Abnormal behavior of the mean-field Heisenberg model: superconductors and magnets

> Kay Kirkpatrick, Urbana-Champaign July 2014

Joint with Elizabeth Meckes (Case Western)

Hilbert's 6th problem: making physics rigorous.

Derive macro theories of superconductors and magnets (Ginzburg-Landau and Landau-Lifshitz-Gilbert equations) from microscopic models.

Superconducting magnets in MRI machines

Spin models of superconductors and magnets

Ising model, spins $\sigma_i \in \{\pm 1\}$

 $\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\downarrow$

XY model, $\sigma_i \in \mathbb{S}^1$

Heisenberg model, $\sigma_i \in \mathbb{S}^2$

More realistic models

Higher spin dimension

N-vector model: graph (V, E) with n = |V| spins spin configuration $\sigma \in (\mathbb{S}^{N-1})^n$

Hamiltonian energy

$$H_n(\sigma) = -\sum_{(i,j)\in E} J_{ij} \langle \sigma_i, \sigma_j \rangle$$

N = 1: Ising model N = 2: XY model N = 3: Heisenberg model

Higher lattice dimension

Mean-field model on graph G = (V, E) with |V| = n has

spin configuration $\sigma = (\sigma_i)_{i=1}^n \in (\mathbb{S}^{N-1})^n$ and Hamiltonian energy:

$$H_n(\sigma) = -\sum_{i,j} J_{ij} \langle \sigma_i, \sigma_j \rangle.$$

1. Send $n \to \infty$ in complete graph $G = K_n$: mean-field interaction $J_{ij} = \frac{1}{2n} \ \forall i, j.$

2. Send $d \rightarrow \infty$ in the *d*-dimensional lattice:

$$J_{ij} = egin{cases} J, & ext{if} \quad i,j \quad ext{neighbors} \ 0, & ext{else}. \end{cases}$$

The mean-field Ising (Curie-Weiss) model

Ellis-Newman '78 ... Chatterjee-Shao '11: phase transition

- $\beta < 1$: average spin goes to zero (LLN), with a CLT
- $\beta > 1$: average spin has normal asymptotics around two states
- At critical $\beta = 1$: non-normal limiting density $\propto e^{-x^4/12}$

The mean-field Ising (Curie-Weiss) model

Ellis-Newman '78 ... Chatterjee-Shao '11: phase transition

- $\beta < 1$: average spin goes to zero (LLN), with a CLT
- $\beta > 1$: average spin has normal asymptotics around two states
- At critical $\beta = 1$: non-normal limiting density $\propto e^{-x^4/12}$

Mean-field N-vector models have phase transition at $\beta_c(N) = N$.

▶ For $\beta < \beta_c$, the average spin decays (Kesten-Schonmann '88)

The mean-field Heisenberg results with E. Meckes

$$H_n(\sigma) = -\frac{1}{2n} \sum_{i,j=1}^n \langle \sigma_i, \sigma_j \rangle$$

- For the average spin ¹/_n ∑ⁿ_{i=1} σ_i, we have large deviations principles (LDPs) at any β.
- We analyze the free energy and recover the phase transition at β_c = 3.
- ▶ We have limit theorems for the average spin above, below, and at $\beta_c = 3$.
- We find non-normal critical limiting density $\propto t^5 e^{-3ct^2}$

We start with independent spins, $\beta = 0$

 P_n is product/uniform measure on $(\mathbb{S}^2)^n$.

Average spin $\frac{1}{n} \sum_{i=1}^{n} \sigma_i \xrightarrow{n \to \infty} 0$, with LLN and CLT.

Theorem (K.-Meckes '13): Uniform random points $\{\sigma_i\}_{i=1}^n$ have a large deviations principle:

$$P_n\left(\frac{1}{n}\sum_{i=1}^n\sigma_i\simeq x\right)\simeq e^{-nI(x)},$$

where the rate function I is ...

The rate function is obnoxious

I is implicitly

Macrostates x are zeros of I: only x = 0 here. Disordered.

We go up to LDP level 2, $\beta = 0$

Empirical measure of spins: $\mu_{n,\sigma} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\sigma_i}$

Theorem (K.-Meckes '13): We have a Sanov LDP:

$$P_n\{\mu_{n,\sigma} \in B\} \simeq \exp\{-n \inf_{\nu \in B} H(\nu|\mu)\}$$

where

$$H(\nu \mid \mu) := egin{cases} \int_{\mathbb{S}^2} f \log(f) d\mu, & f := rac{d
u}{d\mu} \text{ exists}; \ \infty, & otherwise. \end{cases}$$

Uniform measure μ and Borel subset B in $M_1(\mathbb{S}^2)$.

The only macrostate is μ .

Extend level 2 to $\beta > 0$ by Ellis-Haven-Turkington

Gibbs measures $P_{n,\beta}$ have densities $Z^{-1}e^{-\beta H_n(\sigma)}$.

Partition function:
$$Z = Z_n(\beta) = \int_{(\mathbb{S}^2)^n} e^{-\beta H_n(\sigma)} dP_n$$
.

Theorem (K.-Meckes '13): LDP w.r.t. Gibbs measures:

$$P_{n,\beta}\{\mu_{n,\sigma}\in B\}\simeq \exp\{-n\inf_{\nu\in B}I_{\beta}(\nu)\},\$$

where

$$I_{\beta}(\nu) = H(\nu \mid \mu) - \frac{\beta}{2} \left| \int_{\mathbb{S}^2} x d\nu(x) \right|^2 - \varphi(\beta),$$

Zeros of I_{β} ? Free energy $\varphi(\beta)$?

The free energy is obnoxious

$$\varphi(\beta) := -\lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta) = \inf_{\nu} \left[H(\nu \mid \mu) - \frac{\beta}{2} \left| \int_{\mathbb{S}^2} x d\nu(x) \right|^2 \right].$$

We discover
$$\varphi(\beta) = \begin{cases} 0, & ext{if } \beta < 3, \\ \Phi_{\beta}(\gamma^{-1}(\beta)), & ext{if } \beta \geq 3, \end{cases}$$

$$\begin{split} \Phi_{\beta}(k) &:= \log\left(\frac{k}{\sinh k}\right) + k \coth k - 1 - \frac{\beta}{2} \left(\coth k - \frac{1}{k}\right)^2 \\ \gamma(k) &:= \frac{k}{\coth k - 1/k} = \beta \end{split}$$

The free energy is obnoxious

$$\varphi(\beta) := -\lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta) = \inf_{\nu} \left[H(\nu \mid \mu) - \frac{\beta}{2} \left| \int_{\mathbb{S}^2} x d\nu(x) \right|^2 \right].$$

We discover
$$\varphi(\beta) = \begin{cases} 0, & \text{if } \beta < 3, \\ \Phi_{\beta}(\gamma^{-1}(\beta)), & \text{if } \beta \geq 3, \end{cases}$$

$$\Phi_{eta}(k) := \log\left(rac{k}{\sinh k}
ight) + k \coth k - 1 - rac{eta}{2} \left(\coth k - rac{1}{k}
ight)^2$$

$$\gamma(k) := rac{k}{\coth k - 1/k} = eta$$

The phase transition and the macrostates

 φ and φ' are continuous at $\beta_c = 3$ (2nd order phase transition)

If $\beta < 3$, the macrostate (zero of I_{β}) is uniform.

The phase transition and the macrostates

 φ and φ' are continuous at $\beta_c = 3$ (2nd order phase transition)

If $\beta < 3$, the macrostate (zero of I_{β}) is uniform.

If $\beta > 3$, the macrostates are rotations of the density

$$(x, y, z) \mapsto ce^{kz}$$
, where $c = \frac{k}{2 \sinh k}$, $k = \gamma^{-1}(\beta)$.

If $\beta \to \infty$, then $ce^{kz} \to \delta_{(0,0,1)}$, consistent with heuristic.

The average spin has a CLT below β_c

Theorem (K.-Meckes '13): For $\beta < 3$, and Z standard normal random vector in \mathbb{R}^3 ,

$$W_n := \sqrt{\frac{3-\beta}{n}} \sum_{i=1}^n \sigma_i \xrightarrow{distr.} Z.$$

The average spin has a CLT below β_c

Theorem (K.-Meckes '13): For $\beta < 3$, and Z standard normal random vector in \mathbb{R}^3 ,

$$W_n := \sqrt{\frac{3-\beta}{n}} \sum_{i=1}^n \sigma_i \xrightarrow{distr.} Z.$$

We show there exists c_{β} such that

$$\sup_{h:M_1(h),M_2(h)\leq 1} |\mathbb{E}h(W_n) - \mathbb{E}h(Z)| \leq \frac{c_\beta \log(n)}{\sqrt{n}}$$

*M*₁ is Lipschitz constant, *M*₂ maximum op norm of Hessian
L. A. Ross has refined this rate of convergence.

The average spin has a CLT above β_c

Theorem (K.-Meckes '13): In the ordered phase, $\beta > 3$,

$$W_n := \sqrt{n} \left[\frac{\beta^2}{n^2 k^2} \left| \sum_{j=1}^n \sigma_j \right|^2 - 1 \right] \xrightarrow{\text{distr.}} Y,$$

where Y is Gaussian with mean 0 and variance

$$\sigma^2 := rac{4eta^2}{(1-eta g'(k))k^2} \left[rac{1}{k^2} - rac{1}{\sinh^2(k)}
ight], \; ext{ for } g(x) = \coth x - rac{1}{x}$$

(Bounded-Lipschitz distance with explicit rate of convergence.)

The limit is non-normal at $\beta_c = 3$

Theorem (K.-Meckes '13):

$$W_n := rac{C}{n^{3/2}} \left| \sum_{j=1}^n \sigma_j \right|^2 \xrightarrow{distr.} X,$$

where X has density

$$p(t) = egin{cases} rac{1}{z} t^5 e^{-3ct^2} & t \geq 0; \ 0 & t < 0, \end{cases}$$

with $c = \frac{1}{5C}$ and normalizing factor z.

Key ideas of the proof

- ▶ LDP methods, Ellis-Haven-Turkington method for $\beta > 0$
- Stein's method and a special non-normal version at β_c (Exchangeable pair via Glauber dynamics.)

 Next: asymptotics for mean-field XY model, dynamics of Heisenberg

What my students are working on

 Tayyab Nawaz: Critical asymptotics for mean-field XY and O(n) models.

 Leslie Ann Ross: Dynamics of the average spin for mean-field Heisenberg and process-level Stein's method.

What's next

- Dynamics between metastable states in XY and description of saddle points (with L. DeVille)
- Micro Heisenberg model to Macro Landau-Lifshitz-Gilbert equation (with J. Marzuola and J. Mattingly)

- 3D Heisenberg model
- XY and Heisenberg spin glasses
- Quantum O(n) models

Nadya Mason has found other cool features

Figure : Red Nb islands on gold substrate, spaced 140nm & 340nm.

There's a two-step transition to superconductivity and a zero-temperature metallic state. Is the latter a spin glass?

Thanks

NSF DMS-1106770, OISE-0730136, CAREER DMS-1254791

Figure : Courtesy of Mike Jory.

arXiv 1204.3062 (JSP), and forthcoming

The 2D XY model has hysteresis and metastability

On a torus, the Hamiltonian is:

$$H(\sigma) = -\sum_{(i,j)\in E} \cos(\theta_i - \theta_j) - h \sum_{i\in V} \cos(\theta_i).$$

Batrouni '04 described "twisted" states like this.

We found more metastable states for the XY model

Topological classification of metastable states (J. Weinstein)

A funny hysteresis curve for the XY model

Bumps correspond to loops or twisted states that a strong enough external field overcomes.

Superconductors are understood imperfectly

1911: Liquifying helium, Onnes saw resistivity of mercury vanish

1930s: Meissner effect causes levitation

60s heuristics: Bardeen-Cooper-Schrieffer (BCS) theory to Ginzburg-Landau (GL) and to Bose-Einstein condensation (BEC)

2000s: Erdős, K., Schlein, Staffilani, . . . : quantum systems to BEC; BCS to static GL. . . .

