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(M, g) is a closed Riemannian manifold with

negative curvature,

(M̃, g) the universal cover

∂M̃ the geometric boundary at infinity of M̃ ,

sometimes identified with SxM̃ for any x ∈
M̃ .

SM,SM̃ the unit tangent bundles, {gt}t∈R
the geodesic flow.
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∆ = Div∇ the Laplacian on C2 functions,

p(t, x, y) the heat kernel on M̃ .

In the weak sense, p(t, x, y) = et∆(x, y).

In particular,

Fact Let λ0 be the bottom of the spectrum

of −∆ in L2(M̃,Vol). Then, for x, y ∈ M̃ :

lim
t→∞

1

t
ln p(t, x, y) = −λ0.
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Theorem [L. - Lim]

lim
t→∞

t3/2eλ0tp(t, x, y) = C(x, y),

where, for x fixed, C(x, y) is a harmonic func-

tion for of ∆ + λ0.

Remark: For all x, y ∈ M̃, C(x, y) = C(y, x).
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Example The 3-dimensional hyperbolic space

H3. Then, λ0 = 1 and

p(t, x, y) =
(

1

4πt

)3/2 d(x, y)

sinh d(x, y)
e−te−

d(x,y)2

4t .

Therefore:

lim
t→∞

t3/2etp(t, x, y) =
(

1

4π

)3/2 d(x, y)

sinh d(x, y)

and y 7→
d(x, y)

sinh d(x, y)
is the positive ∆ + 1

harmonic function that depends only on the

distance to x, with maximum 1.
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Bougerol (1981) If M̃ is a symmetric space

of non-compact type of rank n, then

lim
t→∞

tn+1
2eλ0tp(t, x, y) = CΦ(x, y),

Where C is some constant and y 7→ Φ(x, y)

is the positive ∆+λ0 harmonic function that

depends only on the distance to x, with max-

imum 1.

This has been generalized to trees and build-

ings for isotropic random walks.

6



Non-isotropic random walks (G,µ) with G a

hyperbolic group. Expected result:

lim
n→∞n

3/2Rnp(n)(x, y) = c(x, y),

where R−1 is the spectral radius of the ran-

dom walk.

Lalley (1993) G finitely generated free groups,

µ finitely supported.

Gouëzel - Lalley (2013) G surface group,

µ finitely supported.

Gouëzel (2014a) (2014b) G finitely gen.

hyperbolic, µ has all exponential moments.
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Our proof follows the Gouëzel - Lalley strat-

egy (and arguments). Set, for λ ≤ λ0, x 6= y

Gλ(x, y) := (∆+λ)−1(x, y) =
∫ ∞

0
eλtp(t, x, y)dt.

Facts: Gλ(x, y) <∞ for λ ≤ λ0, x 6= y,
∂

∂λ
Gλ(x, y) <∞ for λ < λ0, x 6= y,

∂

∂λ
Gλ(x, y)↗∞ as λ↗ λ0, x 6= y.
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Enough to show, for x 6= y,

lim
λ↗λ0

√
λ0 − λ

∂

∂λ
Gλ(x, y) = C′(x, y) (1)

Then, by Tauberian Theorems, symmetry

and positivity of p(t, x, y), we get

lim
t→∞

t3/2eλ0tp(t, x, y) =

√
2

π
C′(x, y).
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Goal Find a function P (λ), λ < λ0, such that:

P (λ) < 0, P (λ)→ 0 as λ→ λ0,

(−P (λ)) ∂
∂λGλ(x, y) → C1(x, y) as λ→ λ0,

(−P (λ))3 ∂2

∂λ2Gλ(x, y) → C2(x, y) as λ→ λ0.

Then, if F (λ) := ∂
∂λGλ(x, y), we have

2F ′(λ)

F (λ)3
→

2C2

C3
1

and therefore (cf [GL2013])

√
λ0 − λF (λ)→

√√√√ C3
1

2C2
.
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Lalley’s renewal formula:

∂

∂λ
Gλ(x, y) =

∫
M̃
Gλ(x, z)Gλ(z, y)dVol(z)

=
∫ ∞

0

(∫
S(x,R)

Gλ(x, z)Gλ(y, z)dz

)
dR

=
∫ ∞

0

(∫
S(x,R)

Gλ(y, z)

Gλ(x, z)
(Gλ(x, z))2dz

)
dR,

where S(x,R), dz is the sphere of radius R

about x and dz the Lebesgue measure on it.
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Let µx,λ,R be the measure on SxM such that

if it is lifted to SxM̃ and then pushed for-

ward to S(x,R) by v 7→ expxRv, one gets the

measure (Gλ(x, z))2dz.

Key fact: There exist a negative number

P (λ) and a finite measure µx,λ on SxM such

that, as R→∞, the measures e−P (λ)Rµx,λ,R
weak* converge towards µx,λ.
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Example: M̃ is the hyperbolic space Hn. Then,

if d(x, y) = R, R large:

Gλ(x, y) ∼ Ce−s(λ)R,

with s(λ) = 1
2

(
n− 1 +

√
(n− 1)2 − 4λ

)
, whereas

dz ∼ e(n−1)Rdθ.

So with P (λ) = −
√

(n− 1)2 − 4λ = −2
√
λ0 − λ,

we do have e−P (λ)Rµx,λ,R converge towards

C.Lebesgue on SxM .
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Let v ∈ SxM̃. As z →∞ in M̃ along expxR+v,
Gλ(y,z)
Gλ(x,z) converges towards a continuous func-
tion kλ(x, y, v) (Ancona 1985).

The expression for (−P (λ)) ∂
∂λGλ(x, y) becomes

−P (λ)
∫ ∞

0
eP (λ)R

(∫
SxM

kλ(x, y, v)e−P (λ)Rdµx,λ,R

)
dR.

IF we can exchange the limits in R and λ,
and IF P (λ0) = 0, then (−P (λ)) ∂

∂λGλ(x, y)
converges, as λ↗ λ0, towards∫

SxM
kλ0

(x, y, ξ)dµx,λ0
(ξ) =: C1(x, y)

if kλ0
(x, y) and µx,λ0

make sense.
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Ingredients for the proof of the Key Fact, for
a fixed λ:

1) Ancona’s inequality and Martin boundary
(Ancona 85)

There is C such that, if x, y, z are, in that
order, on the same geodesic, then:

Gλ(x, z) ≤ C Gλ(x, y)Gλ(y, z)

There is kλ(x, y, ξ), x, y ∈ M̃, ξ ∈ ∂M̃ , such
that, z → ξ iff

Gλ(y, z)

Gλ(x, z)
→ kλ(x, y, ξ).
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2) Hölder regularity (Hamenstädt,

Kaimanovich, L. )

For v ∈ SM, ṽ a lift to SM̃ , set

φλ(v) :=
d

dt
ln kλ(σṽ(0), σṽ(t), σṽ(+∞)|t=0

Proposition There is α = α(C,geometry)

positif such that the function φλ is α-Hölder

continuous on SM .
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3) Thermodyn. form. for ϕλ := −2φλ.

• P (λ) := Pressure (ϕλ),

• the Gibbs measure mλ is mixing for the
geodesic flow {gt}t∈R and

• there are Patterson-Sullivan measures
µx,λ on ∂M̃ such that:

dµy,λ

dµx,λ
(ξ) = k2

λ(x, y, ξ)e−P (λ)β(x,y,ξ).
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4) Margulis 69’s argument for the volume of

the spheres used only mixing of the geodesic

flow for the measure of maximal entropy.

Its extension to (mixing) Gibbs measures yields

that the measures e−P (λ)Rµx,λ,R weak* con-

verge towards some measure µx,λ that is pro-

portional to the Patterson-Sullivan measures

of 3).
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Proof of convergence of (−P (λ)) ∂
∂λGλ(x, y)

as λ ↗ λ0: all the previous steps can be
made uniform in λ up to λ0.

Step 1: Proposition The constant C in An-
cona inequality can be chosen independently
of λ ∈ [0, λ0].

The proof imitates the proof of the corre-
sponding statement in [Gouëzel 14a]

Steps 2 and 3: There is β < α such that the
mapping λ 7→ ϕλ is continuous from [0, λ0]
into the space of β-Hölder continuous func-
tions.
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Step 4: Margulis’s argument yields uniform

convergence in λ as soon as the rate of mix-

ing is uniform in λ. We have:

Proposition Let (M, g) be a manifold with

negative curvature, ϕλ, λ ≤ λ0 as above, β >

0 small enough. There exist ε > 0, C, c such

that if f1, f2 are β-Hölder continuous func-

tions, then for λ ∈ [λ0 − ε, λ0], t > 0,

|
∫
f1(v)f2(gtv)dmλ(v)−

∫
f1dmλ

∫
f2dmλ| ≤

≤ C
‖f1‖β‖f2‖β

1+tc .
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Proof If we have topological rapid mixing,
Dolgopyat 98 proved the above for a fixed
β-Hölder continuous potential ϕ. The con-
stants C and c obtained in the proof are uni-
form in a small neighbourhood of ϕ.

A continuous flow (X, d; {gt}t∈R) is topolog-
ically rapid mixing if there exist t0, α0 such
that for any two balls B1, B2 of radius r > 0,
gtB1 ∩B2 6= ∅ for t larger than t0 and r−α0.

By Liverani 04, a geodesic flow on a com-
pact manifold of negative curvature is topo-
logically rapid mixing.
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This finishes the proof that

(−P (λ))
∂

∂λ
Gλ(x, y) → C1(x, y) as λ→ λ0,

with C1(x, y) =
∫
∂M̃

kλ0
(x, y, ξ)dµx,λ0

(ξ).

Remains to show that

(−P (λ))3 ∂
2

∂λ2
Gλ(x, y) → C2(x, y) as λ→ λ0.
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Further derivation yields Lalley’s renewal for-
mula for ∂2

∂λ2Gλ(x, y) :

2
∫
M̃×M̃

Gλ(x, z)Gλ(z, w)Gλ(w, y)dVol(z)dVol(w).

Geometric reductions show that we have to
compute the limit of the following expression
as R → ∞ and to verify that the limit is
uniform in λ:

2
∫
SxM

kλ(x, y, v)
1

R

(∫ R
0
uλ(gsv)ds

)
e−P (λ)Rdµx,λ,R,

where uλ is a positive β-Hölder continuous
function with ‖uλ − uλ0

‖β → 0 as λ↗ λ0.
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We have uniform 2-mixing by an extension
of Dolgopyat’s argument:

Proposition Let (M, g) be a manifold with
negative curvature, ϕλ, λ ≤ λ0 as above, β >
0 small enough. There exist ε > 0, C, c such
that if f1, f2, f3 are β-Hölder continuous func-
tions, then for λ ∈ [λ0 − ε, λ0], t, s > 0,∣∣∣ ∫ f1f2(gt·)f3(gt+s·)dmλ

−
∫
f1dmλ

∫
f2dmλ

∫
f3dmλ

∣∣∣
≤ C

‖f1‖β‖f2‖β‖f3‖β
(1 + tc)(1 + sc)

.
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By suitably extending the argument à la Mar-

gulis one gets that, as λ↗ λ0,

(−P (λ))3 ∂
2

∂λ2
Gλ(x, y) → 2

∫
uλ0

dmλ0
C1(x, y).

This Proves our Theorem with

C(x, y) =
1√

2π
∫
uλ0

dmλ0

∫
SxM

kλ0
(x, y, ξ)dµx,λ0

(ξ).
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Remarks Since C(x, y) is an integral of ∆ +
λ0 harmonic functions,

∆yC(x, y) = −λ0C(x, y)

(in particular, C(x, y) is a smooth function).

Since kλ0
(x, y, ξ) =

√
dµy,λ0
dµx,λ0

(ξ), we may use

the halfdensity notation and write the func-
tion

∫
∂M̃

kλ0
(x, y, ξ)dµx,λ0

(ξ) as∫
∂M̃

√
dµy,λ0

√
dµx,λ0

,

in analogy with the Harish-Chandra function
Φ of Bougerol’s Local Limit Theorem.

26


