An Introduction to Symplectic and Contact Topology and the Technique of Generating Families

Lisa Traynor

Bryn Mawr College

March 2014
1 Introduction to Symplectic and Contact Topology
Outline

1. Introduction to Symplectic and Contact Topology
2. Introduction to Generating Families
Outline

1. Introduction to Symplectic and Contact Topology

2. Introduction to Generating Families

3. Invariants from Generating Families
 - Generating Family Homology for a Legendrian Submanifold
 - Wrapped Generating Family Cohomology for a Lagrangian Cobordism
Where Are We?

1. Introduction to Symplectic and Contact Topology

2. Introduction to Generating Families

3. Invariants from Generating Families
 - Generating Family Homology for a Legendrian Submanifold
 - Wrapped Generating Family Cohomology for a Lagrangian Cobordism
Important Symplectic and Contact Objects

Symplectic Manifold \((X^{2n}, \omega)\)

Symplectomorphism
\[\psi^* \omega = \omega\]

Lagrangian Submanifold
\[L^n : \omega|_{TL} \equiv 0\]

Contact Manifold \((Y^{2n+1}, \xi)\)

Contactomorphism
\[\kappa^* \xi = \xi\]

Legendrian Submanifold
\[\Lambda^n : T\Lambda \subset \xi\]
Symplectic Manifolds: \((X^{2n}, \omega)\)

\(\omega\) is a closed, non-degenerate 2-form:

\[d \omega = 0, \quad \omega^n \text{ is a volume form.}\]
Symplectic Manifolds: \((X^{2n}, \omega)\)

\(\omega\) is a closed, non-degenerate 2-form:

\[d\omega = 0, \quad \omega^n \text{ is a volume form.}\]

Example

- Any orientable surface \(\Sigma\) with area form \(\omega\);

\[\text{S}^4\text{ is not a symplectic manifold: } H_2(S^4) = 0.\]
Symplectic Manifolds: \((X^{2n}, \omega)\)

\(\omega\) is a closed, non-degenerate 2-form:

\[d\omega = 0, \quad \omega^n \text{ is a volume form}. \]

Example

- Any orientable surface \(\Sigma\) with area form \(\omega\);
- \((\mathbb{R}^{2n}, \omega_0 = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n)\);
Symplectic Manifolds: \((X^{2n}, \omega)\)

\(\omega\) is a closed, non-degenerate 2-form:

\[d\omega = 0, \quad \omega^n \text{ is a volume form.} \]

Example

- Any orientable surface \(\Sigma\) with area form \(\omega\);
- \((\mathbb{R}^{2n}, \omega_0 = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n)\);
- Cotangent Bundle, \(T^*M\), has a canonical 1-form \(\lambda_0\), \(\omega_0 = d\lambda_0\) is a symplectic form.
Symplectic Manifolds: \((X^{2n}, \omega)\)

\(\omega\) is a closed, non-degenerate 2-form:

\[d\omega = 0, \quad \omega^n \text{ is a volume form.} \]

Example

- Any orientable surface \(\Sigma\) with area form \(\omega\);
- \((\mathbb{R}^{2n}, \omega_0 = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n)\);
- Cotangent Bundle, \(T^*M\), has a canonical 1-form \(\lambda_0\),
 \(\omega_0 = d\lambda_0\) is a symplectic form.

\(S^4\) is not a symplectic manifold: \(H^2(S^4) = 0\).
Symplectic Manifolds: \((X^{2n}, \omega)\)

\(\omega\) is a closed, non-degenerate 2-form:

\[d\omega = 0, \quad \omega^n \text{ is a volume form.} \]

Example

- Any orientable surface \(\Sigma\) with area form \(\omega\);
- \((\mathbb{R}^{2n}, \omega_0 = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n)\);
- Cotangent Bundle, \(T^*M\), has a canonical 1-form \(\lambda_0\), \(\omega_0 = d\lambda_0\) is a symplectic form.

\(S^4\) is not a symplectic manifold: \(H^2(S^4) = 0\).

Theorem (Darboux’s Theorem)

All symplectic manifolds are locally equivalent to \((\mathbb{R}^{2n}, \omega_0)\).
Symplectic Diffeomorphisms: $\omega(v, w) = \omega(\psi_* v, \psi_* w)$.

Example (\mathcal{A}_2, \mathcal{A}): Any area-preserving transformation; (\mathbb{R}^2, \mathcal{A}_0): Products of area-preserving transformations of the x_i-y_i-planes; (\mathbb{R}^2, \mathcal{A}): Hamiltonian Functions and Vector Fields

For any smooth $H_t: \mathbb{R} \to \mathbb{R}$, define v_t by $v_t(v, \cdot) = dH_t$; The flow of v_t defines a symplectic isotopy $t : (X, \mathcal{A}) \to (X, \mathcal{A})$.

Lisa Traynor (Bryn Mawr)
Symplectic and Contact Topology
Banff 2013 6 / 40
Symplectic Diffeomorphisms: \(\omega(v, w) = \omega(\psi_* v, \psi_* w) \).

Example

- \((\Sigma^2, \omega)\): Any area-preserving transformation;
Symplectic Diffeomorphisms: \(\omega(v, w) = \omega(\psi_* v, \psi_* w) \).

Example

- \((\Sigma^2, \omega)\): Any area-preserving transformation;
- \((\mathbb{R}^{2n}, \omega_0)\): Products of area-preserving transformations of the \(x_iy_i\)-planes;
Symplectic Diffeomorphisms: $\omega(v, w) = \omega(\psi_* v, \psi_* w)$.

Example

- (Σ^2, ω): Any area-preserving transformation;
- $(\mathbb{R}^{2n}, \omega_0)$: Products of area-preserving transformations of the $x_i y_i$-planes;
- (X^{2n}, ω): Hamiltonian Functions and Vector Fields
 For any smooth $H_t : X \to \mathbb{R}$, define v_t by
 \[
 \omega(v_t, \cdot) = dH_t;
 \]

The flow of v_t defines a symplectic isotopy $\psi_t : (X, \omega) \to (X, \omega)$.
Lagrangian Submanifolds: \(L^n : \omega|_{TL} \equiv 0 \)

Example \((\mathbb{R}^2, \omega)\): Any embedded curve is Lagrangian;

\((\mathbb{R}^n, \omega)\): The \(x_1 x_2 x_3 \ldots x_n\)-plane is Lagrangian; the \(x_1 y_1 x_3 \ldots x_n\)-plane is not Lagrangian;

\((T^* M, d\omega)\): For any function \(f: M \to \mathbb{R}\), the section \(df \to T^* M\) is a Lagrangian submanifold.

There is no embedded Lagrangian \(S^2\) in \(\mathbb{R}^4\).
Example

- (Σ^2, ω): Any embedded curve is Lagrangian;
Example

- \((\Sigma^2, \omega)\): Any embedded curve is Lagrangian;
- \((\mathbb{R}^{2n}, \omega_0)\): The \(x_1 x_2 x_3 \ldots x_n\)-plane is Lagrangian
 the \(x_1 y_1 x_3 \ldots x_n\)-plane is not Lagrangian;
Lagrangian Submanifolds: $L^n : \omega|_{TL} \equiv 0$

Example

- (Σ^2, ω): Any embedded curve is Lagrangian;
- $(\mathbb{R}^{2n}, \omega_0)$: The $x_1 x_2 x_3 \ldots x_n$-plane is Lagrangian
 the $x_1 y_1 x_3 \ldots x_n$-plane is not Lagrangian;
- $(T^*M, d\lambda_0)$: For any function $f : M \to \mathbb{R}$,
 the section $\Gamma_{df} \subset T^*M$ is a Lagrangian submanifold.
Lagrangian Submanifolds: $L^n : \omega|_{TL} \equiv 0$

Example

- (Σ^2, ω): Any embedded curve is Lagrangian;
- $(\mathbb{R}^{2n}, \omega_0)$: The $x_1x_2x_3 \ldots x_n$-plane is Lagrangian
 the $x_1y_1x_3 \ldots x_n$-plane is not Lagrangian;
- $(T^*M, d\lambda_0)$: For any function $f : M \rightarrow \mathbb{R}$,
 the section $\Gamma_{df} \subset T^*M$ is a Lagrangian submanifold.

! There is no embedded Lagrangian S^2 in \mathbb{R}^4.

Contact Manifolds: \((Y^{2n+1}, \xi)\)

\(\xi\) is a field of maximally non-integrable tangent hyperplanes:

\[\xi = \ker \alpha \implies \alpha \wedge (d\alpha)^{n} \neq 0.\]
Contact Manifolds: \((Y^{2n+1}, \xi)\)

\(\xi\) is a field of maximally non-integrable tangent hyperplanes:

\[\xi = \ker \alpha \implies \alpha \wedge (d\alpha)^n \neq 0.\]

Example

- \((\mathbb{R}^3, \xi_0 = \ker(dz - ydx))\);
Contact Manifolds: \((Y^{2n+1}, \xi)\)

\(\xi\) is a field of maximally non-integrable tangent hyperplanes:

\[\xi = \ker \alpha \implies \alpha \wedge (d\alpha)^n \neq 0.\]

Example

- \((\mathbb{R}^3, \xi_0 = \ker(dz - ydx))\);
- \((\mathbb{R}^{2n+1}, \xi_0 = \ker(dz - \sum y_i dx_i))\);
Contact Manifolds: \((\mathcal{Y}^{2n+1}, \xi)\)

\(\xi\) is a field of maximally non-integrable tangent hyperplanes:

\[\xi = \ker \alpha \implies \alpha \wedge (d\alpha)^n \neq 0.\]

Example

- \((\mathbb{R}^3, \xi_0 = \ker (dz - ydx))\);
- \((\mathbb{R}^{2n+1}, \xi_0 = \ker (dz - \sum y_i dx_i))\);
- (1-Jet Bundles) \(J^1 M = T^* M \times \mathbb{R}\) has a canonical \(\xi_0\);
Contact Manifolds: (Y^{2n+1}, ξ)

ξ is a field of maximally non-integrable tangent hyperplanes:

$$\xi = \ker \alpha \implies \alpha \wedge (d\alpha)^n \neq 0.$$
Theorem (Darboux’s Theorem)

All contact manifolds are locally equivalent to \((\mathbb{R}^{2n+1}, \xi_0)\).
Local and Global Equivalence of Contact Structures

Theorem (Darboux’s Theorem)

All contact manifolds are locally equivalent to $(\mathbb{R}^{2n+1}, \xi_0)$.

Important Problem: Understand the different contact structures on a fixed smooth manifold.

$\xi_0, \xi_1 : \xi_0$ and ξ_1 are homotopic as plane fields,

$\mathcal{A}\varphi : (Y, \xi_0) \to (Y, \xi_1)$.
Theorem (Darboux’s Theorem)

All contact manifolds are locally equivalent to \((\mathbb{R}^{2n+1}, \xi_0)\).

Important Problem: Understand the different contact structures on a fixed smooth manifold.

\(\xi_0, \xi_1 : \xi_0 \) and \(\xi_1 \) are homotopic as plane fields,
\[\forall \phi : (Y, \xi_0) \rightarrow (Y, \xi_1). \]

Theorem (Gray Stability)

If \(\xi_t\) is a smooth family of contact structures on a closed manifold \(Y\), then there is an isotopy \(\kappa_t : (Y, \xi_0) \rightarrow (Y, \xi_t)\) with \((\kappa_t)_*\xi_0 = \xi_t\).
Tight vs. Overtwisted \((Y^3, \xi)\)

A contact 3-manifold is **overtwisted** if it contains an **overtwisted disk**, \(D\): interior of \(D\) is transversal to \(\xi\) except at 1 point; \(\partial D\) is tangent to \(\xi\).
A contact 3-manifold is **overtwisted** if it contains an **overtwisted disk**, D: interior of D is transversal to ξ except at 1 point; ∂D is tangent to ξ.

Theorem (Eliashberg)

Two overtwisted structures on Y are isotopic if they are homotopic as plane fields.
Contact Diffeomorphisms: $\kappa_* \xi = \xi$

Contact Vector Field: flow preserves the contact structure

contact vector field \mapsto contact isotopy
Contact Diffeomorphisms: $\kappa_* \xi = \xi$

Contact Vector Field: flow preserves the contact structure

contact vector field \longrightarrow contact isotopy

Example

- **Reeb Vector Field:** If $\xi = \ker \alpha$, the Reeb vector field R_α defined by:

$$R_\alpha \in \ker d\alpha, \quad \alpha(R_\alpha) = 1,$$

is a contact vector field.
Contact Diffeomorphisms: \(\kappa_* \xi = \xi \)

Contact Vector Field: flow preserves the contact structure

contact vector field \(\longrightarrow \) contact isotopy

Example

- **Reeb Vector Field**: If \(\xi = \ker \alpha \), the Reeb vector field \(R_\alpha \) defined by:

\[
R_\alpha \in \ker d\alpha, \quad \alpha(R_\alpha) = 1,
\]

is a contact vector field.

- **Contact Hamiltonian Vector Field**: For any smooth \(H : Y \to \mathbb{R} \), there is a unique vector field \(K_H \subset \xi = \ker \alpha \) so that

\[
V_H = HR_\alpha + K_H
\]

is a contact vector field.
Contact Diffeomorphisms: $\kappa_\ast \xi = \xi$

Contact Vector Field: flow preserves the contact structure

contact vector field \rightarrow contact isotopy

Example

- **Reeb Vector Field**: If $\xi = \ker \alpha$, the Reeb vector field R_α defined by:

$$R_\alpha \in \ker d\alpha, \quad \alpha(R_\alpha) = 1,$$

is a contact vector field.

- **Contact Hamiltonian Vector Field**: For any smooth $H : Y \rightarrow \mathbb{R}$, there is a unique vector field $K_H \subset \xi = \ker \alpha$ so that

$$V_H = HR_\alpha + K_H$$

is a contact vector field.

Also: time-dependent Hamiltonian functions, H_t, and vector fields V_{H_t}
Legendrians are abundant!
Legendrian Submanifolds: $T^n \subset \xi$

Legendrians are abundant!

- Any knot/link in \mathbb{R}^3 has a Legendrian representation;
Legendrians are abundant!

- Any knot/link in \mathbb{R}^3 has a Legendrian representation;
- In higher dimensions, any closed sphere, torus, or n-manifold that satisfies certain homotopy-theoretic conditions can be C^0-approximated by a Legendrian.
Legendrian Submanifolds: $\mathcal{T} \Lambda^n \subset \xi$

Legendrians are abundant!

- Any knot/link in \mathbb{R}^3 has a Legendrian representation;
- In higher dimensions, any closed sphere, torus, or n-manifold that satisfies certain homotopy-theoretic conditions can be C^0-approximated by a Legendrian.

Interested in the classification of Legendrians up to Legendrian isotopy (equivalently, up to ambient contact isotopy).
Basic Examples of Legendrian Curves

\((\mathbb{R}^3, \ker(dz - ydx))\), \(\Lambda_f = \text{Legendrian lift of the graph of } f : \mathbb{R} \to \mathbb{R}\).
Basic Examples of Legendrian Curves

\((\mathbb{R}^3, \ker(dz - ydx))\), \(\Lambda_f = \text{Legendrian lift of the graph of } f : \mathbb{R} \to \mathbb{R}\).

\[
\Lambda_f = \left\{ \left(x, \frac{df}{dx}(x), f(x) \right) \right\} \subset \mathbb{R}^3.
\]
More Complicated Legendrian Shapes

- Lift of the graph of this "multi-valued" function to \mathbb{R}^3
- No vertical tangents allowed;
- Lift is smooth (semi-cubical cusps);
- At crossing, branch with lesser slope is on top.

Lisa Traynor (Bryn Mawr)
Symplectic and Contact Topology
Banff 2013 14 / 40
\[\Lambda = \text{lift of the graph of this "multi-valued" function to } \mathbb{R}^3 \]
More Complicated Legendrian Shapes

\[\Lambda = \text{lift of the graph of this "multi-valued" function to } \mathbb{R}^3 \]

- No vertical tangents allowed;
More Complicated Legendrian Shapes

\(\Lambda = \text{lift of the graph of this "multi-valued" function to } \mathbb{R}^3 \)

- No vertical tangents allowed;
- Lift is smooth (semi-cubical cusps);
\(\Lambda = \text{lift of the graph of this "multi-valued" function to } \mathbb{R}^3 \)

- No vertical tangents allowed;
- Lift is smooth (semi-cubical cusps);
- At crossing, branch with lesser slope is on top.
Legendrian Knots

Every topological knot/link has a Legendrian representative.

+ Trefoil

- Trefoil

Figure 8

5₁

5₂
Legendrian sphere in \mathbb{R}^5:
Legendrian Surfaces

Legendrian sphere in \mathbb{R}^5:

More possibilities for singularities:
Important Problem: Understand the equivalence of Legendrian submanifolds
Important Problem: Understand the equivalence of Legendrian submanifolds

Classical Invariants: for $\Lambda^n \subset \mathbb{R}^{2n+1}$,
Important Problem: Understand the equivalence of Legendrian submanifolds

Classical Invariants: for $\Lambda^n \subset \mathbb{R}^{2n+1}$,
- The diffeomorphism type of Λ;
Important Problem: Understand the equivalence of Legendrian submanifolds

Classical Invariants: for $\Lambda^n \subset \mathbb{R}^{2n+1}$,
- The diffeomorphism type of Λ;
- The rotation class $r(\Lambda) \in [\Lambda, U(n)]$;
Important Problem: Understand the equivalence of Legendrian submanifolds

Classical Invariants: for $\Lambda^n \subset \mathbb{R}^{2n+1}$,
- The diffeomorphism type of Λ;
- The rotation class $r(\Lambda) \in [\Lambda, U(n)]$;
- The Thurston-Bennequin Invariant $tb(\Lambda) \in \mathbb{Z}$;
Important Problem: Understand the equivalence of Legendrian submanifolds

Classical Invariants: for $\Lambda^n \subset \mathbb{R}^{2n+1}$,

- The diffeomorphism type of Λ;
- The rotation class $r(\Lambda) \in [\Lambda, U(n)]$;
- The Thurston-Bennequin Invariant $tb(\Lambda) \in \mathbb{Z}$;
- ($n \geq 4$ and even) Relative invariant $tb^*(\Lambda_1, \Lambda_2) \in \mathbb{Z}/2\mathbb{Z}$.
Important Problem: Understand the equivalence of Legendrian submanifolds

Classical Invariants: for $\Lambda^n \subset \mathbb{R}^{2n+1}$,

- The diffeomorphism type of Λ;
- The rotation class $r(\Lambda) \in [\Lambda, U(n)]$;
- The Thurston-Bennequin Invariant $tb(\Lambda) \in \mathbb{Z}$;
- ($n \geq 4$ and even) Relative invariant $tb^*(\Lambda_1, \Lambda_2) \in \mathbb{Z}/2\mathbb{Z}$.

When $\Lambda = S^{2n}$, $r(\Lambda) = 0$, $tb(\Lambda)$ determined from $\chi(\Lambda)$.
Question: Is it possible to construct non-classical invariants of Legendrian submanifolds from the Reeb chords?
Question: Is it possible to construct non-classical invariants of Legendrian submanifolds from the Reeb chords?
Techniques to Construct Invariants from Reeb Chords

J-Holomorphic Curves
Initiated by Gromov, ’85

Generating Families of Functions
Classic technique;
Modernized by Sikorav, Laudenbach, Chaperon, Viterbo, 80’s and 90’s
Techniques to Construct Invariants from Reeb Chords

J-Holomorphic Curves
Initiated by Gromov, ’85
Applies to more general manifolds.

Generating Families of Functions
Classic technique;
Modernized by Sikorav, Laudenbach, Chaperon, Viterbo, 80’s and 90’s
Analysis is finite dimensional.
Arguments apply to all dimensions.
Techniques to Construct Invariants from Reeb Chords

J-Holomorphic Curves
Initiated by Gromov, ’85

Applies to more general manifolds.

Generating Families of Functions
Classic technique;
Modernized by Sikorav, Laudenbach, Chaperon, Viterbo, 80’s and 90’s

Analysis is finite dimensional.
Arguments apply to all dimensions.

Interesting parallels between results!
Techniques to Construct Invariants from Reeb Chords

J-Holomorphic Curves
Initiated by Gromov, ’85
Applies to more general manifolds.

Generating Families of Functions
Classic technique;
Modernized by Sikorav, Laudenbach, Chaperon, Viterbo, 80’s and 90’s
Analysis is finite dimensional.
Arguments apply to all dimensions.

Interesting parallels between results!
Combinatorics as a bridge.
Where Are We?

1. Introduction to Symplectic and Contact Topology

2. Introduction to Generating Families

3. Invariants from Generating Families
 - Generating Family Homology for a Legendrian Submanifold
 - Wrapped Generating Family Cohomology for a Lagrangian Cobordism
Idea of Generating Families

Manifolds of Focus:

Contact

\mathbb{R}^{2n+1}

\[J^1(M) = T^*M \times \mathbb{R} \]

Symplectic

\mathbb{R}^{2n}

\[T^*(M) \]
Idea of Generating Families

Manifolds of Focus:

Contact

\mathbb{R}^{2n+1}

$J^1(M) = T^* M \times \mathbb{R}$

Symplectic

\mathbb{R}^{2n}

$T^*(M)$

- In $J^1(M)$, describe Legendrian submanifolds as the “1-jet” of functions $F : M \times \mathbb{R}^N \to \mathbb{R}$.

Lisa Traynor (Bryn Mawr)
Symplectic and Contact Topology
Banff 2013 21 / 40
Idea of Generating Families

Manifolds of Focus:

Contact

\mathbb{R}^{2n+1}

$J^1(M) = T^* M \times \mathbb{R}$

Symplectic

\mathbb{R}^{2n}

$T^*(M)$

- In $J^1(M)$, describe Legendrian submanifolds as the "1-jet" of functions $F : M \times \mathbb{R}^N \rightarrow \mathbb{R}$.

- In $T^*(M)$, describe Lagrangian submanifolds as the "derivatives" of functions $F : M \times \mathbb{R}^N \rightarrow \mathbb{R}$.

Strategy:

- Apply analysis/Morse theoretic arguments to these functions to obtain invariants of the Lagrangian and Legendrian submanifolds.
Idea of Generating Families

Manifolds of Focus:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Symplectic</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{R}^{2n+1}</td>
<td>\mathbb{R}^{2n}</td>
</tr>
<tr>
<td>$J^1(M) = T^*M \times \mathbb{R}$</td>
<td>$T^*(M)$</td>
</tr>
</tbody>
</table>

- In $J^1(M)$, describe Legendrian submanifolds as the "1-jet" of functions $F : M \times \mathbb{R}^N \to \mathbb{R}$.

- In $T^*(M)$, describe Lagrangian submanifolds as the "derivatives" of functions $F : M \times \mathbb{R}^N \to \mathbb{R}$.

Strategy: Apply analysis/Morse theoretic arguments to these functions to obtain invariants of the Lagrangian and Legendrian submanifolds.
Basic Examples

\((\mathbb{R}^3, \ker(dz - ydx))\), \(\Lambda_f = \text{Legendrian lift of the graph of } f: \mathbb{R} \rightarrow \mathbb{R}.\)

\[\Lambda_f = \left\{ \left(x, \frac{df}{dx}(x), f(x) \right) \right\} \subset \mathbb{R}^3.\]
\((\mathbb{R}^3, \ker(dz - ydx))\), \(\Lambda_f = \text{Legendrian lift of the graph of } f : \mathbb{R} \rightarrow \mathbb{R}\).

\[\Lambda_f = \left\{ \left(x, \frac{df}{dx}(x), f(x) \right) \right\} \subset \mathbb{R}^3.\]

\(f : \mathbb{R} \rightarrow \mathbb{R}\) "generates" \(\Lambda_f\).
Λ = lift of the graph of this “multi-valued" function to $\mathbb{R}^3 = J^1\mathbb{R}$

Λ is not the 1-jet of $f : \mathbb{R} \to \mathbb{R}$.
Λ = lift of the graph of this “multi-valued” function to $\mathbb{R}^3 = J^1\mathbb{R}$

Λ is not the 1-jet of $f : \mathbb{R} \to \mathbb{R}$.

BUT, Λ can be viewed as the “1-jet” of a 1-parameter family of functions

$$F : \mathbb{R} \times \mathbb{R}^N = \{(x, e)\} \to \mathbb{R}.$$
Idea: Construct a family of functions $F_x : \mathbb{R}^N = \{e\} \to \mathbb{R}$, for $x \in \mathbb{R}$.

![Diagram of functions F_x](image-url)
Idea: Construct a family of functions $F_x : \mathbb{R}^N = \{e\} \to \mathbb{R}$, for $x \in \mathbb{R}$.

This family of functions "generates" Λ.

\[\exists F : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R} \text{ so that } \]
\[\Lambda = \left\{ \left(x, \frac{\partial F}{\partial x}(x, e), F(x, e) \right) : \frac{\partial F}{\partial e}(x, e) = 0 \right\}. \]
Explicit Construction

Idea: Construct a family of functions $F_x : \mathbb{R}^N = \{e\} \to \mathbb{R}$, for $x \in \mathbb{R}$.

$\exists F : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ so that

$$\Lambda = \left\{ \left(x, \frac{\partial F}{\partial x}(x, e), F(x, e) \right) : \frac{\partial F}{\partial e}(x, e) = 0 \right\}.$$

\exists choices: Can

- change N by stabilizing with a quadratic: $\tilde{F}(x, e, \tilde{e}) = F(x, e) + Q(\tilde{e});$
- apply a fiber-preserving diffeomorphism: $\tilde{F}(x, e) = F(x, \phi_x(e)).$
GF Domain has Finite Dimension

\[\exists F : \mathbb{R} \times \mathbb{R}^1 \rightarrow \mathbb{R} \]

that generates \(\Lambda \subset \mathbb{R}^3 = J^1 \mathbb{R} \).
GF Domain has Finite Dimension

\[\exists F : \mathbb{R} \times \mathbb{R}^1 \to \mathbb{R} \]

that generates \(\Lambda \subset \mathbb{R}^3 = J^1\mathbb{R} \). But,

\[\exists F : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R} \).

In general, for \(\Lambda \subset J^1(M) \), consider \(F : M \times \mathbb{R}^N \to \mathbb{R} \) for large \(N \).
GF Domain has Finite Dimension

$\exists F : \mathbb{R} \times \mathbb{R}^1 \to \mathbb{R}$

that generates $\Lambda \subset \mathbb{R}^3 = J^1 \mathbb{R}$. But,

$\exists F : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}$.

In general, for $\Lambda \subset J^1 (M)$, consider $F : M \times \mathbb{R}^N \to \mathbb{R}$ for large N.

Usually want F “nice” (quadratic or linear) outside a compact set.
Generating Families for Lagrangian Submanifolds

Similar set up for Lagrangians:

\[
\exists F : \mathbb{R}^n \to \mathbb{R} \text{ so that } L = \{(x, \frac{\partial F}{\partial x}(x)) : x \in \mathbb{R}^n\}.
\]
Generating Families for Lagrangian Submanifolds

Similar set up for Lagrangians:

\[\exists F : \mathbb{R}^n \to \mathbb{R} \text{ so that } L = \{ (x, \frac{\partial F}{\partial x}(x)) : x \in \mathbb{R}^n \}. \]

\[\exists F : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R} \text{ so that } L = \{ (x, \frac{\partial F}{\partial x}(x, e)) : \frac{\partial F}{\partial e}(x, e) = 0 \}. \]
Important Points

- Not all Legendrian (Lagrangian) submanifolds have generating families.

Sabloff, Fuchs, Pushkar, and others show that for $\Lambda^1 \subset \mathbb{R}^3$:

\exists generating family $\iff \exists$ augmentation of the holomorphic-DGA.
Important Points

- Not all Legendrian (Lagrangian) submanifolds have generating families.

Sabloff, Fuchs, Pushkar, and others show that for $\Lambda^1 \subset \mathbb{R}^3$:

\exists generating family $\iff \exists$ augmentation of the holomorphic-DGA.

If a Legendrian (Lagrangian) submanifold has a generating family and κ_t is a contact (symplectic) isotopy, then $\kappa_1(\Lambda)$ has a generating family. "Persistence / Serre Fibration"
Where Are We?

1. Introduction to Symplectic and Contact Topology

2. Introduction to Generating Families

3. Invariants from Generating Families
 - Generating Family Homology for a Legendrian Submanifold
 - Wrapped Generating Family Cohomology for a Lagrangian Cobordism
Given a generating family $f : M \times \mathbb{R}^N \to \mathbb{R}$ for $\Lambda \subset J^1 M$, define the difference function $\delta : M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ by:

$$\delta(x, e, \tilde{e}) = f(x, \tilde{e}) - f(x, e).$$
Given a generating family $f : M \times \mathbb{R}^N \to \mathbb{R}$ for $\Lambda \subset J^1 M$, define the difference function $\delta : M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ by:

$$\delta(x, e, \tilde{e}) = f(x, \tilde{e}) - f(x, e).$$

Critical points of δ are of two types:
Difference Functions of Generating Families

Given a generating family $f : M \times \mathbb{R}^N \to \mathbb{R}$ for $\Lambda \subset J^1 M$, define the difference function $\delta : M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ by:

$$\delta(x, e, \tilde{e}) = f(x, \tilde{e}) - f(x, e).$$

Critical points of δ are of two types:

- For each Reeb chord of Λ, there are two critical points of δ with critical values \pm (Reeb chord length);
Difference Functions of Generating Families

Given a generating family \(f : M \times \mathbb{R}^N \to \mathbb{R} \) for \(\Lambda \subset J^1 M \), define the difference function \(\delta : M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R} \) by:

\[
\delta(x, e, \tilde{e}) = f(x, \tilde{e}) - f(x, e).
\]

Critical points of \(\delta \) are of two types:

- For each Reeb chord of \(\Lambda \), there are two critical points of \(\delta \) with critical values \(\pm \) (Reeb chord length);
- There is a non-degenerate critical submanifold diffeomorphic to \(\Lambda \) with critical value 0.
Given a generating family $f : M \times \mathbb{R}^N \to \mathbb{R}$ for $\Lambda \subset J^1 M$, define the difference function $\delta : M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ by:

$$\delta(x, e, \tilde{e}) = f(x, \tilde{e}) - f(x, e).$$

Critical points of δ are of two types:

- For each Reeb chord of Λ, there are two critical points of δ with critical values \pm (Reeb chord length);
- There is a non-degenerate critical submanifold diffeomorphic to Λ with critical value 0.

As Legendrian Λ is isotoped, critical values born/die/change.

Apply Morse-theoretic constructions to get an invariant of Λ from δ.

For $\omega \gg 0$, $H_*(\delta^\omega, \delta^{-\omega}) = 0$, for all \ast.
Generating Family Homology and Cohomology

For $\omega \gg 0$, $H_*(\delta^\omega, \delta^{-\omega}) = 0$, for all \ast.

Choose ϵ sufficiently small:

Definition (LT, Fuchs-Rutherford, Sabloff-LT)

\[
\begin{align*}
GH_k(f) & = H_{k+N+1}(\delta^\omega, \delta^{\epsilon}), & \widehat{GH}_k(f) & = H_{k+N+1}(\delta^\omega, \delta^{-\epsilon}), \\
GH^k(f) & = H^{k+N+1}(\delta^\omega, \delta^{\epsilon}), & \widehat{GH}^k(f) & = H^{k+N+1}(\delta^\omega, \delta^{-\epsilon}).
\end{align*}
\]
Generating Family Homology and Cohomology

For $\omega \gg 0$, $H_*(\delta^\omega, \delta^{\omega}) = 0$, for all \ast.

Choose ϵ sufficiently small:

Definition (LT, Fuchs-Rutherford, Sabloff-LT)

\[
GH_k(f) = H_{k+N+1}(\delta^\omega, \delta^\epsilon), \quad \widetilde{GH}_k(f) = H_{k+N+1}(\delta^\omega, \delta^{-\epsilon}),
\]

\[
GH^k(f) = H^{k+N+1}(\delta^\omega, \delta^\epsilon), \quad \widetilde{GH}^k(f) = H^{k+N+1}(\delta^\omega, \delta^{-\epsilon}).
\]

Theorem (LT, Fuchs-Rutherford)

\{ $GH_*(f) : f$ generates \wedge \} is an invariant of \wedge.

Lisa Traynor (Bryn Mawr)
Symplectic and Contact Topology
Banff 2013 30 / 40
Generating Family Homology and Cohomology

For $\omega \gg 0$, $H_*(\delta^\omega, \delta^{-\omega}) = 0$, for all \ast.

Choose ϵ sufficiently small:

Definition (LT, Fuchs-Rutherford, Sabloff-LT)

\[GH_k(f) = H_{k+N+1}(\delta^\omega, \delta^\epsilon), \quad \widehat{GH}_k(f) = H_{k+N+1}(\delta^\omega, \delta^{-\epsilon}), \]
\[GH^k(f) = H^{k+N+1}(\delta^\omega, \delta^\epsilon), \quad \widehat{GH}^k(f) = H^{k+N+1}(\delta^\omega, \delta^{-\epsilon}). \]

Theorem (LT, Fuchs-Rutherford)

\[\{ GH_*(f) : f \text{ generates } \wedge \} \text{ is an invariant of } \wedge. \]
\[\{ GH^*(f) \}, \{ \widehat{GH}_*(f) \}, \{ \widehat{GH}^*(f) \} \text{ are also invariants of } \wedge. \]
Generating Family Polynomials

Work over a field \mathbb{F} and encode $GH_\ast(f)$ by its Poincaré polynomial:

$$\Gamma_f(t) = \sum_i \dim GH_i(f) t^i$$
Generating Family Polynomials

Work over a field \mathbb{F} and encode $GH_*(f)$ by its Poincaré polynomial:

$$\Gamma_f(t) = \sum_i \dim GH_i(f) t^i$$

Example

There are two different Legendrian $m(5_2)$ knots with the same tb and r values:

$$P = \{ t^{-2} + t + t^2 \} \quad P = \{ 2 + t \}$$
Duality for Generating Family Homology

There is a structure to the gf-polynomials:

\[t + 4t^2, \quad 4t^{-2} + 4t^2 \]

cannot occur as gf-polynomials for \(\Lambda^1 \subset \mathbb{R}^3 \).
There is a structure to the gf-polynomials:

\[t + 4t^2, \quad 4t^{-2} + 4t^2 \]

cannot occur as gf-polynomials for \(\Lambda^1 \subset \mathbb{R}^3 \).

Duality Theorem:

Theorem (Sabloff-LT)

There is a long exact sequence:

\[\cdots \rightarrow GH^{k-1}(f) \rightarrow GH_{n-k}(f) \rightarrow H^k(\Lambda) \rightarrow \cdots \]
Open Problems for GF-Homology

Important Directions:

- Combinatorially calculate GF-Homology;
- Construct GF-DGA.
Open Problems for GF-Homology

Important Directions:

- Combinatorially calculate GF-Homology;
- Construct GF-DGA.

[Henry and Rutherford] A combinatorial-DGA for Legendrian knots motivated by generating families
\[\Lambda_- \prec_L \Lambda_+ \]

denotes an exact Lagrangian cobordism that is cylindrical over \(\Lambda_\pm \) at \(\pm \infty \).
Lagrangian Floer Cohomology: For closed Lagrangians, define a cohomology with underlying cochain complex the intersection points of the Lagrangians.
Lagrangian Floer Cohomology: For closed Lagrangians, define a cohomology with underlying cochain complex the intersection points of the Lagrangians.

Wrapped Floer Cohomology:
[Abbondodolo-Schwarz, Fukaya-Seidel-Smith, Abouzaid-Smith] For Lagrangian cobordisms, cochain complex generated by intersection between the compact pieces of two Lagrangian cobordisms *and* the Reeb chords at the Legendrian ends.
Lagrangian Floer Cohomology: For closed Lagrangians, define a cohomology with underlying cochain complex the intersection points of the Lagrangians.

Wrapped Floer Cohomology:

How to study with generating families?
Assume Legendrians and Lagrangian can be described by compatible generating families:

\[(\Lambda_-, f_-) \prec_{(L, F)} (\Lambda_+, f_+).\]
Assume Legendrians and Lagrangian can be described by compatible generating families:

\[(\Lambda_-, f_-) \prec_{(L, F)} (\Lambda_+, f_+).\]

\[\exists \text{ generating families}\]

- \(f_\pm : \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}\) for \(\Lambda_\pm\) (linear-at-\(\infty\)); and
Assume Legendrians and Lagrangian can be described by compatible generating families:

\[(\Lambda_-, f_-) \prec_{(L,F)} (\Lambda_+, f_+).\]

\[
\psi : \mathbb{R} \times \mathbb{R}^{2n+1} \rightarrow T^*(\mathbb{R}^+ \times \mathbb{R}^n)
\]

\[
\bar{L} \mapsto \psi(\bar{L})
\]

\exists \text{ generating families}

- \(f_\pm : \mathbb{R}^n \times \mathbb{R}^N \rightarrow \mathbb{R}\) for \(\Lambda_\pm\) (linear-at-\(\infty\)); and
- \(F : \mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^N \rightarrow \mathbb{R}\) for \(\psi(\bar{L}) \subset T^*(\mathbb{R}^+ \times \mathbb{R}^n)\) that correlates to \(f_\pm\) outside a compact set of \(\mathbb{R}^+\).
Given a generating family \(F : \mathbb{R}^+ \times M \times \mathbb{R}^N \to \mathbb{R} \) for
\(\psi(\bar{L}) \subset T^*(\mathbb{R}^+ \times M) \), and a function \(H : \mathbb{R}^+ \to \mathbb{R} \),

define the sheared difference function \(\Delta : M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R} \) by:

\[
\Delta(t, x, e, \tilde{e}) = F(t, x, \tilde{e}) - F(t, x, e) + H(t).
\]
 Wrapped Generating Family Cohomology Groups

Given a generating family $F : \mathbb{R}^+ \times M \times \mathbb{R}^N \rightarrow \mathbb{R}$ for

$\psi(\overline{L}) \subset T^*(\mathbb{R}^+ \times M)$, and a function $H : \mathbb{R}^+ \rightarrow \mathbb{R}$,

define the sheared difference function $\Delta : M \times \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}$ by:

$$\Delta(t, x, e, \tilde{e}) = F(t, x, \tilde{e}) - F(t, x, e) + H(t).$$

KEY: There is a non-degenerate critical submanifold with value 0
diffeomorphic to the compact L, and non-degenerate critical points
corresponding to the Reeb chords of Λ_{\pm}.
Given a generating family \(F : \mathbb{R}^+ \times M \times \mathbb{R}^N \to \mathbb{R} \) for \(\psi(L) \subset T^*(\mathbb{R}^+ \times M) \), and a function \(H : \mathbb{R}^+ \to \mathbb{R} \),

define the **sheared difference function** \(\Delta : M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R} \) by:

\[
\Delta(t, x, e, \tilde{e}) = F(t, x, \tilde{e}) - F(t, x, e) + H(t).
\]

KEY: There is a non-degenerate critical submanifold with value 0 diffeomorphic to the compact \(L \), and non-degenerate critical points corresponding to the Reeb chords of \(\Lambda_{\pm} \).

\[
WGH^*(F) := H^*(\Delta^\infty, \Delta^c).
\]
Given a generating family $F : \mathbb{R}^+ \times M \times \mathbb{R}^N \to \mathbb{R}$ for
$\psi(\bar{L}) \subset T^*(\mathbb{R}^+ \times M)$, and a function $H : \mathbb{R}^+ \to \mathbb{R}$,

define the sheared difference function $\Delta : M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ by:

$$\Delta(t, x, e, \tilde{e}) = F(t, x, \tilde{e}) - F(t, x, e) + H(t).$$

KEY: There is a non-degenerate critical submanifold with value 0
diffeomorphic to the compact L, and non-degenerate critical points
corresponding to the Reeb chords of Λ_{\pm}.

$$WGH^*(F) := H^*(\Delta^\infty, \Delta^\epsilon).$$

In fact, $WGH^*(F) \simeq H^*(L, \Lambda_{\pm}).$
$(\Delta^\infty, \Delta^\epsilon)$ as a Relative Mapping Cone

Classical Mapping Cone:

Given $f : X \to Y$, $C(f) := C(X) \cup Y / \sim$. Induced long exact sequence:

$$
\cdots \to H^k(Y) \xrightarrow{f^*} H^k(X) \to H^{k+1}(C(f)) \to H^{k+1}(Y) \xrightarrow{f^*} \cdots
$$
Classical Mapping Cone:

Given $f : X \to Y$, $C(f) := C(X) \cup Y / \sim$. Induced long exact sequence:

$$
\cdots \to H^k(Y) \xrightarrow{f^*} H^k(X) \to H^{k+1}(C(f)) \to H^{k+1}(Y) \xrightarrow{f^*} \cdots
$$

Relative Mapping Cone: Given a map $g : (X, A) \to (Y, B)$, there is a relative mapping cone $C(g)$ and a long exact sequence:

$$
\cdots \to H^k(Y, B) \xrightarrow{g^*} H^k(X, A) \to H^{k+1}(C(g)) \to H^{k+1}(Y, B) \xrightarrow{g^*} \cdots
$$
Classical Mapping Cone:

\[
\begin{array}{cccc}
& y & \leftarrow & x \\
\sigma & \cap_{\infty} & \cap_{\infty} & \cap_{\infty}
\end{array}
\]

Given \(f : X \to Y \), \(C(f) := C(X) \cup Y / \sim \). Induced long exact sequence:

\[
\ldots \to H^k(Y) \overset{f^*}{\to} H^k(X) \to H^{k+1}(C(f)) \to H^{k+1}(Y) \overset{f^*}{\to} \ldots.
\]

Relative Mapping Cone: Given a map \(g : (X, A) \to (Y, B) \), there is a relative mapping cone \(C(g) \) and a long exact sequence:

\[
\ldots \to H^k(Y, B) \overset{g^*}{\to} H^k(X, A) \to H^{k+1}(C(g)) \to H^{k+1}(Y, B) \overset{g^*}{\to} \ldots.
\]

\((\Delta^\infty, \Delta^\epsilon) \) can be viewed as \(C(\psi) \) where \(\psi : \left(\delta_{\infty}, \delta_{\epsilon}\right) \to \left(\delta_{\infty}, \delta_{\epsilon}\right) \).

So, there is a **Cobordism Exact Sequence**!
Cobordism Long Exact Sequence

Theorem ([Sabloff-LT])

Given \((\Lambda_-, f_-) \prec_{(L, F)} (\Lambda_+, f_+)\), there is a long exact sequence:

\[
\cdots \to GH^k(f_-) \xrightarrow{\Psi^F} GH^k(f_+) \to H^{k+1}(L, \Lambda_+) \to \cdots.
\]

There is a similar story for linearized Legendrian contact homology;

[Ekholm, Ekholm-Honda-Kálmán, Golovko]
Theorem ([Sabloff-LT])

Given \((\Lambda_-, f_-) \prec_{(L,F)} (\Lambda_+, f_+)\), there is a long exact sequence:

\[
\cdots \to GH^k(f_-) \xrightarrow{\Psi^F} GH^k(f_+) \to H^{k+1}(L, \Lambda_+) \to \cdots.
\]

- \(\Psi^F\) is non-trivial, natural, and behaves nicely under gluings of cobordisms.

There is a similar story for linearized Legendrian contact homology;
[Ekholm, Ekholm-Honda-Kálmán, Golovko]
Cobordism Long Exact Sequence

Theorem ([Sabloff-LT])

Given \((\Lambda_-, f_-) \prec (L, F) (\Lambda_+, f_+)\), there is a long exact sequence:

\[
\cdots \to GH^k(f_-) \xrightarrow{\Psi_F} GH^k(f_+) \to H^{k+1}(L, \Lambda_+) \to \cdots.
\]

- \(\Psi_F\) is non-trivial, natural, and behaves nicely under gluings of cobordisms.
- If \(\Lambda_- = \emptyset\) (filling), then \(GH^k(f_+) \cong H^{k+1}(L, \Lambda_+).\)

There is a similar story for linearized Legendrian contact homology;

[Ekholm, Ekholm-Honda-Kálmán, Golovko]
Theorem ([Sabloff-LT])

Given \((\Lambda_-, f_-) \prec_{(L,F)} (\Lambda_+, f_+)\), there is a long exact sequence:

\[
\cdots \rightarrow GH^k(f_-) \xrightarrow{\Psi_F} GH^k(f_+) \rightarrow H^{k+1}(L, \Lambda_+) \rightarrow \cdots.
\]

- \(\Psi_F\) is non-trivial, natural, and behaves nicely under gluings of cobordisms.
- If \(\Lambda_- = \emptyset\) (filling), then \(GH^k(f_+) \cong H^{k+1}(L, \Lambda_+)\).
- If \(L\) is a concordance, then \(GH^k(f_-) \cong GH^k(f_+)\).

There is a similar story for linearized Legendrian contact homology;

[Ekholm, Ekholm-Honda-Kálmán, Golovko]
Application: Obstructions to Lagrangian Cobordisms

\[m(5_2)^2 \quad tb=1 \]
\[P = \{ t^{-2} + t + t^2 \} \]
\[\not\exists \quad L \]

\[m(5_2)^1 \quad tb=1 \]
\[P = \{ 2 + t \} \]
\[\exists \quad L? \]
Application: Obstructions to Lagrangian Cobordisms

\[P = \{ t^{-2} + t + t^2 \} \]

\[m(5_2)^2 \quad \text{tb}=1 \]

\[\exists L \]

\[P = \{ 2 + t \} \]

\[m(5_2)^1 \quad \exists L? \]