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Introduction

In this paper I’ll try to give an overview of one of the central threads in
the study of algebraic curves: Brill-Noether theory. After an initial discussion
in Section 1 of what I mean by Brill-Noether theory, and a discussion of the
role it plays in our understanding of algebraic curves, I’ll give in Section 2
a summary of what is known. Finally, Sections 3 and 4 represent the real
point of the paper: in these, I’ll give two possible answers to the question,
“where do we go from here?”

1. What do we mean by Brill-Noether theory?

We should start by saying what we mean by “Brill-Noether theory,” and
how we see its role in the larger framework of the theory of algebraic curves.

By way of analogy, consider the development of group theory. In its early
days, in the 19th century, a group was taken to be a subset of GLn closed
under matrix multiplication and inversion—in other words, what we would
now call the data of an abstract group G together with a faithful represen-
tation G ↪→ GLn of G. In the 20thcentury, the notion of an abstract group
was introduced, which had the effect of breaking what had been the study
of group theory into two complementary parts. First there was the analysis
of the structure of abstract groups, hopefully leading to their classification.
Secondly, there was representation theory: the study, for a given abstract
group G, of the ways in which G could be realized as a subgroup of GLn

(or, more generally, mapped to GLn). This bifurcation of the subject (which
applied in various contexts: finite groups, Lie groups, etc.) lent tremendous
clarity and power to the study of groups.

Very much the same transformation occurred, during much the same
period, in the subject of algebraic geometry. To focus on the case of algebraic
curves, in the earliest days of the subject a curve meant simply an irreducible
polynomial in two variables, or rather an equivalence class of such under
an equivalence relation amounting to birational isomorphism. In the latter
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19thcentury, curves in higher-dimensional space were also considered, but one
way or another a “curve” always meant a subset of projective space defined
by polynomial equations. In particular, to a 19thcentury geometer the prob-
lem, “classify all algebraic curves” would have meant “classify all such sub-
sets of projective space”—in modern language, “describe the components of
the Hilbert scheme H whose general point corresponds to an integral curve.”

Then in the 20thcentury the notion of an abstract curve took hold, and
our view of the subject underwent a fundamental shift. Now, if you ask a
geometer to “classify all curves,” the problem would most likely be inter-
preted as meaning, “describe the moduli spaces Mg.” By the same token,
the classical problem of classifying curves in projective space can be thought
of as having two distinct components: one, to describe the set of all abstract
curves; and two, for a given abstract curve C, to describe all the ways in
which C may be mapped to projective space P

r. Brill-Noether theory is the
study of the second of these problems—in brief, it’s representation theory
for curves.

The analogy with group theory is, I think, an apt one. Many subjects
in mathematics underwent a similar transformation between the 19thand
20thcentury, in which the fundamental objects of study went from sub-
objects of a standard ambient object to ones defined abstractly as sets with
additional structure (think of what “differentiable manifold” means to us
today, and what it meant a century ago). There is, however, one fundamen-
tal respect in which algebraic geometry differs from many other disciplines:
the objects we study—varieties, and more generally schemes—fall naturally
into families that are themselves parametrized by other schemes, called mod-
uli or parameter spaces. Thus, the set of all smooth, complete curves of genus
g has naturally the structure of a variety, the moduli space Mg; and, for a
given curve C, the set of all nondegenerate maps C → P

r of degree d (up to
projective equivalence) has the structure of a scheme, denoted G̃r

d(C) (about
which more in a moment).

Each of these facts has an impact on what we mean by “Brill-Noether
theory.” To begin with, the fact that curves of a given genus are parametrized
by a variety means that the problem “describe all the ways in which an arbi-
trary curve C may be mapped to projective space P

r” admits an important
subproblem: to describe such maps for a general curve C of genus g. And,
while there are many theorems concerning maps of an arbitrary curve to
projective space (Clifford’s theorem, Martens’ theorem, Castelnuovo’s bound
and many variants and extensions of these), traditional Brill-Noether theory
has focussed on the problem for general curves.

Secondly, the fact that the set of maps of a given curve to projective
space has the structure of a variety means that we can ask many more
questions about the geometry of this variety: not just whether it’s empty or
not, but what its dimension is; whether it’s irreducible or not; if it’s smooth,
and, if not, what its singular locus is, and so on. All these questions are
usually viewed as in the purview of Brill-Noether theory.
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2. Classical Brill-Noether theory

I’d like to describe here the main results of Brill-Noether theory, at least
up to the 1980s. (“Classical” is a relative term.) To begin with, let’s establish
some background and ground rules. Throughout, C will denote a smooth,
complete curve of genus g. It is of some interest to extend our inquiry to
singular curves as well—if nothing else, they appear naturally in the proofs
of many of the standard results—but since much of what we can say about
maps on singular curves derives from studying their normalizations, we will
leave these aside for now.

To begin with, we’ll restrict our attention to nondegenerate maps, that
is, maps f : C → P

r whose image does not lie in a hyperplane. This avoids
redundancy: a degenerate map is best thought of as a nondegenerate map
C → P

s for some s < r composed with a linear inclusion P
s → P

r.
By the degree of a map f : C → P

r we mean the degree of the pullback
divisor f∗H for any hyperplane H ⊂ P

r—in other words, the degree of the
image f(C) ⊂ P

r times the degree of the map C → f(C).
Now, a nondegenerate map C → P

r of degree d, modulo automorphisms
of P

r, corresponds to the following data:

• a line bundle L of degree d on C; and
• an (r+1)-dimensional vector space V ⊂ H0(L) of sections of L such

that
• the sections {σ ∈ V } have no common zeroes.

The pair (L, V ) is called a linear system of degree d and dimension r
on C, and is usually referred to as a gr

d for short. The last condition is
expressed by saying that the linear system is base point free. And here is
where we deviate from our stated purpose for the first time: while the set
of base point free gr

ds on a curve C is indeed parametrized by a variety, as
we said earlier, that variety will not in general be complete: a linear system
without base points may well specialize to one with them. Since so many of
our techniques apply primarily to complete varieties, we will usually drop
the condition that our linear system be base point free, and study instead the
variety Gr

d(C) parametrizing all linear systems of degree d and dimension r
on C. This variety, it turns out, is in fact projective.

Note that this is a relatively harmless deviation: a linear system (L, V )
with a base point p ∈ C, for example, may be viewed as a linear system
(L′, V ′) with L′ = L(−p) and V the image of V ′ under the sheaf map L′ → L
vanishing at p. Any linear system can in this way be realized uniquely as a
base point free linear system of lower degree via such an inclusion; in other
words, if we can describe the base point free linear systems of degree e < d,
we can describe the set of linear systems of degree d with base points and
hence its complement in Gr

d(C).
For a detailed description of how the schemes Gr

d(C) may be defined
and constructed, see [ACGH]. We may also define analogously a scheme Gr

d
parametrizing triples (C, L, V ) consisting of a smooth curve C, a line bundle



134 J. HARRIS

L of degree d on C and an (r +1)-dimensional vector space of sections of L;
naturally, Gr

d admits a map to the moduli space Mg of smooth curves, with
fiber Gr

d(C) over the point [C] ∈ Mg. Finally, we define the Brilll-Noether
number ρ(g, r, d) by

ρ(g, r, d) = g − (r + 1)(g − d + r).

With these conventions, the basic results of Brill-Noether theory fall
roughly into three categories. (Rather than try to list all the original sources,
we refer the reader to [ACGH] and [HM], which contain complete state-
ments of these results and all relevant references.)

1. Existence and nonexistence results:
a. When ρ ≥ 0, every curve of genus g possesses a gr

d; that is, Gr
d(C) �= ∅

for any C ([ACGH V.1.1]); and conversely
b. When ρ < 0, a general curve does not possess a gr

d ([HM p.261–2]).
There are immediate refinements of this statement that take into account

ramification at specified points. Briefly: if V ⊂ H0(L) is a gr
d on a curve C

and p ∈ C any point, we can write the orders of vanishing at p of sections
σ ∈ V as

{ordp(σ)}σ∈V = {a0, a1, . . . , ar}
with a0 < a1 < · · · < ar. The associated non-decreasing sequence α0, . . . , αr

defined by αi = ai − i is called the ramification sequence of the linear sys-
tem (L, V ) at p, and the sum α(V, p) =

∑
αi the total ramification index.

If (C; p1, . . . , pn) is an n-pointed curve and (L, V ) a gr
d on C, we define the

adjusted Brill-Noether number of (L, V ) on (C; p1, . . . , pn) to be

ρ̃ = ρ(g, r, d) −
∑

α(V, pi).

Statement (b) above may then be extended to

b′. If (C, p1, . . . , pn) is a general n-pointed curve of genus g and (L, V )
any gr

d on C, then the adjusted Brill-Noether number ρ̃ ≥ 0 ([HM 5.37]).
The existence statement (a) is trickier. The correct refinement (which

subsumes (b′)) is
a′: If (C, p1, . . . , pn) is a general n-pointed curve of genus g and αj =

(αj
0, . . . , α

j
r) for j = 1, . . . , n any collection of nondecreasing sequences, there

exists a gr
d on C with

αi(V, pj) ≥ αj
i ∀i, j

if and only the product of Schubert classes

(σr)g ∪
∏
j

σ
αj

0,...,αj
r

�= 0

in the Chow ring of the Grassmannian G(d − r − 1, d) ([HM 5.42]).

2. Results about the geometry of Gr
d(C) for general C:

a. For general C, the dimension of Gr
d(C) is ρ ([ACGH V.1.1]; [HM

5.37]).
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b. For general C, the scheme Gr
d(C) is smooth ([ACGH V.1.6]).

c. For ρ > 0 and C general, the scheme Gr
d(C) is irreducible ([ACGH

V.1.4]).
d. When ρ = 0, by (2a) a general curve C has a finite number of gr

ds,
and as C varies in Mg, the monodromy action on these gr

ds is transitive—in
other words, there is a unique irreducible component of Gr

d dominating Mg

([EH]) .
e. For general C, the class of the image W r

d (C) of Gr
d(C) in Picd(C) is

given ([ACGH V.1.3]) by

[W r
d (C)] =

(
r∏

i=0

i!
(g − d + r + i)!

)
θ(r+1)(g−d+r).

In particular, in case ρ = 0 the number of gr
ds on a general curve C is

#W r
d (C) = g!

r∏
i=0

i!
(g − d + r + i)!

3. Results about the geometry of gr
ds and the corresponding maps C → P

r

on a general curve C:
a. For C general and any (L, V ) ∈ Gr

d(C), the multiplication map

H0(L) ⊗ H0(KL−1) → H0(K)

is injective ([ACGH V.1.7], [HM 5.78]).
b. For C general and any (L, V ) ∈ Gr

d(C) with r > 0,

H1(L2) = 0

([ACGH p. 126 and V.1.7]).
c. If r ≥ 3, for general C and a general point (L, V ) ∈ Gr

d(C) the map
f : C → P

r associated to the linear system (L, V ) is an embedding;
d. If r = 2, for general C and a general point (L, V ) ∈ Gr

d(C) the map
f : C → P

r associated to the linear system (L, V ) maps C birationally onto a
plane curve with only nodes as singularities; in particular, it’s an immersion;
and

e. If r = 1, for general C and a general point (L, V ) ∈ Gr
d(C) the map

f : C → P
r associated to the linear system (L, V ) expresses C as a simply

branched cover of P
1.

(When ρ = 0, statements (c), (d) and (e) above apply to all gr
ds on a general

curve C.)
This concludes our summary of known results in Brill-Noether theory.

The question I’d like to take up now is: what’s next? There are two essentially
independent directions for further study, roughly corresponding to the sec-
ond and third categories of results above: we can ask to know more about
the geometry of general curves, embedded in projective space by general
linear series; and we can ask to know more about linear series on special
curves. In the last two sections, I’ll take up these issues in turn.
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3. The geometry of general curves in projective space

As we’ve said, Brill-Noether theory may be viewed as providing a bridge
between the realms of abstract curves and curves in projective space: given
a curve—or at least a general one—the theory tells us, for example, that it
can be embedded as a curve of a certain degree in a certain projective space.
But this is just the beginning: once a curve is embedded in projective space,
there are all sorts of questions we can ask about it. Most notably, since a
curve in projective space is the zero locus of polynomials, we want to know
what sort of polynomials define it—how many homogeneous polynomials
of each degree m vanish on the curve (that is, the Hilbert function of the
curve), and what is a minimal set of generators for the homogeneous ideal
of the curve. And the questions continue from there: if we know generators
for the ideal, we can ask how many relations among these generators there
are in each degree, and for generators of the module of relations, and so on.

We don’t have many answers to these questions. We do have, however,
a consistent and plausible series of conjectures that, if correct, will answer
all our questions, and that have been verified by Voisin ([V]) in at least one
crucial case.

Rather than trying to describe these conjectures in general, we’ll focus
on one example; the picture in general should be clear.

The example we’ll consider is this: given a general curve C of genus
8, how may C be embedded in projective space? From the genus formula
for plane curves, it’s clear that C cannot be embedded in P

2, so we look
next to nondegenerate maps C → P

3. Here Brill-Noether theory tells us that
the minimal degree of such a map is 9; that there are finitely many such
maps up to projective equivalence (42, to be precise), and that they’re all
embeddings. We’ll look at such an embedding, accordingly, and ask: what
can we say about the equations defining the image curve C ⊂ P

3?
As we indicated, the first and simplest question we might ask in this

regard is: for each m, what is the dimension of the vector space of homoge-
neous polynomials of degree m on P

3 vanishing on C? For example, does C
lie on a quadric surface? On a cubic?

There is a standard first approach to this. We consider the restriction
map

ρ2 : H0(OP3(2)) → H0(OC(2))
whose kernel is the vector space of quadrics vanishing on C, that is, the sec-
ond graded piece of the homogeneous ideal I(C) of C. We know the dimen-
sion of both spaces: on the left, we have simply the space of homogeneous
quadrics in 4 variables, whose dimension is

h0(OP3(2)) =
(

5
2

)
= 10;

on the right, Riemann-Roch tells us that

h0(OC(2)) = 2 · 9 − 8 + 1 = 11.
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We thus have no reason to believe the map ρ2 is not injective; and we expect,
accordingly, that the curve C will lie on no quadrics. (This is readily verified
directly: there are no smooth curves of degree 9 and genus 8 on a quadric.)

Next, we look at cubics: again, we have the restriction map

ρ3 : H0(OP3(3)) → H0(OC(3))

and again we know the dimension of the spaces in question:

h0(OP3(3)) =
(

6
3

)
= 20,

while
h0(OC(3)) = 3 · 9 − 8 + 1 = 20.

Again, our expectation would be that ρ3 is injective; that is, the curve C
lies on no cubic surfaces. Again, this may be verified directly, though with
some more effort: there do exist smooth curves of this degree and genus on
cubic surfaces, but a dimension count tells us a general such curve does not.

What about quartics? We have

h0(OP3(4)) =
(

7
3

)
= 35,

while
h0(OC(4)) = 4 · 9 − 8 + 1 = 29;

we conclude that the curve C must lie on at least 6 independent quartics,
and we might expect that it lies on exactly this many.

We can continue in this way to at least guess the dimensions of the graded
pieces of the homogeneous ideal I(C), based on the expectation that the
restriction maps ρm have maximal rank. In the specific case we’re considering
here we can actually verify that this is correct: for example, we see that C is
residual to a curve C ′ of degree 7 and genus 4 in the complete intersection
of two of the quartics containing it, and use our knowledge of the simpler
curve C ′ to count the surfaces containing C. This approach doesn’t work in
general—a general curve of high genus, embedded in P

3, is not linked to any
curves of lower degree or genus—but based on our experience in this and
many other examples, we may make the

Maximal Rank Conjecture, Part 1: If C is a general curve, (L, V ) a general
gr
d on C with r ≥ 3 and φ : C → P

r the corresponding embedding, then the
restriction map

ρm : H0(OPr(m)) → H0(OC(m))
has maximal rank—that is, is either injective or surjective—for every m.

Assuming this, we know the Hilbert function of C; for example, in the
example above, we conclude that C lies on six quartics, 18 quintics, 37
sextics, and so on.

This answers our first question, but not our second: we’d still like to
know a minimal set of generators for the homogeneous ideal I of C. In the
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present example, we might ask specifically: is I generated in degree 4?—that
is, do the six quartic polynomials vanishing on C generate its homogeneous
ideal?

The first thing to check is that this is possible dimensionally. For exam-
ple, we’ve calculated (assuming the maximal rank conjecture) that C lies on
18 quintics. Can these all be products of the six quartics with linear forms?
The answer is yes: the vector space I4 ⊗ S1 has dimension 24 ≥ 18, so that
the multiplication map

I4 ⊗ S1 → I5

will be surjective unless there are seven or more linear relations among the
six quartics, which we have no reason to expect. In the same way, we have

dim(I4 ⊗ S2) = 60

while
dim I6 = 37

so we might likewise guess that the multiplication map

I4 ⊗ S2 → I6

is surjective. Continuing in this way, we are led to guess that the six quartics
vanishing on C do indeed generate its homogeneous ideal; and once more
this can be verified directly.

Another example would be instructive here. Suppose now that C is a gen-
eral curve of genus 9. Brill-Noether theory tells us that C may be embedded
in P

3 as a curve of degree 10; we’d like to describe the ideal I of C under
a general such embedding. We start by determining the dimensions of the
graded pieces of I, assuming Part I of the maximal rank conjecture: since
dim Sm =

(
m+3

3

)
while h0(OC(m)) = 10m − 8 for all m ≥ 2, we expect that

C will lie on no quadrics or cubics, while

dim I4 = 35 − 32 = 3;
dim I5 = 56 − 42 = 14;
dim I6 = 84 − 52 = 32;
dim I7 = 120 − 62 = 58

and so on. Now, from the first we see that I has three generators F1, F2 and
F3 in degree 4. Moreover, from the inequality 4 × 3 ≤ 14, we might guess
that the multiplication map

I4 ⊗ S1 → I5

is injective—in other words, these three satisfy no linear relations. This in
turn means that I will need an additional 14−12 = 2 generators G1 and G2
in degree 5.

Are we done? Do the five polynomials Fi and Gi generate I? Well, in
degree 6 we have 3 × 10 = 30 products of the form Fi · Q, with Q a quadric,
and 2 × 4 = 8 products of the form Gi · L with L linear. Since the actual
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dimension of I6 is 32 ≤ 30+8, we might expect that the Fi and Gi generate,
in degree 6 at least. Similarly, in degree 7 we have

3 × 20 + 2 × 10 = 80 ≥ 58,

so we might expect that they generate in degree 7. The same calculation in
general degree leads us to conjecture that F1, F2, F3, G1 and G2 are indeed
a minimal set of generators for I.

Thus we are led to append a further statement to the maximal rank
conjecture. The MRC as stated above, applied to a general curve C ⊂ P

r—
by which we mean a general abstract curve C, embedded in P

r by a general
gr
d—tells us the Hilbert function of C. We now go further and make the

Maximal Rank Conjecture, Part 2: The polynomials vanishing on C satisfy
no more relations than they are forced to, given the Hilbert function of C.

Given this, we can as in the examples above determine the degrees of a
minimal set of generators of the homogeneous ideal I of C.

Of course, it doesn’t stop here. Given a minimal set of generators for
the ideal I of our general curve, we naturally would like to describe all the
relations among these generators: in other words, if I has ad generators in
degree d, we have a surjection of modules over the polynomial ring S of P

r

⊕S(−d)⊕ad → I;

if we let M be the kernel of this map—the module of relations—we’d like
to describe a minimal set of generators for M in turn. Again, we know
(conjecturally) the Hilbert function of M ; and if we further conjecture that
the multiplication maps

Mk ⊗ S� → M�

again have maximal rank, this determines the degrees of a minimal set of
generators for M . If we have be generators in degree e, this gives us a map

⊕S(−e)⊕be → M,

or in other words a three-term exact sequence

⊕S(−e)⊕be → ⊕S(−d)⊕ad → I.

If we let N be the kernel of this map in turn, we know the Hilbert function
of N , and hence—once more conjecturing that the multiplication maps have
maximal possible rank—a minimal set of generators for it. Continuing in
this way, we can at least guess at all the terms in a minimal resolution of
the ideal I of C.

But by now we have gone far beyond what is reasonable or true. There
are currently no known counterexamples to the two Maximal Rank Conjec-
tures above, but Eisenbud and Schreyer have exhibited examples of general
linear series for which the multiplication maps on the module of relations
fail to have maximal rank ([ES]). As for the conjectures above, we can verify
them in relatively low-degree individual cases, when the curve C ⊂ P

r lies
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on surfaces whose geometry we understand (scrolls, del Pezzo surfaces, etc.).
The original MRC (Part I above) was proved by Ballico and Ellia [BE] for
nonspecial curves (that is, in case d ≥ g + r you take a general curve C,
a general line bundle L of degree d on C and a general r + 1-dimensional
vector subspace of H0(L)—though it’s far from easy to prove even in this
case). By far the strongest evidence we have in general is due to Voisin ([V1]
and [V2]), who proved the full MRC for canonical curves of any genus.

Other attributes of general curves
When a curve is embedded in projective space, there are other aspects of

its extrinsic geometry than the algebra of its ideal, and we should mention
at least a couple of these.

One is the behavior of secant planes to C. In general, if C is a curve
in P

r, a naive dimension count would lead us to expect that C would have
e-secant n-planes if and only if

(n + 1)(r − n) ≥ e(r − n − 1)

or, equivalently, when
e ≥ (r − n)(e − n − 1)

(To go somewhat 19th century for a moment: the variety of incident n-
planes to C will have codimension r−n−1 in the (n+1)(n−r)-dimensional
Grassmannian G(n, r); the variety of e-secant planes should accordingly have
codimension e(r − n − 1). Alternatively, it should be (r − n)(e − n − 1)
conditions of the matrix of coordinates of e points on C to have rank at
most n + 1.) When this inequality is satisfied, we have a formula for the
class of the locus of such planes (viewed as a subvariety of the symmetric
product Ce), and if this class is nonzero we may indeed conclude that such
secant planes to C exist.

But what about the other direction? If (n + 1)(r − n) < e(r − n − 1),
can we conclude that C has no e-secant n-planes? And more generally, can
we say that the dimension of the variety of such planes is the expected
(n + 1)(r − n) − e(r − n − 1)? Cotterill ([C]) and Farkas [F] have strong
results along these lines.

Another aspect of the geometry of curves in projective space is their
inflectionary points. We know something about this, thanks to statements
1a’ and 1b’ of Brill-Noether theory, but these leave unanswered some basic
questions. For example, we’d expect a general curve in P

r to have only weight
one inflectionary points. Is this the case?

4. Linear systems on special curves

We come now to an aspect of Brill-Noether theory that is largely unex-
plored: what, if anything, can we say about the geometry of linear systems on
special curves? Of course it’s wrong to say we don’t know much about linear
systems on special curves: we have Clifford’s theorem, describing extremal
behavior among all linear systems, and Castelnuovo’s theorem, describing
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extremal behavior among birationally very ample linear systems ([ACGH]
p. 107 and 116). Moreover, we have theorems of Martens, Mumford and
Keem about the extremal behavior of the varieties Gr

d on arbitrary curves
([ACGH] p. 191, 193 and 200). But what we have in mind is something
quite different: we’d like to know, to what extent do the basic theorems
of Brill-Noether theory continue to hold for curves C that are general in
low-codimension subvarieties of the moduli space Mg?

A little explanation is in order. Recall that the scheme Gr
d parametrizes

triples (C, L, V ) consisting of a smooth curve C and a gr
d on C. Now, the

same dimension counts that lead us to guess that the dimension of Gr
d on a

general curve is ρ(g, r, d) would lead us to expect that the dimension of Gr
d is

ρ(g, r, d) + 3g − 3 = 4g − 3 − (r + 1)(g − d + r).

Is this the case?
Another way to formulate this would be in terms of the dimension of

the Hilbert scheme, or at least of those components H of the Hilbert scheme
Hd,g,r of curves of degree d and genus g in P

r whose general point corresponds
to a smooth, irreducible nondegenerate curve C ⊂ P

r. An open subset of any
such component is a PGLr+1-bundle over Gr

d; the dimension count above
would lead us to conclude that the dimension of H is

dim H = λ(g, r, d) = 4g − 3 − (r + 1)(g − d + r) + (r + 1)2 − 1

= 4g − 4 + (r + 1)(d − g + 1).

Again, is this the case?
There is another way of arriving at this estimate on dimH. If [C] ∈ H is a

general point, we can estimate dim H by the dimension of the Zariski tangent
space to H at [C], which is given as the space of sections H0(N) of the
normal bundle N = NC/Pr of C ⊂ P

r. If we think of the Euler characteristic
χ(NC/Pr) as a first approximation to the dimension of this space, we’re led
to the estimate

λ(g, r, d) = deg N − (r − 1)(g − 1)

= (r + 1)d − (2 − 2g) − (r − 1)(g − 1)

= 4g − 4 + (r + 1)(d − g + 1).

Now, this is ridiculous, even by the extremely loose standards of this
paper. It turns out to be correct in the cases r = 1 and r = 2, but as soon as
we get to r ≥ 3 it is wrong by an order or magnitude. For example, look at
the component of the Hilbert scheme parametrizing smooth curves of type
(a, b) on a quadric Q ⊂ P

3. (Such curves will actually form an open subset
of the Hilbert scheme when a and b are both ≥ 3.) Since Q varies with 9
degrees of freedom and the linear system of such curves on a given quadric
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has dimension (a + 1)(b + 1) − 1, we have

dim H = (a + 1)(b + 1) + 8.

On the other hand, we have

λ = 4g − 4 + 4(d − g + 1)
= 4d

= 4(a + b).

Or try curves C ⊂ P
3 that are complete intersections of pencils of surfaces

of degree a: the Grassmannian of such pencils has dimension

dim H = dimG(2,

(
a + 3

3

)
)

=
(a + 3)(a + 2)(a + 1)

3
− 4

whereas again
λ = 4d = 4a2.

Similarly, virtually all the curves we can actually write down in projective
space—complete intersections, determinantal curves, and curves on rational
surfaces—violate this estimate. But the observation that really points out
the absurdity of the estimate in general is this: if you fix r ≥ 4 and a rea-
sonably large d, and look at the expression for λ(g, r, d) above, you’ll see
that

λ = (r + 1)d − (r − 3)(g − 1).

But irreducible, nondegenerate curves of degree d in P
r have genera ranging

from 0 to Castelnuovo’s bound

π(d, r) ∼ d2

2(r − 1)
;

in other words, the value of λ is actually negative for the majority of possible
values of g allowed by Castelnuovo’s bound!

So, if it’s absurd to expect that the dimension of the Hilbert scheme
satisfies the naive estimate dim H = λ(g, r, d), why are we even mentioning
it? Well, here’s the striking thing: while it’s not even the right order of
magnitude as a function of d, g and r in general, it does seem to hold in low
codimension in Mg. In fact, evidence (or, more properly, lack of evidence to
the contrary) suggests the

Conjecture: If H is any component of the Hilbert scheme whose general
member corresponds to a smooth, irreducible, nondegenerate curve of degree
d in P

r, and the image of the rational map H → Mg has codimension g − 4
or less, then

dim H = λ(g, r, d).
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To be honest, the available evidence suggests simply the existence of a
number β(g) tending linearly to ∞ with g, such that any such component H
whose image in Mg has codimension β ≤ β(g) has the expected dimension;
we use the function g − 4 just for simplicity. What’s fascinating to me is
really the qualitative behavior: that the estimate dimH = λ seems to hold
for curves that are not “too” special, but of course fails utterly in higher
codimension in Mg

Problem: Find a lower bound for the dimension of a component of the Hilbert
scheme whose general point corresponds to an irreducible, nondegenerate
curve of degree d and genus g.

In particular, we don’t even know if there exist rigid curves—that is,
curves with no nontrivial deformations in projective space—other than ratio-
nal normal curves.
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