Self-similarity, symmetry and anisotropy in the multivariate and multiparameter settings

Gustavo Didier
Tulane University

Multifractal Analysis: From Theory to Applications and Back (BIRS)

February 2014
Collaborators

• Patrice Abry (ENS-Lyon)

• Changryong Baek (Sungkyunkwan University)

• Mark Meerschaert (Michigan State)

• Vladas Pipiras (University of North Carolina)
Outline

1. introduction
2. harmonizable representations
3. symmetry, exponents, anisotropy
4. wavelet analysis
1. Introduction
why talk about Gaussian monofractals?!
why talk about Gaussian monofractals?!...

... because of multidimensionality!
Introduction

From a technical standpoint...

difficulty = α_{An} Analysis + α_{Alg} Algebra + α_{Top} Topology

• typical probability problem: $\alpha_{An} \approx 1$

• multidimensional problems: $\alpha_{An} \approx \alpha_{Alg} \gg \alpha_{Top} > 0$
why multidimensional? (applications)

• *(range)* data is usually *multivariate*: anomalous diffusion particle position \((X(t)-Y(t))\), climatology, Internet data comes in packets or bytes within bins of certain duration...

• *(domain)* random fields have become a topic of great interest: image processing (bone radiographic imaging), hydrology (aquifers), geostatistics..., especially in the presence of *anisotropy*
why multidimensional? (theory)

- **(domain):** operator scaling measures, scalar s.s. random fields (Samorodnitsky & Taqqu (1994), Meerschaert & Scheffler (2001), Xiao (2009), and many, many others)

current stage of this research: carry out the synthesis between the range and the domain, both in probability and statistics (Li & Xiao (2011))
Introduction

inter-related ideas:

• symmetry and self-similarity/scaling are related in Probability theory (\Rightarrow multidimensionality)

• anisotropy and intrinsic physical symmetries

• (non)identifiability of the parametrization

identifiability (statistical inference): $\theta \mapsto P_\theta$ is injective
isotropy means that...

\[\{X(Ot)\}_{t \in \mathbb{R}^m} \equiv \{X(t)\}_{t \in \mathbb{R}^m}, \quad O \in O(m) \]

i.e. every \(O \in O(m) \) is a (domain) symmetry of \(X \)

\(m = 1 \): time-reversibility
Harmonizable representations
Harmonizable representations

def. (o.s.s. vector random fields): \(\{X(t)\}_{t \in \mathbb{R}^m} \) satisfies

\[
\{X(c^E t)\}_{t \in \mathbb{R}^m} \overset{\mathcal{L}}{=} \{c^H X(t)\}_{t \in \mathbb{R}^m}, \quad E \in M(m), H \in M(n)
\]

matrix exponentiation \(c^M := \exp(M \log(c)) = \sum_{k=0}^{\infty} \frac{(M \log(c))^k}{k!} \)

def. (operator fractional Brownian field (OFBF)): Gaussian, stationary increment, o.s.s. random field

def. (operator fractional Brownian motion (OFBM)): \(m = 1, E = 1 \)
Harmonizable representations

definition: FBM (H characterizes the law up to a constant):

$$EB_H(s)B_H(t) = \frac{EB_H(1)^2}{2} \{ |t|^{2H} + |s|^{2H} - |t - s|^{2H} \}$$

OFBM: $EB_H(t)B_H(s)^* + EB_H(s)B_H(t)^*$

$$= |t|^H \Gamma(1, 1)|t|^{H^*} + |s|^H \Gamma(1, 1)|s|^{H^*} - |t - s|^H \Gamma(1, 1)|t - s|^{H^*},$$

$$\Gamma(1, 1) = EB_H(1)B_H(1)^*$$

It is not true in general that $EB_H(t)B_H(s)^* = EB_H(s)B_H(t)^*$
Harmonizable representations

goal: Fourier domain representations for OFBFs

polar coordinates (Biermé, Meerschaert & Scheffler (2007)): given a matrix E ($\min \Re \text{eig}(E) > 0$), there exists a norm $\| \cdot \|_0$ such that

\[
\mathbb{R}^m \ni x = \text{radial}^E * \text{spherical} = \tau(x)^E l(x) \quad \text{homeomorphically}
\]

where $S_0 = \{ x : \| x \|_0 = 1 \} = \{ x : \tau(x) = 1 \}$
Harmonizable representations

Theorem (Baek, D & Pipiras (2014)): For an OFBF \(\{X(t)\}_{t \in \mathbb{R}} \) with \(0 < \min \Re \text{eig}(H) \leq \max \Re \text{eig}(H) < \min \Re \text{eig}(E) \) and density \(f_X(x) \),

\[
\{X(t)\}_{t \in \mathbb{R}^m} \overset{\mathcal{L}}{=} \left\{ \int_{\mathbb{R}} (e^{i\langle t, x \rangle} - 1) \tau(x) - H_E f_X^{1/2}(l(x)) \tilde{B}(dx) \right\}_{t \in \mathbb{R}^m},
\]

- \(H_E = H + \text{tr}(E^*)I/2 \)

- \(\tilde{B}(dx) \) := \(\tilde{B}_1(dx) + i\tilde{B}_2(dx) \) (complex-valued multivariate Brownian measure satisfying \(\tilde{B}(-dx) = \overline{\tilde{B}(dx)} \)).
Harmonizable representations

in terms of the spectral measure...

\[f_X(x) = \tau(x)^{-HE} f_X(l(x)) \tau(x)^{-HE^*} \]

(\(f_X(x) \) is assumed to exist)
Harmonizable representations

in terms of the spectral measure...

\[f_X(x) = \tau(x)^{-H_E} f_X(l(x)) \tau(x)^{-H_E^*} \]

(\(f_X(x) \) is assumed to exist)

\(m = 1 \):

\[f_X(x) = \frac{1}{x^2} (x^+ AA^* x^+ D^* + x^- AA^* x^- D^*) \]

(\(f_X(x) \) exists)
Harmonizable representations

\textbf{application} (m = 1):

\textbf{time reversibility:} \{X(t)\}_{t \in \mathbb{R}} \xrightarrow{\mathcal{L}} \{X(-t)\}_{t \in \mathbb{R}}

\[EB_H(s)B_H(t)^* = \frac{1}{2}(|t|^{H} \Gamma(1, 1)|t|^{H^*} + |s|^{H} \Gamma(1, 1)|s|^{H^*} - |t - s|^{H} \Gamma(1, 1)|t - s|^{H^*})\]

\[\iff \{B_H(t)\}_{t \in \mathbb{R}} \text{ is time-reversible}\]

(... \Rightarrow \text{the univariate reasoning is insufficient})
Harmonizable representations

application \((m = 1)\):

time reversibility:
\[
\{ X(t) \}_{t \in \mathbb{R}} \overset{\mathcal{L}}{=} \{ X(-t) \}_{t \in \mathbb{R}}
\]

\[
EB_H(s)B_H(t)^* \\
= \frac{1}{2}(|t|^H \Gamma(1, 1)|t|^H^* + |s|^H \Gamma(1, 1)|s|^H^* - |t - s|^H \Gamma(1, 1)|t - s|^H^*)
\]

\[\Leftrightarrow \Im(AA^*) = 0\]

in which case

\[
f_X(x) = \frac{1}{x^2}(x_+^D AA^* x_+^D^* + x_-^D AA^* x_-^D^*) = \frac{1}{x^2} |x|^{-D} AA^* |x|^{-D^*}
\]
Harmonizable representations

\textbf{application} (n = 1):

Biermé, Meerschaert & Scheffler (2007):

- X_ψ: OFBF with harmonizable representation based on the filter ψ
- X_φ: OFBF with a MA representation based on the filter φ

ψ, φ are operator-homogeneous: $\varphi(c^E z) = c \varphi(z)$
Harmonizable representations

application ($n = 1$):

Biermé, Meerschaert & Scheffler (2007): under isotropy, moving average and harmonizable representations of $(m, 1)$-OFBFs yield

$$EX\varphi(s)X\varphi(t) = \frac{1}{2}\{||s||^{2H}c_\varphi + ||t||^{2H}c_\varphi - ||s - t||^{2H}c_\varphi\},$$

$$EX\psi(s)X\psi(t) = \frac{1}{2}\{||s||^{2H}c_\psi + ||t||^{2H}c_\psi - ||s - t||^{2H}c_\psi\},$$

$$\Rightarrow X_\varphi \overset{\mathcal{L}}{=} X_\psi \text{ (up to a constant)}$$
Harmonizable representations

application \((n = 1)\):

Biermé, Meerschaert & Scheffler (2007): however, under anisotropy, we have

\[
EX\varphi(s)X\varphi(t) = \frac{1}{2}\left\{\tau(s)^{2H}\sigma_l^2(s) + \tau(t)^{2H}\sigma_l^2(t) - \tau(s - t)^{2H}\sigma_l^2(s - t)\right\},
\]

\[
EX\psi(s)X\psi(t) = \frac{1}{2}\left\{\tau(s)^{2H}\omega_l^2(s) + \tau(t)^{2H}\omega_l^2(t) - \tau(s - t)^{2H}\omega_l^2(s - t)\right\},
\]

open problem: under what conditions on \(\psi\) and \(\varphi\) do we have

\[X\varphi \overset{\mathcal{L}}{=} X\psi?\]
Harmonizable representations

Theorem (Baek, D & Pipiras (2014)) under assumptions, there is a function $\varphi : \mathbb{R}^m \to \mathbb{R}$ s.t.

(i) $\varphi(t - \cdot) - \varphi(\cdot) \in L^2(\mathbb{R}^m)$

(ii) φ is $E/(1 - \text{tr}(E)/2)$-homogeneous

(iii) $\{B_E(t)\}_{t \in \mathbb{R}^m} \overset{\mathcal{L}}{=} \left\{ \int_{\mathbb{R}^m} \varphi(t - u) - \varphi(-u)B(du) \right\}_{t \in \mathbb{R}^m}$

where

$$\varphi(t - u) - \varphi(-u) = \int_{\mathbb{R}^m} e^{-i\langle u, x \rangle}(e^{i\langle t, x \rangle} - 1)\hat{a}(x)dx$$
Symmetry, exponents, anisotropy
non-linear = “not linear”: not very informative…

anisotropic: can we do better than say “not isotropic”?…
Symmetry, exponents, anisotropy

Isotropy:

\[\{X(Ob)\}_{x \in \mathbb{R}^m} \cong \{X(t)\}_{t \in \mathbb{R}^m}, \quad O \in O(m) \]

i.e. every \(O \in O(m) \) is a (domain) symmetry of \(X \)

Overarching question: in what ways can the isotropy condition be violated?
Symmetry, exponents, anisotropy

For any field X, the symmetry sets are...

\[G_{1}^{\text{ran}} = \{ A \in GL(n, \mathbb{R}); \{ AX(t)\}_{t \in \mathbb{R}^m} \overset{\mathcal{L}}{=} \{ X(t)\}_{t \in \mathbb{R}^m} \} \]

\[G_{1}^{\text{dom}} = \{ A \in GL(n, \mathbb{R}); \{ X(At)\}_{t \in \mathbb{R}^m} \overset{\mathcal{L}}{=} \{ X(t)\}_{t \in \mathbb{R}^m} \} \]
Symmetry, exponents, anisotropy

For any field X, the symmetry sets are...

\[
G_{1}^{\text{ran}} = \{ A \in GL(n, \mathbb{R}); \{ AX(t) \}_{t \in \mathbb{R}^m} \overset{\mathcal{L}}{=} \{ X(t) \}_{t \in \mathbb{R}^m} \}
\]

\[
G_{1}^{\text{dom}} = \{ A \in GL(n, \mathbb{R}); \{ X(At) \}_{t \in \mathbb{R}^m} \overset{\mathcal{L}}{=} \{ X(t) \}_{t \in \mathbb{R}^m} \}
\]

G_{1}^{dom} and G_{1}^{ran} are compact subgroups of $GL(n, \mathbb{R})$

\[
\Rightarrow G_{1}^{\bullet} = W \mathcal{O}_0 W^{-1}, \mathcal{O}_0 \subseteq O(n)
\]
Symmetry, exponents, anisotropy

under mild conditions, for any o.s.s. random field X...

• Hudson & Mason (1982), Li & Xiao (2011): given E, there exists H such that...

• D, Meerschaert & Pipiras (2014): given H, there exists E such that...

$$\{X(c^E t)\}_{t \in \mathbb{R}} \overset{\mathcal{L}}{=} \{c^H X(t)\}_{t \in \mathbb{R}}$$
Symmetry, exponents, anisotropy

under mild conditions, for any o.s.s. random field X...

Furthermore, it turns out that...

\[
\{X(c^{E+?}t)\}_{t \in \mathbb{R}^m} \overset{\mathcal{L}}{=} \{c^{H+?'}X(t)\}_{t \in \mathbb{R}^m}
\]

question: why should exponents be non-unique in the first place?
Symmetry, exponents, anisotropy

example: \(\{ B_H(t) \}_{t \in \mathbb{R}} \) is a vector of uncorrelated FBM\(s \) with the same scalar parameter \(h \ (H = hI) \)

For \(L \in so(n), \ c^L \in SO(n) \) since

\[
c^L(c^L)^* = c^{L+L^*} = I \quad \text{and} \quad \det(c^L) = e^{\text{tr}(L \log(c))} = 1
\]

\[
\{ B_H(ct) \}_{t \in \mathbb{R}} \overset{\mathcal{L}}{=} \{ c^H B_H(t) \}_{t \in \mathbb{R}} \overset{\mathcal{L}}{=} \{ c^H c^L B_H(t) \}_{t \in \mathbb{R}} \overset{\mathcal{L}}{=} \{ c^{H+L} B_H(t) \}_{t \in \mathbb{R}}
\]

\[\Rightarrow \text{both } H \text{ and } H + L \text{ are exponents for } B_H \]
Symmetry, exponents, anisotropy

Theorem (D, Meerschaert & Pipiras (2014)): under mild conditions, for any o.s.s. random field X...

- $\mathcal{E}^{\text{ran}}(X) = H + T(G_1^{\text{ran}})$
- $\mathcal{E}^{\text{dom}}(X) = E + T(G_1^{\text{dom}})$

$$T(G_1^{\bullet}) = \left\{ \lim_{k \to \infty} \frac{A_k - I}{d_k}, \text{ some } \{A_k\} \subseteq G_1, \text{ some } 0 \neq d_k \to 0 \right\}$$
Symmetry, exponents, anisotropy

theorem (D, Meerschaert & Pipiras (2014)): under mild conditions, for any o.s.s. random field X...

- $\mathcal{E}^{\text{ran}}(X) = H + T(G_1^{\text{ran}})$
- $\mathcal{E}^{\text{dom}}(X) = E + T(G_1^{\text{dom}})$
Symmetry, exponents, anisotropy

Theorem (D, Meerschaert & Pipiras (2014)): under mild conditions, for any o.s.s. random field X...

- $\mathcal{E}^{\text{ran}}(X) = H + T(G^{\text{ran}}_1)$
- $\mathcal{E}^{\text{dom}}(X) = E + T(G^{\text{dom}}_1)$

Example: OFGN (non-identifiable parametrization):

$$g_{Y_H}(x) \sim x^{-D} AA^* x^{-D^*}, \quad x \to 0$$
Symmetry, exponents, anisotropy

Theorem (D, Meerschaert & Pipiras (2014)): under mild conditions, for any o.s.s. random field X . . .

- $\mathcal{E}^{\text{ran}}(X) = H + T(G_1^{\text{ran}})$
- $\mathcal{E}^{\text{dom}}(X) = E + T(G_1^{\text{dom}})$

Example: OFGN (non-identifiable parametrization):

$$g_{Y_H}(x) \sim x^{-D(G_1^{\text{ran}})}(AA^*)(G_1^{\text{ran}}, G_1^{\text{dom}})x^{-D(G_1^{\text{ran}})^*}, \quad x \to 0$$
Symmetry, exponents, anisotropy

To recap:

- $G_{1}^{\text{ran}} = W \mathcal{O}_0 W^{-1}$, $\mathcal{E}^{\text{ran}}(X) = H + T(G_{1}^{\text{ran}})$
- $G_{1}^{\text{dom}} = W' \mathcal{O}'_0 W'^{-1}$, $\mathcal{E}^{\text{dom}}(X) = E + T(G_{1}^{\text{dom}})$

question: domain and range symmetries look quite analogous. Are they of the same nature, and thus amenable to the same kind of technique?
Symmetry, exponents, anisotropy

To recap:

• \(G^\text{ran}_1 = W \mathcal{O}_0 W^{-1} \), \(\mathcal{E}^\text{ran}(X) = H + T(G^\text{ran}_1) \)

• \(G^\text{dom}_1 = W' \mathcal{O}'_0 W'^{-1} \), \(\mathcal{E}^\text{dom}(X) = E + T(G^\text{dom}_1) \)

question: domain and range symmetries look quite analogous. Are they of the same nature, and thus amenable to the same kind of technique?

answer: no, they are completely different
Symmetry, exponents, anisotropy

Fact (later): $SO(2)$ cannot be a domain symmetry group

Theorem (types): For proper Gaussian random fields in \mathbb{R}^2,

$G_{\mathrm{ran}} \cong \ldots$

(i) ... $\{\pm I\}$ (*cyclic*)

(ii) ... $\{\pm I, \pm \text{diag}(1, -1)\}$ (*dyhedral*)

(iii) ... $SO(2)$ (*rotational*)

(iv) ... $O(2)$ (*full*)
Symmetry, exponents, anisotropy

example: blind source separation

\[X(t) = (X_1(t), X_2(t))^* : \text{independent, unobservable FGN signals with parameters } d_1, d_2 \]

\[P \in GL(2, \mathbb{R}) : \text{mixing matrix} \]

\[\{Y(t)\} = \{PX(t)\} : \text{mixed signal, observable} \]

goal: retrieve \(X \), i.e., estimate \(P \)

(hope: \(\hat{P}^{-1}Y(t) \approx X(t) \))
Symmetry, exponents, anisotropy

proposition:

(a) \(d_1 < d_2 \Rightarrow G^\text{ran}_1 = \{\pm I, \pm \text{diag}(1, -1)\}\)

(b) \(d_1 = d_2 \Rightarrow G^\text{ran}_1 = O(2)\)

Then

(a) \{\text{demixing matrices}\} = \{Q = PO, O \in \{\pm I, \pm \text{diag}(1, -1)\}\}\)

(b) \{\text{demixing matrices}\} = \{Q = PO, O \in O(2)\}\)

... \Rightarrow \text{any estimation procedure estimates } P \text{ up to a factor } O \in G^\text{ran}_1\)

question: consequences for asymptotics? \(\hat{P} \overset{P}{\rightarrow} ?\)
Symmetry, exponents, anisotropy

question: why are G_1^{dom}, G_1^{ran} so different?
Symmetry, exponents, anisotropy

range:

X: Gaussian, $W = I$, $G_{1}^{\text{ran}} \subseteq O(n)$

\[
O \in G_{1}^{\text{ran}} \iff E[OX(s)X(t)^*O^*] = EX(s)X(t)^*, \quad s, t \in \mathbb{R}^m
\]

\[
\iff OEX(s)X(t)^* = EX(s)X(t)^*O, \quad s, t \in \mathbb{R}
\]

\[
\Rightarrow G_{1}^{\text{ran}} = \text{centralizer of } \{\Gamma(s, t)\}_{s, t \in \mathbb{R}^m}
\]
Symmetry, exponents, anisotropy

domain (example): $E = I \in M(2, \mathbb{R})$, $H = \beta - 1 \in \mathbb{R}$

$$\mathbb{R} \ni EX(s)X(t) = \int_{\mathbb{R}^2} (e^{i\langle s,x \rangle} - 1)(e^{-i\langle t,x \rangle} - 1)\|x\|^{-2\beta}_1 dx$$

$$\Rightarrow$$

$$\{X(At)\} \overset{\mathcal{L}}{=} \{X(t)\} \iff \|(A^*)^{-1}x\|_{1}^{-2\beta} = \|x\|_{1}^{-2\beta}, \quad x \in \mathbb{R}^m \setminus \{0\}$$

$$\iff \left\|(A^*)^{-1} \frac{x}{\|x\|_1}\right\|_1 = 1, \quad x \in \mathbb{R}^m \setminus \{0\}$$

$$\Rightarrow G_{\text{dom}}^1 = \text{symmetry group of } S_{\|\cdot\|_1} = \text{symmetry group of a rhombus}$$
Symmetry, exponents, anisotropy

what is the symmetry group of?...
Symmetry, exponents, anisotropy

\[= G_1^{\text{dom}} \quad (E = I, H = \beta - 1) \]
Symmetry, exponents, anisotropy

- **range:** $A \in G_1^{\text{ran}} \iff AF_X(dx)A^* = F_X(dx)$ (commutativity)
- **domain:** $A \in G_1^{\text{dom}} \iff F_X((A^*)^{-1}dx) = F_X(dx)$ (measure)
Symmetry, exponents, anisotropy

domain: (Meerschaert & Veeh (1995))

eexample: \(SO(2)x = O(2)x, \ x \in \mathbb{R}^m \Rightarrow [SO(2)] = [O(2)] \)

\(\Rightarrow SO(2) \) is not maximal in \([O(2)]\)
Symmetry, exponents, anisotropy

domain: (Meerschaert & Veeh (1995))

example: \(SO(2)x = O(2)x, \ x \in \mathbb{R}^m \Rightarrow [SO(2)] = [O(2)] \)

\(\Rightarrow \) \(SO(2) \) is not maximal in \([O(2)]\)

answer to the overarching question:

theorem (D, Meerschaert & Pipiras (2014)): the domain symmetry group \(G_1^{\text{dom}} \) of OFBFs is maximal (this **fully characterizes** all types of anisotropy)

corollary: \(SO(2) \) cannot be a domain symmetry group
Symmetry, exponents, anisotropy

can we convey a **parametric** characterization of isotropy?

question:

\((m, n)\text{-OFBF: } F_X(dx) = r^{-H} \Lambda(d\theta) r^{-H^*} r^{-1} dr\)

\[
\text{isotropy} \\
\iff \exists \eta > 0 \text{ such that } E_0 = \eta I \in \mathcal{E}^{\text{dom}}(X)
\]
can we convey a **parametric** characterization of **isotropy**?

Theorem (D, Meerschaert & Pipiras (2014)):

\[(m, n)\text{-OFBF: } F_X(dx) = r^{-H} \Lambda(d\theta) r^{-H^*} r^{-1} dr\]

isotropy

\[\Leftrightarrow\]

(radial) \(\exists \eta > 0 \text{ such that } E_0 = \eta I \in \mathcal{E}^{\text{dom}}(X)\)

(spherical) \(\Lambda(d\theta) = \Lambda(O^*d\theta), \ O \in O(m), \ S_0 = c_0^{-1} S^{m-1} \)
Symmetry, exponents, anisotropy

issue: how to incorporate departures from isotropy ("poorer" G_{1}^{dom}) into the analysis of physical systems?
Symmetry, exponents, anisotropy

Illustration: $(2, n)$-OFBFs. All possible domain symmetry groups are

(i) $C_n = \{O_{k2\pi/n} : k = 1, \ldots, n\}, \ n \in \mathbb{N}$ (cyclic)

(ii) $D_n = \{O_{k2\pi/n}, F_{k2\pi/n} : k = 1, \ldots, n\}, \ n \in \mathbb{N}$ (dihedral)

(iii) $D^*_1 = \{I, \text{diag}(-1, 1)\}$

(iv) $O(2)$

This is a full description of anisotropy...
Symmetry, exponents, anisotropy

illustration: $(2, n)$-OFBFs. All possible domain symmetry groups are

(i) $C_n = \{O_{k2\pi/n} : k = 1, \ldots, n\}, \ n \in \mathbb{N}$ (cyclic)

(ii) $D_n = \{O_{k2\pi/n}, F_{k2\pi/n} : k = 1, \ldots, n\}, \ n \in \mathbb{N}$ (dihedral)

(iii) $D_1^* = \{I, \text{diag}(-1, 1)\}$

(iv) $O(2)$

open issue: many OFBFs fall under one given symmetry group; do we need to refine our notion of anisotropy (e.g., within symmetry classes)?
Wavelet analysis
Wavelet analysis

How about multidimensional inference? Some references:

- scalar fields: Abry, Clausel, Jaffard, Roux and Vedel (2013); Lim, Meerschaert, and Scheffler (2014)

- vector processes: Becker-Kern and Pap (2008); Amblard and Coeurjolly (2011)

our focus: vector processes from a wavelet perspective
Wavelet analysis

wavelet coefficients/transform: $a \in \mathbb{N}, \ k \in \mathbb{Z}$

$$D_{a,k} = a^{-1} \int_{\mathbb{R}} \psi(a^{-1}t - k)X(t)dt = \left(d_p(a, k)\right)_{p=1,...,n}$$

where ψ is a wavelet with compact support (Daubechies)
Wavelet analysis

• when $X(t) = \text{OFBM}$

$$ED_{a,k}D_{a,k}^* = a^H ED_{1,0}D_{1,0}^* a^{H*}$$

\Rightarrow a wavelet regression method can be developed

• caveat: the Fourier and wavelet spectra are not equivalent. They do not blow up entrywise according to the same power law (up to a known constant). Equivalence holds under time reversibility
Wavelet analysis

assuming time reversibility...

• when H is non-diagonal, as $a \to \infty$ there is a competition between power laws. A wavelet regression only captures the highest power law

• an extrapolation of the univariate framework yields that “scaling behavior is characterized by a power law at the origin of the spectrum”

However...
Wavelet analysis

why non-diagonal scaling? (H is non-diagonal)

- blind source separation
- cointegration (Robinson (2008)): $Y(t) = PX(t)$, where X is a long-memory vector
- how many others?...

under investigation: how to deal with non-diagonal scaling from a wavelet perspective
Summary

• multidimensionality can technically change the problem

• current goal: to develop the synthesis of domain and range multidimensionality

• integral representations: a powerful paradigm for the analysis of operator fractional fields

• interrelated ideas: symmetry groups, anisotropy, operator scaling, exponents
harmonizable representation:

\[X_\psi(t) = \Re \left(\int_{\mathbb{R}^m} (e^{i\langle t,x \rangle} - 1)\psi(x)^{-q-\frac{H}{2}}W_2(dx) \right) \]

\[\psi : [0, \infty)^m \to \mathbb{R} \text{ is a continuous, } E^*-\text{homogeneous function such that } \psi(x) \neq 0 \text{ when } x \neq 0 \]
Integral representations (Biermé et al. (2007))

moving average representation:

\[
X_\varphi(t) = \mathbb{R}\left(\int_{\mathbb{R}^m} (\varphi(t - u)^{H-q/2} - \varphi(-u)^{H-q/2}) W_2(dx) \right)
\]

\(\varphi : [0, \infty)^m \rightarrow \mathbb{R}\) is a \(E\)-homogeneous, \((\beta, E)\)-admissible function

- \((\beta, E)\)-admissibility: \(x \neq 0 \Rightarrow \varphi(x) > 0\), and there exists \(C > 0\) such that for any \(0 < A < B\)

\[
\tau(x) \leq 1 \Rightarrow |\varphi(x + y) - \varphi(y)| \leq C \tau(x)^\beta
\]
Wavelet analysis

\((D = H - (1/2)I)\)

Fourier spectrum:

\[
f_X(x) = \frac{1}{x^2}(x^D AA^* x^D - x^{-D} AA^* x^{-D})
\]

Wavelet spectrum:

\[
w(a) := ED_{a,k} D_{a,k}^* = a^H \left(\int_0^\infty \frac{\hat{\psi}(x)^2}{x^2} x^D \text{Re}(AA^*) x^{-D} \right) a^{H^*}
\]
Wavelet analysis

problem: the wavelet and Fourier spectra are not equivalent

example:

\[H = \text{diag}(h_1, h_2), \quad AA^* = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \]

Fourier spectrum:

\[x^D A A^* x^D^* = \begin{pmatrix} x^{-2d_1} & i x^{-(d_1+d_2)} \\ -i x^{-(d_1+d_2)} & x^{-2d_2} \end{pmatrix} \]

wavelet spectrum (diagonal!):

\[w(a) = \text{diag}\left(a^{2h_1} \int_0^\infty \frac{\hat{\psi}(x)^2}{x^2} x^{-2d_1} dx, a^{2h_2} \int_0^\infty \frac{\hat{\psi}(x)^2}{x^2} x^{-2d_2} dx\right) \]
Wavelet analysis

Theorem (spectral equivalence): under time reversibility, diagonalizable H with real roots, the spectra are equivalent. For a fixed entry (m_1, m_2), either

- both $f_{m_1, m_2}(\cdot)$ and $w_{m_1, m_2}(\cdot)$ are identically zero; or

- for some $-1 < \delta < 1$,

 $f_{m_1, m_2}(x) \sim c_F |x|^{-\delta}, \quad x \to 0$

 $w_{m_1, m_2}(a) \sim c_W |a|^{|\delta+1}, \quad a \to \infty, \quad c_F, c_W \neq 0$
Wavelet analysis

interest: estimate the entry-wise powers “δ” based on the behavior of $w(a)$ as $a \to \infty$

simplifying assumption: entry-wise scaling, i.e.,

(A) For $m_1, m_2 = 1, \ldots, n$, there exists $\eta_{m_1, m_2} \in (0, 2)$ such that

$$Ed_{m_1}(a, 0)d_{m_2}(a, 0) = a^{\eta_{m_1, m_2}}Ed_{m_1}(1, 0)d_{m_2}(1, 0),$$
Wavelet analysis

Interest: estimate the entry-wise powers \(\delta \) based on the behavior of \(w(a) \) as \(a \to \infty \)

Simplifying assumption: entry-wise scaling, i.e.,

\((A)\) For \(m_1, m_2 = 1, \ldots, n \), there exists \(\eta_{m_1, m_2} \in (0, 2) \) such that

\[
Ed_{m_1}(a, 0) d_{m_2}(a, 0) = a^{\eta_{m_1, m_2}} Ed_{m_1}(1, 0) d_{m_2}(1, 0),
\]

Central idea behind the wavelet regression: take logs

\[
\log|Ed_{m_1}(a, 0) d_{m_2}(a, 0)| = \eta_{m_1, m_2} \log|a| + \log|Ed_{m_1}(1, 0) d_{m_2}(1, 0)|
\]
Wavelet analysis

regression equations \((n = 2)\):

\[j = 1, \ldots, m \ (\# \text{ scales}), \ k = 1, \ldots, N_j \ (\# \text{ terms per scale}) \]

\[
\begin{pmatrix}
\log | Ed_1^2(a_j, k) | \\
\log | Ed_2^2(a_j, k) | \\
\log | Ed_1(a_j, k)d_2(a_j, k) |
\end{pmatrix}
= \begin{pmatrix}
\eta_1 \log a_j \\
\eta_2 \log a_j \\
\eta_{1,2} \log a_j
\end{pmatrix}
+ \begin{pmatrix}
\log | Ed_1^2(1, k) | \\
\log | Ed_2^2(1, k) | \\
\log | Ed_1(1, k)d_2(1, k) |
\end{pmatrix}
\]
Wavelet analysis

regression equations \((n = 2): (\hat{\eta}_1, \hat{\eta}_2, \hat{\eta}_{1,2})\) least squares

\(j = 1, \ldots, m\) (# scales), \(k = 1, \ldots, N_j\) (# terms per scale)

\[
\begin{pmatrix}
\log \left| \frac{1}{N_j} \sum_{k=0}^{N_j-1} d_1^2(a_j, k) \right| \\
\log \left| \frac{1}{N_j} \sum_{k=0}^{N_j-1} d_2^2(a_j, k) \right| \\
\log \left| \frac{1}{N_j} \sum_{k=0}^{N_j-1} d_1(a_j, k)d_2(a_j, k) \right|
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\eta_1 \log a_j \\
\eta_2 \log a_j \\
\eta_{1,2} \log a_j
\end{pmatrix}
\]

\[
+ \begin{pmatrix}
\log \left| E d_1^2(1, k) \right| \\
\log \left| E d_2^2(1, k) \right| \\
\log \left| E d_1(1, k)d_2(1, k) \right|
\end{pmatrix}
\]

+ stoch. error
Wavelet analysis

example: $H = \text{diag}(h_1, h_2)$

Then

$$ED_{a_j,0}D^*_{a_j,0} = \begin{pmatrix}
 a_j^{2h_1}Ed_1^2(1,0) & a_j^{h_1+h_2}Ed_1(1,0)d_2(1,0) \\
 a_j^{h_1+h_2}Ed_1(1,0)d_2(1,0) & a_j^{2h_2}Ed_2^2(1,0)
\end{pmatrix}$$

\Rightarrow for entry $(1,1)$, $j = 1, \ldots, m$ (scales)

$$\log \left(\frac{1}{N_j} \sum_{k=0}^{N_j-1} d_1^2(a_j, k) \right) \overset{A}{=} 2h_1 \log a_j + \log(Ed_1^2(1,0)) + \sqrt{\frac{a(N)}{N}} N(0, \nu_j^1)$$

\Rightarrow by least squares, \hat{h}_1
Figure 1: Bias vs sample size \((d_1 = -0.2, \ d_2 = 0.3)\)
Figure 2: Asymptotic normality: MC (solid black lines) vs best Gaussian fits (dashed red lines), $d_1 = -0.2$, $d_2 = 0.3$