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The big challenge

Hilbert’s 6th problem: making physics rigorous.

Derive macro theories of superconductors and magnets
(Ginzburg-Landau and Landau-Lifshitz-Gilbert equations) from
microscopic models.



Superconducting magnets in MRI machines



Spin models of superconductors and magnets

Ising model, spins σi ∈ {±1}

XY model, σi ∈ S1

Heisenberg model, σi ∈ S2



More realistic models



Higher spin dimension

N-vector model: graph (V ,E ) with n = |V | spins

spin configuration σ ∈ (SN−1)n

Hamiltonian energy

Hn(σ) = −
∑

(i ,j)∈E

Jij 〈σi , σj〉

N = 1: Ising model
N = 2: XY model
N = 3: Heisenberg model



Higher lattice dimension

Mean-field model on graph G = (V ,E ) with |V | = n has

spin configuration σ = (σi )
n
i=1 ∈ (SN−1)n and Hamiltonian energy:

Hn(σ) = −
∑
i ,j

Jij 〈σi , σj〉 .

1. Send n→∞ in complete graph G = Kn: mean-field interaction
Jij = 1

2n ∀i , j .

2. Send d →∞ in the d-dimensional lattice:

Jij =

{
J, if i , j neighbors

0, else.



The mean-field Ising (Curie-Weiss) model

Ellis-Newman ’78 ... Chatterjee-Shao ’11: phase transition

I β < 1: average spin goes to zero (LLN), with a CLT

I β > 1: average spin has normal asymptotics around two states

I At critical β = 1: non-normal limiting density ∝ e−x
4/12

Mean-field N-vector models have phase transition at βc(N) = N.

I For β < βc , the average spin decays (Kesten-Schonmann ’88)
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The mean-field Heisenberg results with E. Meckes

Hn(σ) = − 1

2n

n∑
i ,j=1

〈σi , σj〉

I For the average spin 1
n

∑n
i=1 σi , we have large deviations

principles (LDPs) at any β.

I We analyze the free energy and recover the phase transition
at βc = 3.

I We have limit theorems for the average spin above, below,
and at βc = 3.

I We find non-normal critical limiting density ∝ t5e−3ct
2



We start with independent spins, β = 0

Pn is product/uniform measure on (S2)n.

Average spin 1
n

∑n
i=1 σi

n→∞−−−→ 0, with LLN and CLT.

Theorem (K.-Meckes ’13): Uniform random points {σi}ni=1 have
a large deviations principle:

Pn

(
1

n

n∑
i=1

σi ' x

)
' e−nI (x),

where the rate function I is ...



The rate function is obnoxious

I is implicitly

I (c) = cg(c) + log
(

c
sinh(c)

)
, g(c) = coth(c)− 1

c = |x |.

Macrostates x are zeros of I : only x = 0 here. Disordered.



We go up to LDP level 2, β = 0

Empirical measure of spins: µn,σ = 1
n

∑n
i=1 δσi

Theorem (K.-Meckes ’13): We have a Sanov LDP:

Pn{µn,σ ∈ B} ' exp{−n inf
ν∈B

H(ν|µ)}

where

H(ν | µ) :=

{∫
S2 f log(f )dµ, f := dν

dµ exists;

∞, otherwise.

Uniform measure µ and Borel subset B in M1(S2).

The only macrostate is µ.



Extend level 2 to β > 0 by Ellis-Haven-Turkington

Gibbs measures Pn,β have densities Z−1e−βHn(σ).

Partition function: Z = Zn(β) =
∫
(S2)n e

−βHn(σ)dPn.

Theorem (K.-Meckes ’13): LDP w.r.t. Gibbs measures:

Pn,β{µn,σ ∈ B} ' exp{−n inf
ν∈B

Iβ(ν)},

where

Iβ(ν) = H(ν | µ)− β

2

∣∣∣∣∫
S2
xdν(x)

∣∣∣∣2 − ϕ(β),

Zeros of Iβ? Free energy ϕ(β)?



The free energy is obnoxious

ϕ(β) := − lim
n→∞

1

n
logZn(β) = inf

ν

[
H(ν | µ)− β

2

∣∣∣∣∫
S2
xdν(x)

∣∣∣∣2
]
.

We discover
ϕ(β) =

{
0, if β < 3,

Φβ(γ−1(β)), if β ≥ 3,

Φβ(k) := log

(
k

sinh k

)
+ k coth k − 1− β

2

(
coth k − 1

k

)2

γ(k) := k
coth k−1/k = β

Φ6
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The phase transition and the macrostates

ϕ and ϕ′ are continuous at βc = 3 (2nd order phase transition)

If β < 3, the macrostate (zero of Iβ) is uniform.

If β > 3, the macrostates are rotations of the density

(x , y , z) 7→ cekz , where c =
k

2 sinh k
, k = γ−1(β).

If β →∞, then cekz → δ(0,0,1), consistent with heuristic.
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The average spin has a CLT below βc

Theorem (K.-Meckes ’13): For β < 3, and Z standard normal
random vector in R3,

Wn :=

√
3− β
n

n∑
i=1

σi
distr .−−−→ Z .

We show there exists cβ such that

sup
h:M1(h),M2(h)≤1

|Eh(Wn)− Eh(Z )| ≤
cβ log(n)√

n

I M1 is Lipschitz constant, M2 maximum op norm of Hessian

I L. A. Ross has refined this rate of convergence.
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The average spin has a CLT above βc

Theorem (K.-Meckes ’13): In the ordered phase, β > 3,

Wn :=
√
n

 β2

n2k2

∣∣∣∣∣∣
n∑

j=1

σj

∣∣∣∣∣∣
2

− 1

 distr .−−−→ Y ,

where Y is Gaussian with mean 0 and variance

σ2 := 4β2

(1−βg ′(k))k2

[
1
k2 − 1

sinh2(k)

]
, for g(x) = coth x − 1

x .

(Bounded-Lipschitz distance with explicit rate of convergence.)



The limit is non-normal at βc = 3

Theorem (K.-Meckes ’13):

Wn :=
C

n3/2

∣∣∣∣∣∣
n∑

j=1

σj

∣∣∣∣∣∣
2

distr .−−−→ X ,

where X has density

p(t) =

{
1
z t

5e−3ct
2

t ≥ 0;

0 t < 0,

with c = 1
5C and normalizing factor z .



Key ideas of the proof

I LDP methods, Ellis-Haven-Turkington method for β > 0

I Stein’s method and a special non-normal version at βc
(Exchangeable pair via Glauber dynamics.)

I Next: asymptotics for mean-field XY model, dynamics of
Heisenberg



What my students are working on

I Tayyab Nawaz: Critical asymptotics for mean-field XY and
O(n) models.

I Leslie Ann Ross: Dynamics of the average spin for mean-field
Heisenberg and process-level Stein’s method.



What’s next

I Dynamics between metastable states in XY and description of
saddle points (with L. DeVille)

I Micro Heisenberg model to Macro Landau-Lifshitz-Gilbert
equation (with J. Marzuola and J. Mattingly)

I 3D Heisenberg model

I XY and Heisenberg spin glasses

I Quantum O(n) models



Nadya Mason has found other cool features

Figure : Red Nb islands on gold substrate, spaced 140nm & 340nm.

There’s a two-step transition to superconductivity and a
zero-temperature metallic state. Is the latter a spin glass?
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The 2D XY model has hysteresis and metastability

On a torus, the Hamiltonian is:

H(σ) = −
∑

(i ,j)∈E

cos(θi − θj)− h
∑
i∈V

cos(θi ).

Batrouni ’04 described “twisted” states like this.



We found more metastable states for the XY model

Topological classification of metastable states (J. Weinstein)



A funny hysteresis curve for the XY model

Bumps correspond to loops or twisted states that a strong enough
external field overcomes.



Superconductors are understood imperfectly

1911: Liquifying helium, Onnes saw resistivity of mercury vanish

1930s: Meissner effect causes levitation

60s heuristics: Bardeen-Cooper-Schrieffer (BCS) theory to
Ginzburg-Landau (GL) and to Bose-Einstein condensation (BEC)

2000s: Erdős, K., Schlein, Staffilani, . . . : quantum systems to
BEC; BCS to static GL. . . .

micro models   MACRO Ginzburg-Landau, BEC

↘ ↗
meso bcs


