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Examples of functional time series
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Microsoft stock prices in one-minute resolution
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Centered Eurodollar futures curves over a 50 day period.
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Recent research

Functional autoregressive (FAR, ARH) process

Zi = Φ(Zi−1) + εi,

Zi(t) =

∫

φ(t, s)Zi−1(s)ds+ εi(t), 0 ≤ t ≤ 1.

Zi =

p
∑

j=1

Φj(Zi−j) + εi.

– p. 6/40



Order selection in the FAR(p) model.

Optimal prediction using the FAR model
(Eurodollar futures).

Change point analysis in the FAR model

General weakly dependent functional time series,
including ARCH type models.

Two sample problems

Limit theory for the mean function,
estimation of the LRV.

Spectral analysis of functional time series
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Cumulative intraday returns

Pn(t) - price of an asset on day n at time t within that day
(trading hours).

Normalize the trading day to be the interval [0, 1].

Cumulative intraday return (CIDR) on day n:

rn(t) = 100(pn(t)− pn(0)), pn(t) = logPn(t).(0.1)

Compare:
daily log return is pn(1)− pn−1(1).
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Comments:

CIDR’s are not directly comparable to daily returns. They
do not include the overnight price change pn(0)− pn−1(1).

Since
rn(t) ≈ 100(Pn(t)− Pn(0))/Pn(0)

(Pn(0) constant for a given day n),
the curves rn(t) and Pn(t) have similar shapes but different
scales and origins.
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Top panel: price curves on five consecutive days for XOM.

Bottom panel: cumulative intraday returns on the same days.
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Ten CIDR’s on Exon Mobil (XOM). Left smoothed, Right raw.
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Factor models for CIDR’s

Rn CIDR curve on day n (a single asset)
Mn CIDR curve for a market index

Rn(t) = β0(t) + β1Mn(t) + εn(t).

Sn, Hn potential scalar risk factors

Rn(t) = β0(t) + β1Mn(t) + β2Sn + β3Hn + εn(t).

Cn CIDR curves for oil futures

Rn(t) = β0(t) + β1Mn(t) + β2Cn(t) + εn(t).

Combinations of scalar and curve factors are allowed.

– p. 13/40



A general model

Rn(t) = β0(t) +

p
∑

j=1

βjFnj(t) + εn(t).

Question: are any of the scalar coefficients βi significant?

Statistical factor model of Hays, Shen and Huang (2012):

Xn(t) =

K
∑

k=1

γnkFk(t) + εn(t).

The factors Fk do not depend on n and are orthonormal
functions to be estimated.
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Estimation

Functional β0(·), scalar βi
hybrid estimators: method of moments / least squares

Consistency and asymptotic normality established under a
weak dependence condition.
SE’s of the β̂i can be estimated using asymptotic variances.

Conclusions: The coefficients of
the market CIDR’s are significant
scalar factors are not significant (shape!)
oil futures CIDR’s are sometimes significant
(oil companies)
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A weak dependence condition

Bernoulli shifts

Fnj = fj(δn, δn−1, . . .), εn = e(ηn, ηn−1, . . .).

A sequence {Xn} is called Lp–m–approximable if each Xn

is a Bernoulli shift Xn = f(un, un−1, . . .) and

∞
∑

m=1

νp(Xn −X
(m)
n ) < ∞,

where νp(X) = (E‖X‖p)1/p;

X
(m)
n = f(un, un−1, . . . , un−m+1, u

′

n−m, u′n−m−1, . . .).

– p. 16/40



Predictability

Related to Efficient Market Hypothesis

Many forms:
Introduction in Campbell, Lo, MacKinlay (1997)

Celebrated history:
Bachelier, Working, Cowles, Granger, Fama, Samuelson
and Mandelbrot.

Still subject of research:
If frictions and nonstationarities are eliminated,
the direction of returns cannot be predicted.

Question: Can CIDR curves be predicted form the past
curves of the same asset?
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Functional Principal Components

Normalize the trading day to be the interval [0, 1].
Treat the IDCR’s as random elements of L2([0, 1]).
Assume that the L2–valued sequence {rn} is
strictly stationary (at least under H0).
r – a random function with the same distribution as each rn.

r(t) = µ(t) +

∞
∑

k=1

ξkvk(t),(0.2)

µ(t) = Er(t) – mean function,
vk(·), k ≥ 1, – functional principal components
(optimal orthonormal factors),
ξk = E

∫

(r(t)− µ(t))vk(t)dt – scores.
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µ(·) and vk(·), k ≥ 1, are population parameters.

They are estimated by µ̂(·) and v̂k(·), 1 ≤ k ≤ p.

All procedures of FDA that use FPC depend on p.

There are several ways of selecting optimal p,
but we feel most comfortable when conclusions do not
depend strongly on p in a reasonable range.

The estimated mean function µ̂(·) is very close to zero, for
most blue chip stocks statistically not significantly different
from zero.
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First four EFPC’s of XOM.
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Idea of testing predictability of shapes

The shape of the curve rn observed on day n is quantified
by the vector of scores

[ξ̂1n, ξ̂2n, . . . , ξ̂pn]
T , ξ̂kn =

∫

{rn(t)− µ̂(t)} v̂k(t)dt

These vectors describe the temporal evolution of the
shapes.
Example of interpretation: The sequence of the scores ξ̂1n

shows “how much” component v̂1 is present on day n.

If the sign of ξ̂1n is positive, the rn is mostly increasing.
If P (ξ1n > 0|ξ1,n−1 > 0) > 1/2, there is some predictability of
shapes: increasing curves tend to follow increasing curves.
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Current approaches and difficulties

The portmanteau test of Gabrys and Kokoszka (2007).
H0 : The rn are iid.

When applied to IDCR’s, the results depend very strongly
on p.

Next slide:
P–values of the portmanteau test as a function p.
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p 1 2 3 4
BOA 0.167 0.000 0.000 0.000
CITI 0.082 0.000 0.000 0.000

COCA 0.021 0.013 0.008 0.000
CVX 0.488 0.093 0.025 0.022
DIS 0.099 0.206 0.140 0.003
IBM 0.511 0.000 0.000 0.000
MCD 0.164 0.110 0.368 0.055
MSFT 0.227 0.145 0.005 0.000
WMT 0.032 0.008 0.000 0.000
XOM 0.054 0.091 0.367 0.000
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Time series of scores for WMT: left ξ1n, right ξ2n, 1 ≤ n ≤ 2500.
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Time series of scores for IDCR’s are heteroskedastic and
heavy–tailed.
The portmanteau test is very sensitive to both.
(It is a functional version of the Ljung–Box–Pierce test.)

We want to construct the test of predictability of signs of the
scores ξkn.

It will not be sensitive to heteroskedasticity and heavy–tails.
It will have a clear interpretation.
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Xn – centered rn.

Null Hypothesis:
The sequence {Xn} is conditionally symmetric:

L(Xn|Xn−1, Xn−2, . . .) = L(−Xn|Xn−1, Xn−2, . . .) a.s.

Define the triangular array

I
(k)
N,n = sign{〈Xn, v̂k〉}.

Unlike the sign of a scalar return, sign{〈Xn, vk〉} is not observable.

Notice that I(k)N,nI
(k)
N,n+1 is positive for a sequence and negative for a

reversal.
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Alternative Hypotheses:

HA : null hypothesis does not hold.

H−

A,j : E[I
(j)
1 I

(j)
2 ] < 0 or H+

A,j : E[I
(j)
1 I

(j)
2 ] > 0.

1. under H+
A,j , P (ξj,n > 0|ξj,n−1 > 0) > 1/2 and

P (ξj,n < 0|ξj,n−1 < 0) > 1/2,

2. under H−

A,j , P (ξj,n > 0|ξj,n−1 > 0) < 1/2 and
P (ξj,n < 0|ξj,n−1 < 0) < 1/2.
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The tests

To test against H+
A,j and H−

A,j we use statistics Λ(j).

To test against the general HA we use a statistics Λp based
on the first p EFPC’s v̂j.
(Λp weighs the Λ(j) according to their importance.)

Second part of the talk:
Definitions of these statistics and their asymptotic theory.
Simulation study assessing their finite sample performance.

– p. 28/40



Empirical evidence

P–values for the test based on the statistic Λp for p = 1, . . . , 4.

We denote with * the P–values under 10% favoring sequences.

p 1 2 3 4
BOA 0.255 0.243 0.232 0.240
CITI 0.194 0.213 0.229 0.223

COCA *0.053 *0.062 *0.063 *0.060
CVX 0.106 0.093 0.086 0.085
DIS 0.181 0.226 0.204 0.193
IBM 0.590 0.656 0.653 0.642
MCD 0.239 0.218 0.212 0.209
MSFT 0.952 0.841 0.887 0.896
WMT 0.984 0.927 0.916 0.897
XOM 0.016 0.015 0.015 0.015
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P–values of the tests based on statistics Λ(j) for j = 1, . . . , 4.

We denote with * the P–values under 10% favoring sequences.

j 1 2 3 4
BOA 0.255 0.646 0.309 0.194
CITI 0.194 0.618 0.223 0.290

COCA *0.053 0.413 0.857 0.168
CVX 0.106 0.419 0.196 0.628
DIS 0.181 0.098 *0.040 *0.033
IBM 0.590 0.290 0.857 0.369
MCD 0.239 0.391 0.536 0.536
MSFT 0.952 0.069 *0.040 0.413
WMT 0.984 0.194 0.646 0.115
XOM 0.016 0.592 0.834 0.625
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Summary

Unlike the Portmaneteau test, the new statistic Λp yields
consistent conclusions accross various p.

The auxiliary statistics Λ(j) allow us to identify the
components with predicatability and its direction.

For most blue chip stocks (2000-2007) there is no
evidence of predictability.

If overall predictability exists, it is in the the first FPC
(increasing/decreasing shape).

These conclusions remain valid for the period of the
financial cricis 2008/03/18 to 2009/03/31

MCD becomes predictable (sequences). P-value drops from 0.2 to 0.02.

XOM becomes unpredictable. P-value increses to 0.6 from 0.15.
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Asymptotic Theory

Difficulty: The usual bound

E

∫

(v̂k(t)− vk(t))
2 dt = O

(

N−1
)

cannot be used when working with signs (not continuous).

We used a martingale limit theorem due to D. L. McLeish.
(The Annals of Probability, 1974, 2, 620–628.)

THEOREM 0.1 {Yn,N} – array of martingale differences such that

(a) max1≤n≤N |Yn,N | is uniformly bounded in L2(P ) norm,

(b) max1≤n≤N |Yn,N | → 0, in probability,

(c)
∑

1≤n≤N Y 2
n,N → 1, in probability.

Then,
∑

1≤n≤N Yn,N
d
→ N(0, 1).
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Set

I
T
N,n = (I

(1)
N,n, . . . , I

(p)
N,n), Fn = σ{IN,1, . . . , IN,n}

and consider the pointwise (Hadamard) products

IN,n ◦ IN,n+1.

Verify that the assumptions of the theorem of McLeish hold.

Conclude that

Λ(k) := (N − 1)−1/2
N−1
∑

i=1

I
(k)
N,nI

(k)
N,n+1

d
→ N(0, 1);

(Λ(1), . . . ,Λ(p))T
d
→ N(0,Σ).
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A simulation study

Many general functional ARCH type processes satisfy the
assumptions.
(Their specific formulations have not been studied or
applied.)

We work with the model

Xi(t) = σiWi(t),

where Wi is a standard Brownian motion and σi is a
univariate process defined recursively as

log(σi) = a log(σi−1) + 0.5δi,

and the δi are iid standard normal random variables.
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First four EFPC’s of a simulated process; N = 1000, a = 0.5.
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Plot of the first two PC scores for the simulated process with
a = 0.5.
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Plot of the first two PC scores for the simulated process with
a = 0.5, and a 50% drop in variance after the 1250th observation.
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As the alternative, we consider the model

Xi(t) = Φ(Xi−1)(t) + σiWi(t),

where Wi and σi are defined as before.
The operator Φ is an integral operator with the kernel

φ(t, s) = c
exp(−(t− s)2)

0.8739
.

This is the FAR model with functional ARCH type errors.

The Hilbert–Schmidt norm of Φ is equal to c.
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Plot of the first (left) and second (right) PC scores for the simulated
process with a = 0.5 and c = 0.15 (An alternative ).
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Conclusions from numerical experiments:

The new tests are robust to heavy tails and
heteroskedasticity.

In all scenarios they have almost perfect empirical size.

For N = 2500 (size of real data) the new test has power
of about 98% for c = 0.15.

The portmanteau test can severely overrejects in some
scenarios. (For p = 4, N = 1000, a = 0.5, empirical size is
almost 60% for nominal size of 5%.)
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