Maximum independent sets in random d-regular graphs

Jian Ding, Allan Sly, and Nike Sun

BIRS, 21 July 2014
Outline

1. Maximum independent sets

2. Second moment and condensation

3. Sharp thresholds by counting clusters
Outline

1. Maximum independent sets

2. Second moment and condensation

3. Sharp thresholds by counting clusters
Many sparse random CSPs are in by the 1-step replica symmetry breaking universality class of Parisi-Mezard such as k-SAT, independent set, coloring.
Many sparse random CSPs are in the 1-step replica symmetry breaking universality class of Parisi-Mezard such as k-SAT, independent set, coloring. There is a detailed but non-rigorous theory for their structure and thresholds. A great deal of progress in studying these models rigorously. However, much of the conjectured picture remains unproved, in particular the exact threshold values.
Rigorous Bounds

For sparse CSPs with RSB, threshold behavior long in question. Rigorous bounds on the SAT–UNSAT transition include:

- Random graph coloring: Bollobás '88, Achlioptas–Naor '04, Coja-Oghlan–Vilenchik '13
- Random k-NAE-SAT: Achlioptas–Moore '02, Coja-Oghlan–Zdeborová '12, Coja-Oghlan–Panagiotou '12
- Random k-SAT: Kirousis–Kranakis–Krizanc–Stamatiou '97, Achlioptas–Peres '03, Coja-Oghlan–Panagiotou '13, Coja-Oghlan '14
- Random regular graph independent set: Bollobás '81, McKay '87, Frieze–Luczak '92, Frieze–Suen '94, Wormald '95
Rigorous Bounds

For sparse CSPs with RSB, threshold behavior long in question rigorous bounds on the SAT–UNSAT transition include:
Rigorous Bounds

For sparse CSPs with RSB, threshold behavior long in question rigorous bounds on the SAT–UNSAT transition include:

- random graph coloring
 Bollobás '88,
 Achlioptas–Naor '04, Coja-Oghlan–Vilenchik '13

- random k-NAE-SAT
 Achlioptas–Moore '02,
 Coja-Oghlan–Zdeborová '12, Coja-Oghlan–Panagiotou '12

- random k-SAT
 Kirousis–Kranakis–Krizanc–Stamatiou '97,
 Achlioptas–Peres '03, Coja-Oghlan–Panagiotou '13, Coja-Oghlan '14

- random regular graph independent set
 Bollobás '81, McKay '87,
 Frieze–Luczak '92, Frieze–Suen '94, Wormald '95
Maximal independent sets in random graphs

Let $A \equiv \mathcal{A}_n \equiv$ maximum size of an independent set in a random graph G_n on n vertices.
Maximal independent sets in random graphs

Let $A \equiv A_n \equiv$ maximum size of an independent set in a random graph G_n on n vertices

$G_{n,d}$
random d-regular
Maximal independent sets in random graphs

Let $A \equiv A_n \equiv$ maximum size of an independent set in a random graph G_n on n vertices

$G_{n,d/n}$

sparse Erdős–Rényi
Maximal independent sets in random graphs

Let $A \equiv A_n$ be the maximum size of an independent set in a random graph G_n on n vertices.

$G_{n,p}$

dense Erdős–Rényi
Maximal independent sets in random graphs

Let $A \equiv A_n \equiv$ maximum size of an independent set in a random graph G_n on n vertices

$G_{n,p}$

dense Erdős–Rényi

A_n asymptotics?
Maximal independent sets in random graphs

Let $A \equiv A_n \equiv$ maximum size of an independent set in a random graph G_n on n vertices

$G_{n,p}$

dense Erdős–Rényi

A_n asymptotics?

$A_n/n \rightarrow \alpha_\star$?
Previous work

Solved much earlier on dense Erdős–Rényi graphs $G_{n,p}$: $A_n \sim 2 \log n \log \left[\frac{1}{1 - p} \right]$ [Grimmett–McDiarmid '75].

Sparse case much harder — numerous partial results on $G_{n,d}$: Bollobás '81, McKay '87, Frieze–Luczak '92, Frieze–Suen '94, Wormald '95 give $A_n/n \approx 2 (\log d)/d$ but not sharp.

For many years, existence of α^\star with $A_n = n\alpha^\star + o(n)$ unknown, even though well known that A_n has only $O(n^{1/2})$ fluctuations.

Existence on $G_{n,d}$, $G_{n,d}/n$ proved by Bayati–Gamarnik–Tetali '10 — super-additivity argument; no information about value of α^\star or fluctuations of A_n.
Previous work

Solved much earlier on **dense** Erdős–Rényi graphs $\mathbb{G}_{n,p}$:

$$A_n \sim \frac{2 \log n}{\log[1/(1-p)]}$$

[Grimmett–McDiarmid ’75]

Sparse case much harder — numerous partial results on $\mathbb{G}_{n,d}$

Bollobás ’81, McKay ’87, Frieze–Luczak ’92, Frieze–Suen ’94, Wormald ’95

Give $A_n/n \approx 2 \log d / d$ but not sharp

For many years, existence of α^* with $A_n = n\alpha^* + o(n)$ unknown, even though well known that A_n has only $O(n^{1/2})$ fluctuations

Existence on $\mathbb{G}_{n,d}$, $\mathbb{G}_{n,d}/n$ proved by Bayati–Gamarnik–Tetali ’10 — super-additivity argument; no information about value of α^* or fluctuations of A_n
Previous work

Solved much earlier on **dense** Erdős–Rényi graphs $\mathbb{G}_{n,p}$:

$$A_n \sim \frac{2 \log n}{\log[1/(1-p)]}$$ \[Grimmett–McDiarmid '75\]

Sparse case much harder — numerous partial results on $\mathbb{G}_{n,d}$
Previous work

Solved much earlier on dense Erdős–Rényi graphs $G_{n,p}$:

\[A_n \sim \frac{2 \log n}{\log[1/(1-p)]} \]

[Grimmett–McDiarmid ’75]

\[A_n \sim \frac{2 \log n}{\log[1/(1-p)]} \]

Sparse case much harder — numerous partial results on $G_{n,d}$

Bollobás ’81, McKay ’87
Previous work

Solved much earlier on **dense** Erdős–Rényi graphs $G_{n,p}$:

$$A_n \sim \frac{2\log n}{\log[1/(1-p)]}$$
[Grüemmett–McDiarmid '75]

Sparse case much harder — numerous partial results on $G_{n,d}$

Bollobás '81, McKay '87, Frieze–Łuczak '92
Previous work

Solved much earlier on dense Erdős–Rényi graphs $G_{n,p}$:

$$A_n \sim \frac{2 \log n}{\log[1/(1-p)]}$$

[Grimmett–McDiarmid '75]

Sparse case much harder — numerous partial results on $G_{n,d}$

Bollobás '81, McKay '87, Frieze–Łuczak '92, Frieze–Suen '94, Wormald '95
Previous work

Solved much earlier on **dense** Erdős–Rényi graphs $G_{n,p}$:

$$A_n \sim \frac{2 \log n}{\log[1/(1-p)]}$$

[Gr Grimmett–McDiarmid ’75]

Sparse case much harder — numerous partial results on $G_{n,d}$

 Bollobás ’81, McKay ’87, Frieze–Łuczak ’92, Frieze–Suen ’94, Wormald ’95
give $A_n/n \approx 2(\log d)/d$ but not sharp
Previous work

Solved much earlier on dense Erdős–Rényi graphs $G_{n,p}$:

$$A_n \sim \frac{2 \log n}{\log[1/(1-p)]}$$

[Griffett–McDiarmid '75]

Sparse case much harder — numerous partial results on $G_{n,d}$

Bollobás '81, McKay '87, Frieze–Łuczak '92, Frieze–Suen '94, Wormald '95 give $A_n/n \approx 2(\log d)/d$ but not sharp

For many years, existence of α_* with $A_n = n\alpha_* + o(n)$ unknown
Previous work

Solved much earlier on dense Erdős–Rényi graphs $G_{n,p}$:

\[A_n \sim \frac{2 \log n}{\log[1/(1-p)]} \quad \text{[Grimmett–McDiarmid '75]} \]

Sparse case much harder — numerous partial results on $G_{n,d}$

Bollobás '81, McKay '87, Frieze–Łuczak '92, Frieze–Suen '94, Wormald '95 give $A_n/n \approx 2(\log d)/d$ but not sharp

For many years, existence of α_* with $A_n = n\alpha_* + o(n)$ unknown, even though well known that A_n has only $O(n^{1/2})$ fluctuations
Previous work

Solved much earlier on dense Erdős–Rényi graphs $\mathbb{G}_{n,p}$:

\[A_n \sim \frac{2 \log n}{\log[1/(1-p)]} \]

[Gr Grimmett–McDiarmid ’75]

Sparse case much harder — numerous partial results on $\mathbb{G}_{n,d}$

Bollobás ’81, McKay ’87, Frieze–Łuczak ’92, Frieze–Suen ’94, Wormald ’95 give $A_n/n \approx 2(\log d)/d$ but not sharp

For many years, existence of α_* with $A_n = n\alpha_* + o(n)$ unknown, even though well known that A_n has only $O(n^{1/2})$ fluctuations

Existence on $\mathbb{G}_{n,d}$, $\mathbb{G}_{n,d}/n$ proved by Bayati–Gamarnik–Tetali ’10 — super-additivity argument; no information about value of α_* or fluctuations of A_n
Previous work

Solved much earlier on dense Erdős–Rényi graphs $G_{n,p}$:

$$A_n \sim \frac{2 \log n}{\log[1/(1-p)]}$$

[Grinstead–McDiarmid '75]

Sparse case much harder — numerous partial results on $G_{n,d}$

Bollobás '81, McKay '87, Frieze–Łuczak '92, Frieze–Suen '94, Wormald '95 give $A_n/n \approx 2(\log d)/d$ but not sharp

For many years, existence of α_\star with $A_n = n\alpha_\star + o(n)$ unknown, even though well known that A_n has only $O(n^{1/2})$ fluctuations

Existence on $G_{n,d}$, $G_{n,d}/n$ proved by Bayati–Gamarnik–Tetali '10 — super-additivity argument; no information about value of α_\star or fluctuations of A_n
Main result

Theorem (DSS). The maximum independent set size A_n in the random d-regular graph $G_{n,d}$ has $O(1)$ fluctuations around $n\alpha^* - c^* \log n$ for explicit $\alpha^* = \alpha^*(d)$ and $c^* = c^*(d)$, provided $d \geq d_0$.
Theorem (DSS). The maximum independent set size A_n in the random d-regular graph $G_{n,d}$ has $O(1)$ fluctuations around $n\alpha^* - c^* \log n$ for explicit $\alpha^* = \alpha^*(d)$ and $c^* = c^*(d)$, provided $d \geq d_0$.
Main result

Theorem (DSS).

The maximum independent set size A_n in the random d-regular graph $G_{n,d}$ has $O(1)$ fluctuations around $n \alpha^* - c^* \log n$ for explicit $\alpha^* = \alpha^*(d)$ and $c^* = c^*(d)$, provided $d \geq d_0$.
Main result

Theorem (DSS).

The maximum independent set size A_n in the random d-regular graph $G_{n,d}$ has $O(1)$ fluctuations around $n^{\alpha^\star} - c^\star \log n$ for explicit $\alpha^\star = \alpha^\star(d)$ and $c^\star = c^\star(d)$, provided $d \geq d_0$.
Main result

Theorem (DSS).

The maximum independent set size \(A_n \) in the random \(d \)-regular graph \(G_{n,d} \) has \(O(1) \) fluctuations around

\[n\alpha^\star - c^\star \log n \]
Main result

Theorem (DSS).

The maximum independent set size A_n in the random d-regular graph $G_{n,d}$ has $O(1)$ fluctuations around

$$n\alpha_\star - c_\star \log n$$

for explicit $\alpha_\star = \alpha_\star(d)$ and $c_\star = c_\star(d)$, provided $d \geq d_0$.
Explicit constants
Explicit constants

Solve $q = \frac{\lambda}{\lambda-1+1/(1-q)^{d-1}}$
Explicit constants

Solve \(q = \frac{\lambda}{\lambda - 1 + 1/(1-q)^{d-1}} \)
Explicit constants

Solve $q = \frac{\lambda}{\lambda-1+1/(1-q)^{d-1}}$

Solve $\varphi(\lambda) = 0$
Explicit constants

Solve $q = \frac{\lambda}{\lambda - 1 + 1/(1-q)^{d-1}}$

Solve $\varphi(\lambda) = 0$

\[\alpha(\lambda) = \log \frac{\lambda}{\lambda - (\lambda - 1)} q^{2} + \frac{\lambda (1-q)}{\lambda - (\lambda - 1)} q - \frac{\lambda d q}{2} + \lambda \frac{1}{(1-q)} \]

A_n has $O(1)$ fluctuations about n
Explicit constants

Solve \(q = \frac{\lambda}{\lambda - 1 + 1/(1-q)^{d-1}} \)

\[\varphi(\lambda) = 0 \]

\[\varphi(\lambda) \equiv \frac{d-2}{2} \log \frac{\lambda}{\lambda - (\lambda - 1)q^2} + \log \frac{\lambda}{\lambda - (\lambda - 1)q} - q \frac{dq/2 + \lambda(1-q)}{\lambda - (\lambda - 1)q^2} \log \lambda \]

\[\alpha(\lambda) \]
Explicit constants

Solve $q = \frac{\lambda}{\lambda - 1 + 1/(1-q)^{d-1}}$

Solve $\varphi(\lambda) = 0 \quad (d = 20)$

$\varphi(\lambda) \equiv \frac{d-2}{2} \log \frac{\lambda}{\lambda - (\lambda - 1)q^2} + \log \frac{\lambda}{\lambda - (\lambda - 1)q} - q \frac{d q/2 + \lambda (1-q)}{\lambda - (\lambda - 1)q^2} \log \lambda$

$\alpha(\lambda)$
Explicit constants

Solve \(q = \frac{\lambda}{\lambda-1+1/(1-q)^{d-1}} \)

Solve \(\varphi(\lambda) = 0 \) \((d = 20) \)

\[
\varphi(\lambda) \equiv \frac{d-2}{2} \log \frac{\lambda}{\lambda - (\lambda - 1)q^2} + \log \frac{\lambda}{\lambda - (\lambda - 1)q} - q \frac{dq/2 + \lambda(1 - q)}{\lambda - (\lambda - 1)q^2} \log \lambda
\]

\(\alpha(\lambda) \)

\(A_n \) has \(O(1) \) fluctuations about \(n\alpha(\lambda_*) - \frac{\log n}{2 \log \lambda_*} \)
Outline

1. Maximum independent sets
2. Second moment and condensation
3. Sharp thresholds by counting clusters
Outline

1. Maximum independent sets
2. Second moment and condensation
3. Sharp thresholds by counting clusters
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n.

$$P(Z_{n\alpha} > 0) \leq E[Z_{n\alpha}] = \left(\frac{n}{n\alpha}\right) \left(1 - \frac{d}{n}\right)^{n\alpha(\alpha - 1)/2} = \exp\left\{ n\left[H(\alpha) - \frac{d\alpha^2}{2}\right] + O(\log n) \right\}$$

$H(\alpha) \approx \alpha \log(1/\alpha)$.

Exponent crosses zero at $\alpha_1 \approx \frac{2\log d}{d}$.

$A_n \leq n\alpha_1[1 + o(1)]$ on $G_{n,d/n}$.

Similarly $\alpha_1 \approx \frac{2\log d}{d}$ on $G_{n,d}$.

Not sharp: $\alpha_1 > \alpha^\star$.
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n. $G_n = G_{n, d/n}$:
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n.
$G_n = G_{n,d/n}$:

$$\mathbb{P}(Z_{n\alpha} > 0) \leq \mathbb{E} Z_{n\alpha}$$
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n.

$G_n = \mathcal{G}_{n,d/n}$:

$$P(Z_{n\alpha} > 0) \leq \mathbb{E}Z_{n\alpha} = \binom{n}{n\alpha}$$
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n.

$G_n = \mathbb{G}_{n,d/n}$:

$$
P(Z_{n\alpha} > 0) \leq \mathbb{E}Z_{n\alpha} = \binom{n}{n\alpha} (1 - d/n)^{n\alpha(n\alpha-1)/2}$$
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n. $G_n = \mathbb{G}_{n,d/n}$:

$$\mathbb{P}(Z_{n\alpha} > 0) \leq \mathbb{E}Z_{n\alpha} = \binom{n}{n\alpha}(1 - d/n)^{n\alpha(n\alpha - 1)/2}$$

$$= \exp\{n[H(\alpha) - d\alpha^2/2] + O(\log n)\}$$
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n. $G_n = G_{n,d/n}$:

\[
P(Z_{n\alpha} > 0) \leq \mathbb{E}Z_{n\alpha} = \binom{n}{n\alpha}(1 - d/n)^{n\alpha(n\alpha-1)/2} = \exp\{n[H(\alpha) - d\alpha^2/2] + O(\log n)\}
\]

\[
H(\alpha) - d\alpha^2/2 \quad (d = 100)
\]
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n.

$G_n = G_{n,d/n}$:

$$\mathbb{P}(Z_{n\alpha} > 0) \leq \mathbb{E}Z_{n\alpha} = \binom{n}{n\alpha}(1 - d/n)^{n\alpha(n\alpha - 1)/2}$$

$$= \exp\{n[H(\alpha) - d\alpha^2/2] + O(\log n)\}$$

$$H(\alpha) \approx \alpha \log(1/\alpha)$$

Exponent crosses zero at $\alpha_1 \approx 2(\log d)/d$:

$$A_n \leq n\alpha_1[1 + o(1)]$$ on $G_{n,d/n}$

Similarly $\alpha_1 \approx 2(\log d)/d$ on $G_{n,d}$

Not sharp: $\alpha_1 > \alpha^\star$
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n. $G_n = \mathcal{G}_{n,d/n}:

\[P(Z_{n\alpha} > 0) \leq \mathbb{E} Z_{n\alpha} = \binom{n}{n\alpha} (1 - d/n)^{n\alpha(n\alpha - 1)/2} \]

\[= \exp\{n[H(\alpha) - d\alpha^2/2] + O(\log n)\} \]

$H(\alpha) \approx \alpha \log(1/\alpha)$

Exponent crosses zero at $\alpha_1 \approx 2(\log d)/d$:
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n.
$G_n = \mathbb{G}_{n,d/n}$:

$$P(Z_{n\alpha} > 0) \leq \mathbb{E} Z_{n\alpha} = \binom{n}{n\alpha} (1 - d/n)^{n\alpha(n\alpha-1)/2}$$
$$= \exp\{n[H(\alpha) - d\alpha^2/2] + O(\log n)\}$$

$H(\alpha) \approx \alpha \log(1/\alpha)$

Exponent crosses zero at $\alpha_1 \approx 2(\log d)/d$:

$A_n \leq n\alpha_1[1 + o(1)]$ on $\mathbb{G}_{n,d/n}$

$H(\alpha) - d\alpha^2/2$ (d = 100)
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n.

$G_n = \mathcal{G}_{n,d/n}$:

\[
P(Z_{n\alpha} > 0) \leq \mathbb{E}Z_{n\alpha} = \binom{n}{n\alpha} (1 - d/n)^{n\alpha(n\alpha-1)/2}
\]

\[
= \exp\{n[H(\alpha) - d\alpha^2/2] + O(\log n)\}
\]

$H(\alpha) \approx \alpha \log(1/\alpha)$

Exponent crosses zero at

$\alpha_1 \approx 2(\log d)/d$:

$A_n \leq n\alpha_1[1 + o(1)]$ on $\mathcal{G}_{n,d/n}$

Similarly $\alpha_1 \approx 2(\log d)/d$ on $\mathcal{G}_{n,d}$

\[
H(\alpha) - d\alpha^2/2 \quad (d = 100)
\]
First moment upper bound

Let $Z_{n\alpha}$ be the number of independent sets of size $n\alpha$ in G_n.

$G_n = \mathcal{G}_{n,d/n}$:

$$P(Z_{n\alpha} > 0) \leq \mathbb{E}Z_{n\alpha} = \binom{n}{n\alpha}(1 - d/n)^{n\alpha(n\alpha - 1)/2}$$

$$= \exp\{n[H(\alpha) - d\alpha^2/2] + O(\log n)\}$$

$H(\alpha) \approx \alpha \log(1/\alpha)$

Exponent crosses zero at

$\alpha_1 \approx 2(\log d)/d$:

$A_n \leq n\alpha_1[1 + o(1)]$ on $\mathcal{G}_{n,d/n}$

Similarly $\alpha_1 \approx 2(\log d)/d$ on $\mathcal{G}_{n,d}$

Not sharp: $\alpha_1 > \alpha_*$

$H(\alpha) - d\alpha^2/2$ (d = 100)
Second moment fails to locate sharp threshold

\[
\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq \mathbb{P}(Z > 0) \leq \mathbb{E}Z
\]
Second moment fails to locate sharp threshold

\[\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq \mathbb{P}(Z > 0) \leq \mathbb{E}Z \]

For MAX-IS on sparse graph ensembles, basic second moment approach fails to locate sharp threshold:
Second moment fails to locate sharp threshold

\[
\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq \mathbb{P}(Z > 0) \leq \mathbb{E}Z
\]

For MAX-IS on sparse graph ensembles, basic second moment approach **fails to locate sharp threshold**:

\[
0 \quad \alpha_0 \quad \alpha \quad \alpha_1
\]
Second moment fails to locate sharp threshold

\[
\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq \Pr(Z > 0) \leq \mathbb{E}Z
\]

w.p.p.

For \textbf{MAX-IS} on \textit{sparse} graph ensembles, basic second moment approach \textbf{fails to locate sharp threshold}:

\[
\mathbb{E}Z_{n\alpha} \gg 1
\]
Second moment fails to locate sharp threshold

\[\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq \mathbb{P}(Z > 0) \leq \mathbb{E}Z \]

For MAX-IS on sparse graph ensembles, basic second moment approach fails to locate sharp threshold:

\[\mathbb{E}Z_{n\alpha} \ll 1 \]
Second moment fails to locate sharp threshold

\[
\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq \mathbb{P}(Z > 0) \leq \mathbb{E}Z
\]

For **MAX-IS** on **sparse** graph ensembles, basic second moment approach **fails to locate sharp threshold**:

\[
\mathbb{E}[Z^2_{n\alpha}] \asymp (\mathbb{E}Z_{n\alpha})^2
\]
Second moment fails to locate sharp threshold

\[\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq P(Z > 0) \leq \mathbb{E}Z \]

For **MAX-IS** on **sparse** graph ensembles, basic second moment approach **fails to locate sharp threshold**:

\[\mathbb{E}[Z_{n\alpha}^2] \gg (\mathbb{E}Z_{n\alpha})^2 \]
Second moment fails to locate sharp threshold

\[
\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq \mathbb{P}(Z > 0) \leq \mathbb{E}Z
\]

For \textsc{max-is} on \textit{sparse} graph ensembles, basic second moment approach \textbf{fails to locate sharp threshold}:

\[
\text{gap}
\]

\text{no conclusions about } \mathbb{P}(Z_{n\alpha} > 0)

Second moment fails to locate sharp threshold

\[
\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq \mathbb{P}(Z > 0) \leq \mathbb{E}Z
\]

For \textsc{max-is} on sparse graph ensembles, basic second moment approach \textbf{fails to locate sharp threshold}:

no conclusions about \(\mathbb{P}(Z_{n\alpha} > 0) \)
Second moment fails to locate sharp threshold

\[
\frac{1}{\mathbb{E}[Z^2]/(\mathbb{E}Z)^2} \leq \mathbb{P}(Z > 0) \leq \mathbb{E}Z
\]

For \textsc{max-is} on \textit{sparse} graph ensembles, basic second moment approach \textit{fails to locate sharp threshold}:

no conclusions about \(\mathbb{P}(Z_{n\alpha} > 0) \)
Non-rigidity in independent set on $G_{n,d}$
Non-rigidity in independent set on $\mathcal{G}_{n,d}$

Independent set \leftrightarrow 0/1 configuration ($1 \equiv$ occupied)
Non-rigidity in independent set on $G_{n,d}$

Independent set \leftrightarrow 0/1 configuration ($1 \equiv$ occupied)

Number of 1’s neighboring a 0? On average $2 \log d$
Non-rigidity in independent set on $G_{n,d}$

Independent set \leftrightarrow $0/1$ configuration ($1 \equiv$ occupied)

Number of 1’s neighboring a 0? On average $2 \log d$

Probability for a 0 to have a single neighboring 1?
Non-rigidity in independent set on $G_{n,d}$

Independent set \leftrightarrow 0/1 configuration ($1 \equiv$ occupied)

Number of 1's neighboring a 0? On average $2 \log d$

Probability for a 0 to have a single neighboring 1? $0 \leftrightarrow 1$
Non-rigidity in independent set on $G_{n,d}$

Independent set \longleftrightarrow 0/1 configuration ($1 \equiv$ occupied)

Number of 1’s neighboring a 0? On average $2 \log d$

Probability for a 0 to have a single neighboring 1? $1 \leftarrow 0$
Non-rigidity in independent set on $G_{n,d}$

Independent set \leftrightarrow 0/1 configuration ($1 \equiv$ occupied)

Number of 1’s neighboring a 0? On average $2 \log d$

Probability for a 0 to have a single neighboring 1? $0 \leftrightarrow 1$
Non-rigidity in independent set on $\mathcal{G}_{n,d}$

Independent set \leftrightarrow 0/1 configuration ($1 \equiv$ occupied)

Number of 1’s neighboring a 0? On average $2 \log d$

Probability for a 0 to have a **single neighboring 1**? 0 \leftrightarrow 1

$$\mathbb{P} \left(\text{Bin} \left(d, \frac{2 \log d}{d} \right) = 1 \right)$$
Non-rigidity in independent set on $G_{n,d}$

Independent set $\leftrightarrow 0/1$ configuration ($1 \equiv$ occupied)

Number of 1's neighboring a 0? On average $2 \log d$

Probability for a 0 to have a single neighboring 1? $0 \leftrightarrow 1$

$$P\left(\text{Bin}\left(d, \frac{2 \log d}{d}\right) = 1\right) = d \frac{2 \log d}{d} \left(1 - \frac{2 \log d}{d}\right)^{d-1}$$
Independent set $\leftrightarrow 0/1$ configuration ($1 \equiv$ occupied)

Number of 1's neighboring a 0? On average $2 \log d$

Probability for a 0 to have a **single** neighboring 1? $0 \leftrightarrow 1$

$$
P\left(\text{Bin}\left(d, \frac{2 \log d}{d}\right) = 1\right) = d \frac{2 \log d}{d} \left(1 - \frac{2 \log d}{d}\right)^{d-1} \approx \frac{2 \log d}{d^2}
$$
Non-rigidity in independent set on $G_{n,d}$

Independent set \longleftrightarrow 0/1 configuration ($1 \equiv$ occupied)

Number of 1's neighboring a 0? On average $2 \log d$

Probability for a 0 to have a single neighboring 1? $0 \longleftrightarrow 1$

$$P\left(\text{Bin}\left(d, \frac{2 \log d}{d}\right) = 1\right) = d \frac{2 \log d}{d} \left(1 - \frac{2 \log d}{d}\right)^{d-1} \approx \frac{2 \log d}{d^2}$$
Non-rigidity in independent set on $G_{n,d}$

Independent set $\leftrightarrow 0/1$ configuration ($1 \equiv$ occupied)

Number of 1's neighboring a 0? On average $2 \log d$

Probability for a 0 to have a single neighboring 1? $0 \leftrightarrow 1$

$$P\left(\text{Bin}\left(d, \frac{2 \log d}{d}\right) = 1\right) = d \frac{2 \log d}{d} \left(1 - \frac{2 \log d}{d}\right)^{d-1} \approx \frac{2 \log d}{d^2}$$

Typical independent set has at least $\frac{2^n}{d^2}$ nearby solutions
Second moment fails in independent set

Typical independent set has at least $2^{n/d^2}$ nearby solutions.
Second moment fails in independent set

Typical independent set has at least $2^{n/d^2}$ nearby solutions

Must have regime $\alpha < \alpha_1$ with $1 \ll \mathbb{E} Z_{n\alpha} \ll 2^{n/d^2}$
Second moment fails in independent set

Typical independent set has at least $2^{n/d^2}$ nearby solutions

Must have regime $\alpha < \alpha_1$ with $1 \ll \mathbb{E} Z_{n\alpha} \ll 2^{n/d^2}$

$$\mathbb{E}[Z_{n\alpha}^2] \gg (\mathbb{E} Z_{n\alpha})^2$$
Second moment fails in independent set

Typical independent set has at least $\frac{2^n}{d^2}$ nearby solutions

Must have regime $\alpha < \alpha_1$ with $1 \ll \mathbb{E} Z_{n\alpha} \ll \frac{2^n}{d^2}$

$$\mathbb{E}[Z_{n\alpha}^2] \gg \left(\mathbb{E} Z_{n\alpha}\right)^2$$

Second moment fails

Non-rigidity does not occur on dense graphs.
Outline

1. Maximum independent sets
2. Second moment and condensation
3. Sharp thresholds by counting clusters
Outline

1 Maximum independent sets

2 Second moment and condensation

3 Sharp thresholds by counting clusters
Breaking the condensation barrier
Breaking the condensation barrier

Until rather recently, best satisfiability lower bounds remained below condensation threshold α_c
Breaking the condensation barrier

Until rather recently, best satisfiability lower bounds remained below condensation threshold α_c

Coja-Oghlan–Panagiotou (2012) for random k-NAE-SAT
Breaking the condensation barrier

Until rather recently, best satisfiability lower bounds remained below condensation threshold α_c

Coja-Oghlan–Panagiotou (2012) for random k-NAE-SAT — first to break condensation barrier among models with non-trivial condensation phase
Breaking the condensation barrier

Until rather recently, best satisfiability lower bounds remained below condensation threshold α_c.

Coja-Oghlan–Panagiotou (2012) for random k-NAE-SAT — first to break condensation barrier among models with non-trivial condensation phase.

CP ’12 approach: apply second moment method to count clusters rather than assignments.
Breaking the condensation barrier

Until rather recently, best satisfiability lower bounds remained below condensation threshold α_c.

Coja-Oghlan–Panagiotou (2012) for random k-NAE-SAT — first to break condensation barrier among models with non-trivial condensation phase.

CP ’12 approach: apply second moment method to count clusters rather than assignments

Idea: reweight by $2^{-\#f}$ where $\#f$ is the number of vertices which are free.
Whitening algorithm

Approach: Set variables which can be changed to free. Parisi ’02,
Maneva–Mossel–Wainwright ’07
Maneva–Sinclair ’08, Achlioptas–Ricci-Tersenghi ’09

Idea behind survey propagation.
Whitening algorithm

Approach: Set variables which can be changed to free. Parisi '02,
Maneva–Mossel–Wainwright '07
Maneva–Sinclair '08, Achlioptas–Ricci-Tersenghi '09

Idea behind survey propagation.

We determine the exact threshold α_\star by finding a projection which takes entire clusters to single points
Whitening algorithm

Approach: Set variables which can be changed to free. Parisi '02,
Maneva–Mossel–Wainwright '07
Maneva–Sinclair '08, Achlioptas–Ricci-Tersenghi '09

Idea behind survey propagation.

We determine the exact threshold α_* by finding a projection which takes entire clusters to single points

$$0 \longleftrightarrow 1$$
Whitening algorithm

Approach: Set variables which can be changed to free. Parisi ’02,
Maneva–Mossel–Wainwright ’07
Maneva–Sinclair ’08, Achlioptas–Ricci-Tersenghi ’09

Idea behind survey propagation.

We determine the exact threshold α_\star by finding a projection which takes entire clusters to single points

$$1 \leftrightarrow 0$$
Whitening algorithm

Approach: Set variables which can be changed to free.
Parisi ’02,
Maneva–Mossel–Wainwright ’07
Maneva–Sinclair ’08, Achlioptas–Ricci-Tersenghi ’09

Idea behind survey propagation.

We determine the exact threshold α_\star by finding a projection which takes entire clusters to single points

$$0 \leftrightarrow 1$$
Whitening algorithm

Approach: Set variables which can be changed to free.

Parisi '02,
Maneva–Mossel–Wainwright '07
Maneva–Sinclair '08, Achlioptas–Ricci-Tersenghi '09

Idea behind survey propagation.

We determine the **exact threshold** α_\star by finding a projection which takes **entire clusters** to single points

\[
\mathbf{f} \iff \mathbf{f}
\]
Whitening algorithm

Approach: Set variables which can be changed to free. Parisi '02, Maneva–Mossel–Wainwright '07 Maneva–Sinclair '08, Achlioptas–Ricci-Tersenghi '09

Idea behind survey propagation.

We determine the exact threshold α_\star by finding a projection which takes entire clusters to single points

$$f \iff f$$

Whitening algorithm:
Whitening algorithm

Approach: Set variables which can be changed to free. \(\text{Parisi '02, Maneva–Mossel–Wainwright '07, Maneva–Sinclair '08, Achlioptas–Ricci-Tersenghi '09} \)

Idea behind survey propagation.

We determine the **exact threshold** \(\alpha_\star \) by finding a projection which takes entire clusters to single points

\[
\text{f} \iff \text{f}
\]

Whitening algorithm:

WHILE there exists any 0 with a single neighboring 1
Whitening algorithm

Approach: Set variables which can be changed to free.
Parisi ’02, Maneva–Mossel–Wainwright ’07, Maneva–Sinclair ’08, Achlioptas–Ricci-Tersenghi ’09

Idea behind survey propagation.

We determine the exact threshold α_\star by finding a projection which takes entire clusters to single points

$$f \iff f$$

Whitening algorithm:

WHILE there exists any 0 with a single neighboring

$$0 \longleftrightarrow 1$$
Whitening algorithm

Approach: Set variables which can be changed to free.
Parisi '02,
Maneva–Mossel–Wainwright '07
Maneva–Sinclair '08, Achlioptas–Ricci-Tersenghi '09

Idea behind survey propagation.

We determine the exact threshold α^* by finding a projection which takes entire clusters to single points

$$f \iff f$$

Whitening algorithm:

WHILE there exists any 0 with a single neighboring 1
DO set both to f and declare them matched

$$0 \iff 1$$

$$f \iff f$$
Whitening algorithm

Approach: Set variables which can be changed to free.
Parisi ’02,
Maneva–Mossel–Wainwright ’07
Maneva–Sinclair ’08, Achlioptas–Ricci-Tersenghi ’09

Idea behind survey propagation.

We determine the **exact threshold** α_\star by finding a projection which takes **entire clusters** to single points

\[f \iff f \]

Whitening algorithm:

WHILE there exists any 0 with a single neighboring 1
 DO set both to f and declare them **matched**
Set any 0 with no neighboring 1’s to f.
Whitening algorithm

Approach: Set variables which can be changed to free. Parisi ’02, Maneva–Mossel–Wainwright ’07 Maneva–Sinclair ’08, Achlioptas–Ricci-Tersenghi ’09

Idea behind survey propagation.

We determine the exact threshold α_\star by finding a projection which takes entire clusters to single points

$$f \iff f$$

Whitening algorithm:

WHILE there exists any 0 with a single neighboring 1
DO set both to f and declare them matched
Set any 0 with no neighboring 1’s to f.

Observation:
Whitening algorithm

Approach: Set variables which can be changed to free. Parisi ’02, Maneva–Mossel–Wainwright ’07 Maneva–Sinclair ’08, Achlioptas–Ricci-Tersenghi ’09

Idea behind survey propagation.

We determine the exact threshold α^* by finding a projection which takes entire clusters to single points

$$f \iff f$$

Whitening algorithm:

WHILE there exists any 0 with a single neighboring 1

DO set both to f and declare them *matched*.

Set any 0 with no neighboring 1’s to f.

Observation:

Configurations resulting from this procedure can be described by a graphical model.
A chain of swaps
Graphical model for clusters

After discarding non-maximal configurations, mostly left with $0/1$ configurations where

a. 1's can only neighbor 0's;

b. f's occur in matched pairs;

c. 0's must have at least two neighboring 1's.

$Z_{n\alpha} \equiv \text{partition function of graphical model}$

with $n\alpha \leq \#1 + \#f$-pairs

Sharp threshold for $Z_{n\alpha}$ gives max-is sharp threshold
Graphical model for clusters

After discarding non-maximal configurations, mostly left with 0/1/f configurations where
Graphical model for clusters

After discarding non-maximal configurations, mostly left with $0/1/f$ configurations where

A. 1’s can only neighbor 0’s;
Graphical model for clusters

After discarding non-maximal configurations, mostly left with 0/1/f configurations where

A. 1’s can only neighbor 0’s;
B. f’s occur in matched pairs;
Graphical model for clusters

After discarding non-maximal configurations, mostly left with 0/1/f configurations where

A. 1’s can only neighbor 0’s;
B. f’s occur in matched pairs;
C. 0’s must have at least two neighboring 1’s
Graphical model for clusters

After discarding non-maximal configurations, mostly left with 0/1/f configurations where

A. 1’s can only neighbor 0’s;
B. f’s occur in matched pairs;
C. 0’s must have at least two neighboring 1’s

\(Z_{n\alpha} \equiv \text{partition function of graphical model} \)

with \(n\alpha \leq \#1\text{'s} + \#f\text{-pairs} \)
Graphical model for clusters

After discarding non-maximal configurations, mostly left with 0/1/\(f\) configurations where

A. 1’s can only neighbor 0’s;
B. \(f\)’s occur in matched pairs;
C. 0’s must have at least two neighboring 1’s

\[Z_{n\alpha} \equiv \text{partition function of graphical model with } n\alpha \leq \#1\text{’s} + \#f\text{-pairs}\]
Graphical model for clusters

After discarding non-maximal configurations, mostly left with 0/1/\(f\) configurations where

A. 1’s can only neighbor 0’s;
B. \(f\)’s occur in matched pairs;
C. 0’s must have at least two neighboring 1’s

\[
Z_{n\alpha} \equiv \text{partition function of graphical model with } n\alpha \leq \#1\text{'s} + \#f\text{-pairs}
\]

Sharp threshold for \(Z_{n\alpha}\) gives MAX-IS sharp threshold
Outline of our approach

1. Correspondence between max-is threshold and threshold of simplified \(\frac{1}{f} \) graphical model for clusters

2. Sharp threshold in graphical model for clusters

\[E[Z_{2n}] \approx (E[Z_{n\alpha}])^2 \| E[Z_{n\alpha}] \ll 1 \rightarrow G_{n,d} \text{ converges locally to } d \text{-regular tree:} \]

Bethe variational principle — relation between (i) local neighborhood profiles optimizing first moment and (ii) fixed points of tree recursions — gives formula for \(\alpha^\star, c^\star \)

Second moment handled by analysis of paired spin model

Most of work, 30+ pages here

3. Variance decomposition to prove \(O(1) \) fluctuations of \(A_n \)
Outline of our approach

1. Correspondence between MAX-IS threshold
Outline of our approach

1. Correspondence between MAX-IS threshold and threshold of simplified $0/1/f$ graphical model for clusters
Outline of our approach

1. Correspondence between \textsc{max-is} threshold and threshold of simplified 0/1/\textit{f} graphical model for clusters

2. Sharp threshold in graphical model for clusters
Outline of our approach

1. Correspondence between MAX-IS threshold and threshold of simplified 0/1/\$f\$ graphical model for clusters

2. Sharp threshold in graphical model for clusters

\[\mathbb{E}[Z_{n\alpha}^2] \asymp (\mathbb{E}Z_{n\alpha})^2 \quad \mathbb{E}Z_{n\alpha} \ll 1 \]
Outline of our approach

1. Correspondence between MAX-IS threshold and threshold of simplified 0/1/\(f\) graphical model for clusters

2. Sharp threshold in graphical model for clusters

\[\mathbb{E}[Z^2_{n\alpha}] \asymp (\mathbb{E}Z_{n\alpha})^2 \quad \mathbb{E}Z_{n\alpha} \ll 1 \quad \rightarrow \]

\(G_{n,d}\) converges locally to \(d\)-regular tree:
Outline of our approach

1. Correspondence between MAX-IS threshold and threshold of simplified 0/1/\(\ell \) graphical model for clusters

2. Sharp threshold in graphical model for clusters

\[\mathbb{E}[Z_{n\alpha}^2] \asymp (\mathbb{E}Z_{n\alpha})^2 \quad | \quad \mathbb{E}Z_{n\alpha} \ll 1 \quad \rightarrow \]

\(G_{n,d} \) converges locally to \(d \)-regular tree:
Bethe variational principle — relation between
(i) local neighborhood profiles optimizing first moment and
(ii) fixed points of tree recursions
Outline of our approach

1. Correspondence between MAX-IS threshold and threshold of simplified $0/1/\ell$ graphical model for clusters

2. Sharp threshold in graphical model for clusters

\[\mathbb{E}[Z^2_{n\alpha}] \asymp (\mathbb{E}Z_{n\alpha})^2 \quad | \quad \mathbb{E}Z_{n\alpha} \ll 1 \rightarrow \]

$\mathcal{G}_{n,d}$ converges locally to d-regular tree:
Bethe variational principle — relation between (i) local neighborhood profiles optimizing first moment and (ii) fixed points of tree recursions — gives formula for α_\star, c_\star
Outline of our approach

1. Correspondence between MAX-IS threshold and threshold of simplified 0/1/\text{f} graphical model for clusters

2. Sharp threshold in graphical model for clusters

\[\mathbb{E}[Z_{n\alpha}^2] \approx (\mathbb{E}Z_{n\alpha})^2 \quad \mathbb{E}Z_{n\alpha} \ll 1 \]

\(G_{n,d} \) converges locally to \(d \)-regular tree:
Bethe variational principle — relation between
(i) local neighborhood profiles optimizing first moment and
(ii) fixed points of tree recursions
— gives formula for \(\alpha_\star, c_\star \)
Second moment handled by analysis of paired spin model
Outline of our approach

1. Correspondence between MAX-IS threshold and threshold of simplified 0/1/\(f \) graphical model for clusters

2. Sharp threshold in graphical model for clusters

\[\mathbb{E}[Z_{n\alpha}^2] \asymp (\mathbb{E} Z_{n\alpha})^2 \mid \mathbb{E} Z_{n\alpha} \ll 1 \rightarrow \]

\(G_{n,d} \) converges locally to \(d \)-regular tree:
Bethe variational principle — relation between (i) local neighborhood profiles optimizing first moment and (ii) fixed points of tree recursions — gives formula for \(\alpha_\star, c_\star \)
Second moment handled by analysis of paired spin model

Most of work, 30+ pages here
Outline of our approach

1. Correspondence between MAX-IS threshold and threshold of simplified $0/1/f$ graphical model for clusters

2. Sharp threshold in graphical model for clusters

\[\mathbb{E}[Z_{n\alpha}^2] \asymp (\mathbb{E}Z_{n\alpha})^2 \quad \mid \quad \mathbb{E}Z_{n\alpha} \ll 1 \]

\(G_{n,d}\) converges locally to \(d\)-regular tree:
Bethe variational principle — relation between
(i) local neighborhood profiles optimizing first moment and
(ii) fixed points of tree recursions
— gives formula for \(\alpha_\star, c_\star\)
Second moment handled by analysis of paired spin model
Most of work, 30+ pages here

3. Variance decomposition to prove \(O(1)\) fluctuations of \(A_n\)
Thank you!