mathbb{V}_1$. Then

$$
\#(\Sigma_V \cap [0, R]) \geq \frac{R}{\pi} \left\| \int_{\mathbb{R}} V(x) \, dx \right\| + o(R)
$$

as $R \to \infty$, while the same estimate holds for $\#(\Sigma_V \cap [-R, 0])$ (by symmetry). In particular, $\Sigma_V \cap \mathbb{R}$ contains infinitely many points if $\int_{\mathbb{R}} V(x) \, dx \neq 0$.

Single-signed potentials

In general, the set Σ_V may contain complex eigenvalues — even though the operator T_V is self-adjoint. However
Single-signed potentials

In general, the set Σ_V may contain complex eigenvalues — even though the operator T_V is self-adjoint. However

Theorem

*If $V \in V_0$ is single-signed then $\Sigma_V \subset \mathbb{R}$.***
Single-signed potentials

In general, the set Σ_V may contain complex eigenvalues — even though the operator T_V is self-adjoint. However

Theorem

*If $V \in \mathcal{V}_0$ is single-signed then $\Sigma_V \subset \mathbb{R}$.***

Then the general bound turns into asymptotics:
Single-signed potentials

In general, the set Σ_V may contain complex eigenvalues — even though the operator T_V is self-adjoint. However

Theorem

If $V \in \mathbb{V}_0$ is single-signed then $\Sigma_V \subset \mathbb{R}$.

Then the general bound turns into asymptotics:

Theorem

Suppose $V \in \mathbb{V}_1$ is single-signed. Then

$$
\#(\Sigma_V \cap [0, R]) = \frac{R}{\pi} \left| \int_{\mathbb{R}} V(x) \, dx \right| + o(R) = \frac{\|V\|_{L^1}}{\pi} R + o(R)
$$

as $R \to \infty$.
Anti-symmetric potentials

For potentials of variable sign the behaviour of the γ-spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Theorem

If $V \in V_0$ is anti-symmetric then $\Sigma V \cap \mathbb{R} = \emptyset$.

Note that, the γ-spectrum may still contain an infinite number of complex eigenvalues. The absence of real points in the γ-spectrum shows that the general lower bound obtained is quite sharp. Theorem also applies to potentials V satisfying the condition $V(a+x) = -V(a-x)$ for some $a \in \mathbb{R}$ and all $x \in \mathbb{R}$.
Anti-symmetric potentials

For potentials of variable sign the behaviour of the γ-spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Theorem

*If $V \in V_0$ is anti-symmetric then $\Sigma_V \cap \mathbb{R} = \emptyset$.***
Anti-symmetric potentials

For potentials of variable sign the behaviour of the γ-spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Theorem

If $V \in V_0$ is anti-symmetric then $\Sigma_V \cap \mathbb{R} = \emptyset$.

Note that, the γ-spectrum may still contain an infinite number of complex eigenvalues.
Anti-symmetric potentials

For potentials of variable sign the behaviour of the γ-spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Theorem

If $V \in \mathbb{V}_0$ is anti-symmetric then $\Sigma_V \cap \mathbb{R} = \emptyset$.

Note that, the γ-spectrum may still contain an infinite number of complex eigenvalues.

The absence of real points in the γ-spectrum shows that the general lower bound obtained is quite sharp.
Anti-symmetric potentials

For potentials of variable sign the behaviour of the γ-spectrum may be different, in some cases quite drastically so. For anti-symmetric potentials we have the following

Theorem

If $V \in V_0$ *is anti-symmetric then* $\Sigma_V \cap \mathbb{R} = \emptyset$.

Note that, the γ-spectrum may still contain an infinite number of complex eigenvalues.

The absence of real points in the γ-spectrum shows that the general lower bound obtained is quite sharp.

Theorem also applies to potentials V satisfying the condition $V(a + x) = -V(a - x)$ for some $a \in \mathbb{R}$ and all $x \in \mathbb{R}$.
Discussion of the results

Our results give information about the asymptotics of the counting function $\#(\Sigma \cap [0, R])$ as $R \to \infty$. We’ve already seen two cases when the results give leading term asymptotic behaviour of

$$\frac{R}{\pi} \int_{\mathbb{R}} |V(x)| \, dx \quad \text{and} \quad \frac{R}{\pi} \left| \int_{\mathbb{R}} V(x) \, dx \right|$$

respectively.
Discussion of the results

Our results give information about the asymptotics of the counting function \(\#(\Sigma V \cap [0, R]) \) as \(R \to \infty \). We’ve already seen two cases when the results give leading term asymptotic behaviour of

\[
\frac{R}{\pi} \int_{\mathbb{R}} |V(x)| \, dx \quad \text{and} \quad \frac{R}{\pi} \left| \int_{\mathbb{R}} V(x) \, dx \right| \quad (2)
\]

respectively. (Though they coincide if \(V \) is sign-definite).
The above results may lead to a hypothesis that, in fact, the lower bound always gives the leading order term in the asymptotics of the counting function of the spectrum. However, this is not the case; for general (variable-signed) potentials the precise asymptotic behaviour of \(\#(\Sigma_V \cap [0, R]) \) as \(R \to \infty \) appears to depend on \(V \) in a rather subtle way. In particular, this behaviour appears to be sensitive to ‘gaps’ in the potential, namely intervals where \(V \equiv 0 \) appearing between components of \(\text{supp}(V) \).
The above results may lead to a hypothesis that, in fact, the lower bound always gives the leading order term in the asymptotics of the counting function of the spectrum. However, this is not the case; for general (variable-signed) potentials the precise asymptotic behaviour of \(\#(\Sigma V \cap [0, R]) \) as \(R \to \infty \) appears to depend on \(V \) in a rather subtle way. In particular, this behaviour appears to be sensitive to ‘gaps’ in the potential, namely intervals where \(V \equiv 0 \) appearing between components of \(\text{supp}(V) \).

Surprise

We can construct potentials for which the actual asymptotic coefficient lies anywhere between the modulus of the integral of the potential and the \(L^1 \) norm, modulo multiplication by \(R/\pi \).
Examples — general setup

We restrict our attention mostly to piecewise constant potentials with compact support; these allow the easiest analysis and already demonstrate the full range of effects. Consider points $a_0 < a_1 < \cdots < a_m$ which partition the real line into m finite intervals $l_j = (a_{j-1}, a_j)$, $j = 1, \ldots, m$, and two semi-infinite intervals $l_- = (-\infty, a_0)$ and $l_+ = (a_m, +\infty)$. Consider a potential
We restrict our attention mostly to piecewise constant potentials with compact support; these allow the easiest analysis and already demonstrate the full range of effects. Consider points $a_0 < a_1 < \cdots < a_m$ which partition the real line into m finite intervals $I_j = (a_{j-1}, a_j), j = 1, \ldots, m,$ and two semi-infinite intervals $I_- = (-\infty, a_0)$ and $I_+ = (a_m, +\infty)$.

Consider a potential
\[
V(x) = W(x; [a_0, \ldots, a_m]; \{v_1, \ldots, v_m\}) := \begin{cases}
 v_j, & x \in I_j, \ j = 1, \ldots, m, \\
 0, & x \in I_- \cup I_+,
\end{cases}
\]
with some given real constants v_j.

(3)
On each interval, we can solve the equations explicitly in trigonometric functions; matching conditions lead to an explicit characteristic equation for eigenvalues: \(\gamma \in \Sigma_V \) if and only if \(D_V(\gamma) = 0 \).
On each interval, we can solve the equations explicitly in trigonometric functions; matching conditions lead to an explicit characteristic equation for eigenvalues: $\gamma \in \Sigma_V$ if and only if $D_V(\gamma) = 0$.

Thus, in each particular case our problem is reduced to constructing $D_V(\gamma)$ and finding its real or complex roots. We visualise the real roots of $D_V(\gamma)$ by simply plotting its graph for real arguments.
Consider the one-gap potentials $V_{3,g}(x) := W(x; [-g - 1, -g, 0, 2]; \{-1, 0, 1\})$ parametrised by the gap length g. For each of these potentials, $\int_{\mathbb{R}} V_{3,g} = 1$ and $\|V_{3,g}\|_{L^1} = 3$. The graphs of $D_{V_{3,g}}(\gamma)$ for real γ and $g = 0$ or $g = 1$:
We can expect asymptotics of the form

$$\#(\Sigma V_{3,g} \cap [0, R]) = C_g \frac{R}{\pi} + O(1),$$

as $R \to \infty$. For the no-gap potential $V_{3,0}$ one of our Theorems gives such an asymptotics with $C_0 = 1 = \int_{\mathbb{R}} V_{3,1}$. On the hand, $D_{V_{3,1}}(\gamma)$ has three times as many real roots as $D_{V_{3,0}}(\gamma)$ (for sufficiently large γ). This leads to a constant $C_1 = 3 = \|V_{3,0}\|_{L^1}$ in the asymptotics for the gap potential $V_{3,1}$.

M Levitin (Reading)
Self-adjoint linear pencils
Banff, 31 July 2013
26 / 32
This example is just a partial case of a more complicated phenomenon. Consider a general (not necessarily piecewise constant) one gap compact potential $V(x)$ such that $\text{supp}(V) = I_1 \cup I_2$, where I_1 and I_2 are compact intervals separated by a gap of length $g > 0$, and assume additionally that $V(x)$ does not change sign on either I_j. If the signs of $V|_{I_1}$ and $V|_{I_2}$ coincide, then the asymptotic counting function involves

$$C = \| V \|_{L^1} = \left| \int_{\mathbb{R}} V \right|.$$

If, however, the signs of $V|_{I_1}$ and $V|_{I_2}$ are different, then the asymptotic behaviour is given by a complicated formula which depends not only upon the gap length g and the values of $\left| \int_{I_j} V \right|$ but also upon the rationality or irrationality of the ratio of these two integrals! The rigorous approach to this involves an intricate analysis based on the following version of a classical problem.
Counting zeros

Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \cos(x) + a \cos(bx),$$

where a and b are real parameters satisfying $0 \leq a < 1$ and $b > 0$. For any function $\phi : \mathbb{R} \to \mathbb{R}$ we also set $f_\phi = f + \phi$. We want to consider f_ϕ as a perturbation of $f = f_0$ for large x. To this end introduce the family of conditions

$$\phi \in C^k(\mathbb{R}), \quad \phi^{(k)}(x) = o(1) \text{ as } x \to \infty \quad \text{(Ak)}$$

where $k \in \mathbb{N}_0$ (we’ll only need to consider $k = 0, 1, 2$).

Fix a perturbation ϕ. Introduce the counting function

$$N_\phi(R) = \# \{ x \in [0, R) : f_\phi(x) = 0 \} \in \mathbb{N} \cup \{0, \infty\}$$

We are interested in the asymptotic behaviour of $N_\phi(R)$ as $R \to \infty$, and how this behaviour depends on the parameters a and b.
Proposition

Suppose $ab < 1$ and ϕ satisfies (A0), (A1). Then

$$N_\phi(R) = \frac{1}{\pi} R + O(1) \text{ as } R \to \infty.$$

Remark

When $ab < 1$ we get the same asymptotic behaviour for $N_\phi(R)$ as in the case $a = 0$ (that is, when $f = \cos$).
Counting zeros — large ab, irrational case

When $ab > 1$ we can define $\alpha, \beta \in (0, \pi/2)$ by

\[
\alpha = \arcsin \frac{\sqrt{a^2 b^2 - 1}}{\sqrt{b^2 - 1}} \quad \text{and} \quad \beta = \arcsin \frac{\sqrt{1 - a^2}}{a\sqrt{b^2 - 1}}.
\]

Also set $u = \frac{2}{\pi} (b\alpha + \beta)$. If we fix $b > 1$ and vary a from $1/b$ to 1 it is easy to check that α increases from 0 to $\pi/2$ and β decreases from $\pi/2$ to 0; it follows that u varies from 1 to b.

Proposition

Suppose $ab > 1$, b is irrational and ϕ satisfies (A0), (A1), (A2). Then

\[
\lim_{R \to \infty} \frac{N_\phi(R)}{R} = \frac{1}{\pi} u.
\]
Counting zeros — large ab, rational case

Proposition

Suppose $ab > 1$, b is rational and ϕ satisfies (A0), (A1). Write $b = p/q$ where $p, q \in \mathbb{N}$ are coprime. If p and q are odd set $P = p$ and $Q = q$; if p and q have opposite parity set $P = 2p$ and $Q = 2q$. If $P + Qu \notin 4\mathbb{Z}$ then

$$
\lim_{R \to \infty} \frac{N_\phi(R)}{R} = \frac{1}{\pi} \left(\frac{4}{Q} \left\lfloor \frac{1}{4}(P + Qu) \right\rfloor - \frac{P}{Q} + \frac{2}{Q} \right).
$$

(5)

We are using $\lfloor x \rfloor$ to denote the largest integer which does not exceed x.

M Levitin (Reading)
Self-adjoint linear pencils
Banff, 31 July 2013
31 / 32
Remark

From (5) and the bounds $x - 1 \leq \lfloor x \rfloor \leq x$ we get

$$\frac{1}{\pi} u - \frac{2}{Q \pi} \leq \lim_{R \to \infty} \frac{N_\phi(R)}{R} \leq \frac{1}{\pi} u + \frac{2}{Q \pi}.$$

Using the size of Q as a measure of ‘how irrational’ b is it follows that the result for irrational b can be viewed as a limit of the rational case.