Continuity of homomorphisms to the clone of projections

András Pongrácz

School of Science and Technology, Middlesex University

joint work with Manuel Bodirsky and Michael Pinsker

Banff, 2014
The dichotomy conjecture

Δ: a finite relational structure $\text{Pol}(\Delta)$: idempotent clone

Either

$\exists \phi: \text{Pol}(\Delta) \rightarrow 1$ homomorphism,

or

$\exists a$ Taylor (weak n. u., Siggers, cyclic, ...)$)$ operation in $\text{Pol}(\Delta)$.

Conjecture (Bulatov, Jeavons, Krokhin):

item (1) \Rightarrow $\text{CSP}(\Delta)$ is NP-complete (WELL-KNOWN)

item (2) \Rightarrow $\text{CSP}(\Delta)$ $\in P$
The dichotomy conjecture

\[\Delta: \text{a finite relational structure} \]
The dichotomy conjecture

\(\Delta \): a finite relational structure

\(\text{Pol}(\Delta) \): idempotent clone

Continuity of homomorphisms

András Pongrácz
The dichotomy conjecture

\(\Delta\): a finite relational structure

\(\text{Pol}(\Delta)\): idempotent clone

1. Either \(\exists \Phi : \text{Pol}(\Delta) \rightarrow 1\) homomorphism,
2. or \(\exists\) a Taylor (weak n. u., Siggers, cyclic, \ldots) operation in \(\text{Pol}(\Delta)\).
The dichotomy conjecture

Δ: a finite relational structure

$\text{Pol}(\Delta)$: idempotent clone

1. Either $\exists \Phi : \text{Pol}(\Delta) \rightarrow 1$ homomorphism,
2. or \exists a Taylor (weak n. u., Siggers, cyclic, ...) operation in $\text{Pol}(\Delta)$.

Conjecture (Bulatov, Jeavons, Krokhin):
The dichotomy conjecture

Δ: a finite relational structure

$\text{Pol}(\Delta)$: idempotent clone

1. Either $\exists \Phi : \text{Pol}(\Delta) \to \mathbf{1}$ homomorphism,
2. or \exists a Taylor (weak n. u., Siggers, cyclic, ...) operation in $\text{Pol}(\Delta)$.

Conjecture (Bulatov, Jeavons, Krokhin):

item (1) \Rightarrow CSP(Δ) is NP-complete (WELL-KNOWN)

item (2) \Rightarrow CSP$(\Delta) \in \mathbf{P}$
ω-categorical structures

A countable Δ is ω-categorical if \forall countable Γ we have $\text{Th}(\Delta) = \text{Th}(\Gamma) \Rightarrow \Delta \cong \Gamma$.

Examples: finite structures $(\mathbb{Q},<)$, random graph, random tournament, random hypergraphs, generic poset, ... countable vector spaces over \mathbb{F}_q, countable atomless Boolean algebra.

Continuity of homomorphisms

András Pongrácz
A countable Δ is ω-categorical if \forall countable Γ we have $Th(\Delta) = Th(\Gamma) \implies \Delta \cong \Gamma$.
A countable Δ is ω-categorical if \forall countable Γ we have $Th(\Delta) = Th(\Gamma) \Rightarrow \Delta \cong \Gamma$.

Examples

- finite structures
A countable Δ is ω-categorical if \forall countable Γ we have $Th(\Delta) = Th(\Gamma) \Rightarrow \Delta \cong \Gamma$.

Examples

- finite structures
- (\mathbb{Q}, \lt)
A countable Δ is ω-categorical if \forall countable Γ we have $Th(\Delta) = Th(\Gamma) \Rightarrow \Delta \cong \Gamma$.

Examples

- finite structures
- $(\mathbb{Q},<)$
- random graph
A countable Δ is ω-categorical if \forall countable Γ we have $Th(\Delta) = Th(\Gamma) \Rightarrow \Delta \cong \Gamma$.

Examples

- finite structures
- $(\mathbb{Q}, <)$
- random graph
- random tournament, random hypergraphs, generic poset, ...
A countable Δ is ω-categorical if \forall countable Γ we have $Th(\Delta) = Th(\Gamma) \Rightarrow \Delta \cong \Gamma$.

Examples

- finite structures
- $(\mathbb{Q}, <)$
- random graph
- random tournament, random hypergraphs, generic poset, . . .
- countable vector spaces over $GF(q)$, countable atomless Boolean algebra
CSP

ω

-categorical templates express more E.g., directed graph acyclicity problem =\(\text{CSP}(Q, <)\).

Question 1: Do we have an analog of the clone dichotomy?

Question 2: What can we say in the two cases about the complexity?
ω-categorical templates express more
ω-categorical templates express more
E.g., directed graph acyclicity problem = CSP(\mathbb{Q}, <).
ω-categorical templates express more

E.g., directed graph acyclicity problem = CSP(\(\mathbb{Q}, <\)).

Question 1: Do we have an analog of the clone dichotomy?
\(\omega\)-categorical templates express more

E.g., directed graph acyclicity problem = CSP(\(\mathbb{Q}\), <).

Question 1: Do we have an analog of the clone dichotomy?
Question 2: What can we say in the two cases about the complexity?
The dichotomy conjecture

Δ: a finite relational structure

$\text{Pol}(\Delta)$: idempotent clone

1. Either $\exists \Phi : \text{Pol}(\Delta) \to 1$ homomorphism,
2. or \exists a Taylor (weak n. u., Siggers, cyclic, ...) operation in $\text{Pol}(\Delta)$.

Conjecture (Bulatov, Jeavons, Krokhin):

item (1) $\Rightarrow \text{CSP}(\Delta)$ is NP-complete (WELL-KNOWN)
item (2) $\Rightarrow \text{CSP}(\Delta) \in P$
Topological clones

Pol(∆) is a topological space w.r.t. the pointwise convergence topology.

Ω(a₁↦→b₁,...,aₙ↦→bₙ) := \{ f ∈ Pol(∆) | f(a₁) = b₁,..., f(aₙ) = bₙ \}

B = {Ω(a₁↦→b₁,...,aₙ↦→bₙ)} is a basis.

Bodirsky, Pinsker TFAE for an ω-categorical ∆.

∃Φ : Pol(∆) → 1 continuous homomorphism.

All finite structures have a primitive positive interpretation in ∆ (and in particular, CSP(∆) is NP-hard).
Pol(Δ) is a topological space w.r.t. the \textit{pointwise convergence} topology.
Topological clones

Pol(Δ) is a topological space w.r.t. the *pointwise convergence* topology.

\[\Omega(a_1 \mapsto b_1, \ldots, a_n \mapsto b_n) := \{ f \in \text{Pol}(\Delta) \mid f(a_1) = b_1, \ldots, f(a_n) = b_n \} \]

\[\mathcal{B} = \{ \Omega(a_1 \mapsto b_1, \ldots, a_n \mapsto b_n) \} \text{ is a basis.} \]
Topological clones

\(\text{Pol}(\Delta) \) is a topological space w.r.t. the \textit{pointwise convergence} topology.

\[
\Omega(a_1 \mapsto b_1, \ldots, a_n \mapsto b_n) := \{ f \in \text{Pol}(\Delta) \mid f(a_1) = b_1, \ldots, f(a_n) = b_n \}
\]

\(\mathcal{B} = \{ \Omega(a_1 \mapsto b_1, \ldots, a_n \mapsto b_n) \} \) is a basis.

Bodirsky, Pinsker

TFAE for an \(\omega \)-categorical \(\Delta \).

- \(\exists \Phi : \text{Pol}(\Delta) \to 1 \) \textit{continuous} homomorphism.
- All finite structures have a primitive positive interpretation in \(\Delta \) (and in particular, CSP(\(\Delta \)) is NP-hard).
Main question

Let Δ be an ω-categorical structure. Assume that $\exists \Phi : \text{Pol}(\Delta) \rightarrow 1$ homomorphism. Does there exist a $\Psi : \text{Pol}(\Delta) \rightarrow 1$ continuous homomorphism?

Theorem. \exists an ω-categorical Δ such that $\exists \Phi : \text{Pol}(\Delta) \rightarrow 1$ discontinuous homomorphism.

Remark. In that case, there exist continuous ones, too.

Continuity of homomorphisms

András Pongrácz
Main question

Let Δ be an ω-categorical structure.
Assume that $\exists \Phi : \text{Pol}(\Delta) \to 1$ homomorphism.
Does there exist a $\Psi : \text{Pol}(\Delta) \to 1$ continuous homomorphism?
Main question

Let \(\Delta \) be an \(\omega \)-categorical structure.

Assume that \(\exists \Phi : \text{Pol}(\Delta) \rightarrow \textbf{1} \) homomorphism.

Does there exist a \(\Psi : \text{Pol}(\Delta) \rightarrow \textbf{1} \) continuous homomorphism?

Theorem. \(\exists \) an \(\omega \)-categorical \(\Delta \) such that \(\exists \Phi : \text{Pol}(\Delta) \rightarrow \textbf{1} \) discontinuous homomorphism.
Main question

Let \(\Delta \) be an \(\omega \)-categorical structure.

Assume that \(\exists \Phi : \text{Pol}(\Delta) \to 1 \) homomorphism.

Does there exist a \(\Psi : \text{Pol}(\Delta) \to 1 \) continuous homomorphism?

Theorem. \(\exists \) an \(\omega \)-categorical \(\Delta \) such that \(\exists \Phi : \text{Pol}(\Delta) \to 1 \) discontinuous homomorphism.

Remark. In that case, there exist continuous ones, too.
Proof

\[\Gamma = (D, R_1, R_2, \ldots) \]

Each \(R_k \) has arity \(k \); it is an equivalence relation on \(k \)-tuples with 2 classes, \((D, R_k)\) is homogeneous, and all the \(R_k \) are freely superimposed. (Cherlin)

\[\Delta: \text{a reduct of } \Gamma. \]

\[\Delta = (D, R_1, R_2, \ldots, S_1, S_2, \ldots), \]

where \(S_k \) has arity \(3^k \), and a triple of \(k \)-tuples is in \(S_k \) iff not all three of them are equivalent w.r.t. \(R_k \).

An \(n \)-ary \(f \in \text{Pol}(\Delta) \) acts on the equivalence classes of \(R_k \) for all \(k \).

This action is an essentially unary function: \(\forall k \in \mathbb{N} \exists 1 \leq i \leq n \) such that it depends on the \(i \)-th coordinate.

\(U \) is a non-principal ultrafilter on \(\mathbb{N} \).

Let \(\Phi(f) = \pi_n^i \) for the unique \(i \) that is the essential coordinate for many \(k \).
Proof

\[\Gamma = (D, R_1, R_2, \ldots) \]
Proof

\[\Gamma = (D, R_1, R_2, \ldots) \]
Each \(R_k \) has arity \(2k \);
Proof

\[\Gamma = (D, R_1, R_2, \ldots) \]

Each \(R_k \) has arity \(2k \); it is an equivalence relation on \(k \)-tuples with 2 classes,
Proof

\[\Gamma = (D, R_1, R_2, \ldots) \]

Each \(R_k \) has arity \(2k \); it is an equivalence relation on \(k \)-tuples with 2 classes, \((D, R_k) \) is homogeneous,
Proof

\[\Gamma = (D, R_1, R_2, \ldots) \]

Each \(R_k \) has arity \(2k \); it is an equivalence relation on \(k \)-tuples with 2 classes, \((D, R_k) \) is homogeneous, and all the \(R_k \) are freely superimposed. (Cherlin)
\[\Gamma = (D, R_1, R_2, \ldots) \]

Each \(R_k \) has arity \(2k \); it is an equivalence relation on \(k \)-tuples with 2 classes, \((D, R_k) \) is homogeneous, and all the \(R_k \) are freely superimposed. (Cherlin)

\(\Delta \): a reduct of \(\Gamma \).
Proof

$\Gamma = (D, R_1, R_2, \ldots)$

Each R_k has arity $2k$; it is an equivalence relation on k-tuples with 2 classes, (D, R_k) is homogeneous, and all the R_k are freely superimposed. (Cherlin)

Δ: a reduct of Γ. $\Delta = (D, R_1, R_2, \ldots, S_1, S_2, \ldots)$, where S_k has arity $3k$, and a triple of k-tuples is in S_k iff not all three of them are equivalent w.r.t. R_k.
Proof

Γ = (D, R₁, R₂, ...)
Each Rₖ has arity 2k; it is an equivalence relation on k-tuples with 2 classes, (D, Rₖ) is homogeneous, and all the Rₖ are freely superimposed. (Cherlin)

Δ: a reduct of Γ. Δ = (D, R₁, R₂, ..., S₁, S₂, ...), where Sₖ has arity 3k, and a triple of k-tuples is in Sₖ iff not all three of them are equivalent w.r.t. Rₖ.

An n-ary f ∈ Pol(Δ) acts on the equivalence classes of Rₖ for all k.
Proof

Γ = (D, R₁, R₂, ⋯)

Each Rₖ has arity 2ᵏ; it is an equivalence relation on k-tuples with 2 classes, (D, Rₖ) is homogeneous, and all the Rₖ are freely superimposed. (Cherlin)

Δ: a reduct of Γ. Δ = (D, R₁, R₂, ⋯, S₁, S₂, ⋯), where Sₖ has arity 3ᵏ, and a triple of k-tuples is in Sₖ iff not all three of them are equivalent w.r.t. Rₖ.

An n-ary f ∈ Pol(Δ) acts on the equivalence classes of Rₖ for all k. This action is an essentially unary function:
Proof

Γ = (D, R_1, R_2, ...)
Each R_k has arity 2k; it is an equivalence relation on k-tuples with 2 classes, (D, R_k) is homogeneous, and all the R_k are freely superimposed. (Cherlin)
Δ: a reduct of Γ. Δ = (D, R_1, R_2, ..., S_1, S_2, ...), where S_k has arity 3k, and a triple of k-tuples is in S_k iff not all three of them are equivalent w.r.t. R_k.

An n-ary f ∈ Pol(Δ) acts on the equivalence classes of R_k for all k. This action is an essentially unary function: ∀k ∈ ℕ ∃1 ≤ i ≤ n such that it depends on the i-th coordinate. U is a non-principal ultrafilter on ℕ.
Proof

Γ = (D, R_1, R_2, \ldots)

Each R_k has arity 2k; it is an equivalence relation on k-tuples with 2 classes, (D, R_k) is homogeneous, and all the R_k are freely superimposed. (Cherlin)

Δ: a reduct of Γ. Δ = (D, R_1, R_2, \ldots, S_1, S_2, \ldots), where S_k has arity 3k, and a triple of k-tuples is in S_k iff not all three of them are equivalent w.r.t. R_k.

An n-ary f \in \text{Pol}(Δ) acts on the equivalence classes of R_k for all k. This action is an essentially unary function: \forall k \in \mathbb{N} \exists 1 \leq i \leq n \text{ such that it depends on the } i\text{-th coordinate. } \mathcal{U} \text{ is a non-principal ultrafilter on } \mathbb{N}. \text{ Let } \Phi(f) = \pi^n_i \text{ for the unique } i \text{ that is the essential coordinate for many } k.
Homogeneous structures

A countable relational structure Δ is homogeneous if $\forall \varphi : A \rightarrow B$ isomorphism between finite substructures $\exists \alpha \in \text{Aut}(\Delta)$ such that $\varphi = \alpha \restriction A$.

If the language of Δ is finite, then Δ is ω-categorical.

The tuples (a_1, \ldots, a_k) and (b_1, \ldots, b_k) have the same type in Δ if they satisfy the same first-order formulas with k free variables.

Fact: $\iff \exists \alpha \in \text{Aut}(\Delta)$ such that $\alpha(a) = b$.

A unary function $f : \Delta \rightarrow \Delta$ is canonical if whenever $a, b \in \Delta$ have the same type, then $f(a)$ and $f(b)$ have the same type (for all k).

Continuity of homomorphisms

András Pongrácz
A countable relational structure Δ is \textit{homogeneous} if $\forall \varphi : A \rightarrow B$ isomorphism between finite substructures $\exists \alpha \in \text{Aut}(\Delta)$ such that $\varphi = \alpha \restriction_A$.
Homogeneous structures

A countable relational structure Δ is *homogeneous* if $\forall \varphi : A \to B$ isomorphism between finite substructures $\exists \alpha \in \text{Aut}(\Delta)$ such that $\varphi = \alpha \upharpoonright A$.

If the language of Δ is finite, then Δ is ω-categorical.
A countable relational structure Δ is *homogeneous* if $\forall \varphi : A \to B$ isomorphism between finite substructures $\exists \alpha \in \text{Aut}(\Delta)$ such that $\varphi = \alpha \upharpoonright A$.

If the language of Δ is finite, then Δ is ω-categorical.

The tuples (a_1, \ldots, a_k) and (b_1, \ldots, b_k) have the same *type* in Δ if they satisfy the same first-order formulas with k free variables.
A countable relational structure Δ is **homogeneous** if $\forall \varphi : A \rightarrow B$ isomorphism between finite substructures $\exists \alpha \in \text{Aut}(\Delta)$ such that $\varphi = \alpha \upharpoonright A$.

If the language of Δ is finite, then Δ is ω-categorical.

The tuples (a_1, \ldots, a_k) and (b_1, \ldots, b_k) have the same type in Δ if they satisfy the same first-order formulas with k free variables.

Fact: $\iff \exists \alpha \in \text{Aut}(\Delta)$ such that $\alpha(a) = b$.
A countable relational structure Δ is **homogeneous** if $\forall \varphi : A \to B$ isomorphism between finite substructures $\exists \alpha \in \text{Aut}(\Delta)$ such that $\varphi = \alpha \upharpoonright A$.

If the language of Δ is finite, then Δ is ω-categorical.

The tuples (a_1, \ldots, a_k) and (b_1, \ldots, b_k) have the same type in Δ if they satisfy the same first-order formulas with k free variables.

Fact: $\iff \exists \alpha \in \text{Aut}(\Delta)$ such that $\alpha(a) = b$.

A unary function $f : \Delta \to \Delta$ is **canonical** if whenever $\underline{a}, \underline{b} \in \Delta^k$ have the same type, then $f(\underline{a})$ and $f(\underline{b})$ have the same type (for all k).
Canonical functions

A unary function $f: \Delta \to \Delta$ is canonical if whenever $a, b \in \Delta^k$ have the same type, then $f(a)$ and $f(b)$ have the same type (for all k).

$\iff \forall a \in \Delta^k$ and $\forall \alpha \in \text{Aut}(\Delta) \exists \beta \in \text{Aut}(\Delta)$ such that $f(\alpha(a)) = \beta(f(a))$.

\iff whenever $a_1, b_1 \in \Delta^m$ have the same type, then $f(a_1)$ and $f(b_1)$ have the same type.

An n-ary $f: \Delta^n \to \Delta$ is canonical if whenever $a_1, b_1 \in \Delta^k, ..., a_n, b_n \in \Delta^k$ have the same type, then $f(a_1, ..., a_n)$ and $f(b_1, ..., b_n)$ have the same type (for all k).

$\iff \forall a_1, ..., a_n \in \Delta^k$ and $\forall \alpha_1, ..., \alpha_n \in \text{Aut}(\Delta) \exists \beta \in \text{Aut}(\Delta)$ such that $f(\alpha_1(a_1), ..., \alpha_n(a_n)) = \beta(f(a_1, ..., a_n))$.

\iff whenever $a_1, b_1 \in \Delta^m, ..., a_n, b_n \in \Delta^m$ have the same type, then $f(a_1, ..., a_n)$ and $f(b_1, ..., b_n)$ have the same type.
Canonical functions

Δ homogeneous in a finite relational language, maximal arity: \(m \).
Canonical functions

Δ homogeneous in a finite relational language, maximal arity: m.
A unary function $f : \Delta \rightarrow \Delta$ is *canonical* if whenever $a, b \in \Delta^k$ have the same type, then $f(a)$ and $f(b)$ have the same type (for all k).
A unary function $f : \Delta \to \Delta$ is canonical if whenever $a, b \in \Delta^k$ have the same type, then $f(a)$ and $f(b)$ have the same type (for all k).

$\iff \forall a \in \Delta^k \text{ and } \forall \alpha \in \text{Aut}(\Delta) \exists \beta \in \text{Aut}(\Delta) \text{ such that } f(\alpha(a)) = \beta(f(a))$
Canonical functions

Δ homogeneous in a finite relational language, maximal arity: m.

A unary function $f : \Delta \to \Delta$ is canonical if whenever $a, b \in \Delta^k$ have the same type, then $f(a)$ and $f(b)$ have the same type (for all k).

$\iff \forall a \in \Delta^k$ and $\forall \alpha \in \text{Aut}(\Delta) \exists \beta \in \text{Aut}(\Delta)$ such that $f(\alpha(a)) = \beta(f(a))$

\iff whenever $a, b \in \Delta^m$ have the same type, then $f(a)$ and $f(b)$ have the same type.
Δ homogeneous in a finite relational language, maximal arity: \(m \).
A unary function \(f : \Delta \to \Delta \) is *canonical* if whenever \(a, b \in \Delta^k \) have the same type, then \(f(a) \) and \(f(b) \) have the same type (for all \(k \)).
\[
\Leftrightarrow \forall a \in \Delta^k \text{ and } \forall \alpha \in \text{Aut}(\Delta) \exists \beta \in \text{Aut}(\Delta) \text{ such that } f(\alpha(a)) = \beta(f(a))
\]
\[
\Leftrightarrow \text{whenever } a, b \in \Delta^m \text{ have the same type, then } f(a) \text{ and } f(b) \text{ have the same type.}
\]
An \(n \)-ary \(f : \Delta^n \to \Delta \) is canonical if whenever \(a_1, b_1 \in \Delta^k, \ldots, a_n, b_n \in \Delta^k \) have the same type, then \(f(a_1, \ldots, a_n) \) and \(f(b_1, \ldots, b_n) \) have the same type (for all \(k \)).
Canonical functions

Δ homogeneous in a finite relational language, maximal arity: m.

A unary function $f : \Delta \rightarrow \Delta$ is canonical if whenever $a, b \in \Delta^k$ have the same type, then $f(a)$ and $f(b)$ have the same type (for all k).

$\iff \forall a \in \Delta^k$ and $\forall \alpha \in \text{Aut}(\Delta)$ $\exists \beta \in \text{Aut}(\Delta)$ such that $f(\alpha(a)) = \beta(f(a))$

\iff whenever $a, b \in \Delta^m$ have the same type, then $f(a)$ and $f(b)$ have the same type.

An n-ary $f : \Delta^n \rightarrow \Delta$ is canonical if whenever

$a_1, b_1 \in \Delta^k, \ldots, a_n, b_n \in \Delta^k$ have the same type, then $f(a_1, \ldots, a_n)$ and $f(b_1, \ldots, b_n)$ have the same type (for all k).

$\iff \forall a_1, \ldots, a_n \in \Delta^k$ and $\forall \alpha_1, \ldots, \alpha_n \in \text{Aut}(\Delta)$ $\exists \beta \in \text{Aut}(\Delta)$ such that $f(\alpha_1(a_1), \ldots, \alpha_n(a_n)) = \beta(f(a_1, \ldots, a_n))$
Canonical functions

Δ homogeneous in a finite relational language, maximal arity: m.
A unary function $f : \Delta \to \Delta$ is canonical if whenever $\underline{a}, \underline{b} \in \Delta^k$ have the same type, then $f(\underline{a})$ and $f(\underline{b})$ have the same type (for all k).
\[\iff \forall \underline{a} \in \Delta^k \text{ and } \forall \alpha \in \text{Aut}(\Delta) \exists \beta \in \text{Aut}(\Delta) \text{ such that } f(\alpha(\underline{a})) = \beta(f(\underline{a})) \]
\[\iff \text{whenever } \underline{a}, \underline{b} \in \Delta^m \text{ have the same type, then } f(\underline{a}) \text{ and } f(\underline{b}) \text{ have the same type.} \]

An n-ary $f : \Delta^n \to \Delta$ is canonical if whenever $\underline{a}_1, \underline{b}_1 \in \Delta^k, \ldots, \underline{a}_n, \underline{b}_n \in \Delta^k$ have the same type, then $f(\underline{a}_1, \ldots, \underline{a}_n)$ and $f(\underline{b}_1, \ldots, \underline{b}_n)$ have the same type (for all k).
\[\iff \forall \underline{a}_1, \ldots, \underline{a}_n \in \Delta^k \text{ and } \forall \alpha_1, \ldots, \alpha_n \in \text{Aut}(\Delta) \exists \beta \in \text{Aut}(\Delta) \text{ such that } \]
\[f(\alpha_1(\underline{a}_1), \ldots, \alpha_n(\underline{a}_n)) = \beta(f(\underline{a}_1, \ldots, \underline{a}_n)) \]
\[\iff \text{whenever } \underline{a}_1, \underline{b}_1 \in \Delta^m, \ldots, \underline{a}_n, \underline{b}_n \in \Delta^m \text{ have the same type, then } f(\underline{a}_1, \ldots, \underline{a}_n) \text{ and } f(\underline{b}_1, \ldots, \underline{b}_n) \text{ have the same type.} \]
The type clone

∆ homogeneous in a finite relational language, maximal arity: m. T_m: the set of m-types.

C: a clone of canonical polymorphisms of $∆$ such that $\text{Aut}(∆) \subseteq C$. We say: canonical clone.

Φ_{typ} maps an n-ary $f \in C$ to the corresponding n-ary function on m-types. The image of Φ_{typ} is the type clone of C.

Claim. Φ_{typ} is a continuous homomorphism.

Proof. The Φ_{typ}-image of an n-ary f depends only on the restriction of f to a big enough finite set.
The type clone

Δ homogeneous in a finite relational language, maximal arity: m.

Claim. Φ_{typ} is a continuous homomorphism.

Proof. The Φ_{typ}-image of an n-ary $f \in C$ depends only on the restriction of f to a big enough finite set.

Continuity of homomorphisms

András Pongrácz
The type clone

\(\Delta \) homogeneous in a finite relational language, maximal arity: \(m \).

\(T_m \): the set of \(m \)-types.
The type clone

Δ homogeneous in a finite relational language, maximal arity: m.

T_m: the set of m-types. finite

Claim. Φ_{typ} is a continuous homomorphism.

Proof. The Φ_{typ}-image of an n-ary f depends only on the restriction of f to a big enough finite set.

Continuity of homomorphisms

András Pongrácz
The type clone

\(\Delta \) homogeneous in a finite relational language, maximal arity: \(m \).

\(T_m \): the set of \(m \)-types. \(\text{finite} \)

\(C \): a clone of canonical polymorphisms of \(\Delta \) such that \(\text{Aut}(\Delta) \subseteq C \). We say: \textit{canonical clone}.
The type clone

\(\Delta\) homogeneous in a finite relational language, maximal arity: \(m\).

\(T_m\): the set of \(m\)-types. finite

\(\mathcal{C}\): a clone of canonical polymorphisms of \(\Delta\) such that \(\text{Aut}(\Delta) \subseteq \mathcal{C}\). We say: canonical clone.

\(\Phi^{\text{typ}}\) maps an \(n\)-ary \(f \in \mathcal{C}\) to the corresponding \(n\)-ary function on \(m\)-types.
The type clone

Δ homogeneous in a finite relational language, maximal arity: m.

T_m: the set of m-types. finite

\mathcal{C}: a clone of canonical polymorphisms of Δ such that $\text{Aut}(\Delta) \subseteq \mathcal{C}$. We say: canonical clone.

Φ^{typ} maps an n-ary $f \in \mathcal{C}$ to the corresponding n-ary function on m-types. The image of Φ^{typ} is the type clone of \mathcal{C}.
The type clone

\(\Delta \) homogeneous in a finite relational language, maximal arity: \(m \).

\(T_m \): the set of \(m \)-types. finite

\(C \): a clone of canonical polymorphisms of \(\Delta \) such that \(\text{Aut}(\Delta) \subseteq C \). We say: canonical clone.

\(\Phi^{\text{typ}} \) maps an \(n \)-ary \(f \in C \) to the corresponding \(n \)-ary function on \(m \)-types. The image of \(\Phi^{\text{typ}} \) is the type clone of \(C \).

Claim. \(\Phi^{\text{typ}} \) is a continuous homomorphism.
The type clone

Δ homogeneous in a finite relational language, maximal arity: \(m \).

\(T_m \): the set of \(m \)-types. finite

\(\mathcal{C} \): a clone of canonical polymorphisms of \(\Delta \) such that \(\text{Aut}(\Delta) \subseteq \mathcal{C} \). We say: canonical clone.

\(\Phi^{\text{typ}} \) maps an \(n \)-ary \(f \in \mathcal{C} \) to the corresponding \(n \)-ary function on \(m \)-types. The image of \(\Phi^{\text{typ}} \) is the type clone of \(\mathcal{C} \).

Claim. \(\Phi^{\text{typ}} \) is a continuous homomorphism.

Proof. The \(\Phi^{\text{typ}} \)-image of an \(n \)-ary \(f \) depends only on the restriction of \(f \) to a big enough finite set.
Theorem. Let Δ be a homogeneous structure in a finite relational language, and let C be a closed canonical clone. Assume that there exists an n-ary cyclic operation f in the type clone, i.e., $f(x_1,\ldots,x_n) = f(x_2,\ldots,x_n,x_1) = \cdots = f(x_n,x_1,\ldots,x_{n-1})$.

Then there exists an n-ary $g \in C$ and unary functions $\alpha_1,\ldots,\alpha_n \in C$ such that $\alpha_1 \circ g(x_1,\ldots,x_n) = \alpha_2 \circ g(x_2,\ldots,x_n,x_1) = \cdots = \alpha_n \circ g(x_n,x_1,\ldots,x_{n-1})$.
Theorem. Let Δ be a homogeneous structure in a finite relational language, and let \mathcal{C} be a closed canonical clone.

Theorem. Let Δ be a homogeneous structure in a finite relational language, and let \mathcal{C} be a closed canonical clone. If $\exists \Phi : \mathcal{C} \to 1$ homomorphism, then there is also a continuous $\mathcal{C} \to 1$ homomorphism.
Theorem. Let Δ be a homogeneous structure in a finite relational language, and let C be a closed canonical clone. Assume that there exists an n-ary cyclic operation f in the type clone, i.e.,

$$f(x_1, \ldots, x_n) = f(x_2, \ldots, x_n, x_1) = \cdots = f(x_n, x_1, \ldots, x_{n-1}).$$

Then there exists an n-ary $g \in C$ and unary functions $\alpha_1, \ldots, \alpha_n \in C$ such that

$$\alpha_1 \circ g(x_1, \ldots, x_n) = \alpha_2 \circ g(x_2, \ldots, x_n, x_1) = \cdots = \alpha_n \circ g(x_n, x_1, \ldots, x_{n-1}).$$
Theorem. Let Δ be a homogeneous structure in a finite relational language, and let C be a closed canonical clone. Assume that there exists an n-ary cyclic operation f in the type clone, i.e.,

$$f(x_1, \ldots, x_n) = f(x_2, \ldots, x_n, x_1) = \cdots = f(x_n, x_1, \ldots, x_{n-1}).$$

Then there exists an n-ary $g \in C$ and unary functions $\alpha_1, \ldots, \alpha_n \in C$ such that

$$\alpha_1 \circ g(x_1, \ldots, x_n) = \alpha_2 \circ g(x_2, \ldots, x_n, x_1) = \cdots = \alpha_n \circ g(x_n, x_1, \ldots, x_{n-1}).$$
Theorem. Let Δ be a homogeneous structure in a finite relational language, and let \mathcal{C} be a closed canonical clone. Assume that there exists an n-ary cyclic operation f in the type clone, i.e.,

$$f(x_1, \ldots, x_n) = f(x_2, \ldots, x_n, x_1) = \cdots = f(x_n, x_1, \ldots, x_{n-1}).$$

Then there exists an n-ary $g \in \mathcal{C}$ and unary functions $\alpha_1, \ldots, \alpha_n \in \mathcal{C}$ such that

$$\alpha_1 \circ g(x_1, \ldots, x_n) = \alpha_2 \circ g(x_2, \ldots, x_n, x_1) = \cdots = \alpha_n \circ g(x_n, x_1, \ldots, x_{n-1}).$$

Theorem. Let Δ be a homogeneous structure in a finite relational language, and let \mathcal{C} be a closed canonical clone. If $\exists \Phi : \mathcal{C} \rightarrow 1$ homomorphism, then there is also a continuous $\mathcal{C} \rightarrow 1$ homomorphism.
Proof. If the type clone does not map homomorphically to \(\mathbb{1} \), then it contains a cyclic operation \(f \). This \(f \) lifts to an operation \(g \in C \) that is cyclic modulo unaries, a contradiction. Thus the type clone maps to \(\mathbb{1} \) via a (continuous) homomorphism \(\zeta \). Then \(\zeta \circ \Phi : C \to \mathbb{1} \) is a continuous homomorphism.

Corollary 1. The clone dichotomy holds for closed canonical clones.

Corollary 2. Let \(\Delta \) be homogeneous in a finite relational language. Assume that \(C = \text{Pol}(\Delta) \) is a closed canonical clone, and that \(\exists \Phi : C \to \mathbb{1} \) homomorphism. Then \(\text{CSP}(\Delta) \) is NP-hard.
Proof. If the type clone does not map homomorphically to 1, then it contains a cyclic operation f.
Proof. If the type clone does not map homomorphically to 1, then it contains a cyclic operation f. This f lifts to an operation $g \in C$ that is cyclic modulo unaries, a contradiction.
Proof. If the type clone does not map homomorphically to 1, then it contains a cyclic operation f.
This f lifts to an operation $g \in \mathcal{C}$ that is cyclic modulo unaries, a contradiction.
Thus the type clone maps to 1 via a (continuous) homomorphism ζ.
Proof. If the type clone does not map homomorphically to \(1\), then it contains a cyclic operation \(f\).

This \(f\) lifts to an operation \(g \in \mathcal{C}\) that is cyclic modulo unaries, a contradiction.

Thus the type clone maps to \(1\) via a (continuous) homomorphism \(\zeta\). Then \(\zeta \circ \Phi_{\text{typ}} : \mathcal{C} \rightarrow 1\) is a continuous homomorphism.
Proof. If the type clone does not map homomorphically to 1, then it contains a cyclic operation f.

This f lifts to an operation $g \in C$ that is cyclic modulo unaries, a contradiction.

Thus the type clone maps to 1 via a (continuous) homomorphism ζ.

Then $\zeta \circ \Phi_{\text{typ}} : C \to 1$ is a continuous homomorphism.

Corollary 1. The clone dichotomy holds for closed canonical clones.
Proof. If the type clone does not map homomorphically to 1, then it contains a cyclic operation f.

This f lifts to an operation $g \in \mathcal{C}$ that is cyclic modulo unaries, a contradiction.

Thus the type clone maps to 1 via a (continuous) homomorphism ζ. Then $\zeta \circ \Phi^\text{typ} : \mathcal{C} \to 1$ is a continuous homomorphism.

Corollary 1. The clone dichotomy holds for closed canonical clones.

Corollary 2. Let Δ be homogeneous in a finite relational language. Assume that $\mathcal{C} = \text{Pol}(\Delta)$ is a closed canonical clone, and that $\exists \Phi : \mathcal{C} \to 1$ homomorphism. Then CSP(Δ) is NP-hard.
If Δ has a first-order definition in a homogeneous relational structure Γ that is ordered and has the Ramsey property, then every function generates a canonical one. Moreover, $\text{Pol}(\Delta) = \bigcup_{i=1}^{\infty} C_i$, where each C_i is a closed canonical clone.
If Δ has a first-order definition in a homogeneous relational structure Γ that is ordered and has the *Ramsey property*, then every function generates a canonical one.

Moreover, $\text{Pol}(\Delta) = \bigcup_{i=1}^{\infty} C_i$, where each C_i is a closed canonical clone.
If Δ has a first-order definition in a homogeneous relational structure Γ that is ordered and has the Ramsey property, then every function generates a canonical one.

Moreover, $\text{Pol}(\Delta) = \bigcup_{i=1}^{\infty} C_i$, where each C_i is a closed canonical clone.
Let Δ be first-order definable in $\langle \mathbb{Q}, < \rangle$. Then $\text{CSP}(\Delta)$ is either in P or NP – complete.
Bodirsky, Kára

Let Δ be first-order definable in $(\mathbb{Q},<)$. Then CSP(Δ) is either in P or NP – complete.

Bodirsky, Pinsker

Let Δ be first-order definable in the random graph. Then CSP(Δ) is either in P or NP – complete.
Some open problems

- Is there a closed clone \mathcal{C} with a homomorphism to 1 but no continuous one?
Some open problems

- Is there a closed clone \mathcal{C} with a homomorphism to 1 but no continuous one?
- Let \mathfrak{A} be an algebra with a countable base set. Is it true that whenever $2 \in \text{HSP}(\mathfrak{A})$, then $2 \in \text{HSP}^{\text{fin}}(\mathfrak{A})$?
Some open problems

- Is there a closed clone \mathcal{C} with a homomorphism to $\mathbf{1}$ but no continuous one?
- Let \mathfrak{A} be an algebra with a countable base set. Is it true that whenever $2 \in \text{HSP}(\mathfrak{A})$, then $2 \in \text{HSP}^{\text{fin}}(\mathfrak{A})$?
- Is there a model of ZF in which every homomorphism from a closed clone to $\mathbf{1}$ is continuous?