Convergence of the largest eigenvalues of a sample covariance matrix for heavy-tailed multivariate time series

Thomas Mikosch

University of Copenhagen

Joint work with Richard A. Davis (Columbia) and Oliver Pfaffel (Munich Re)

¹Banff, April 30, 2014
1. Motivation

- **Large-dimensional data sets** appear in many quantitative fields like finance, environmental sciences, wireless communications, fMRI, and genetics.

- Structure in this data can often be analyzed via **sample covariances**.

- **PCA** is used to transform data to a new set of variables, the **principal components**, ordered such that the first few retain most of the variation of the data.

This suggests the need for an **eigenvalue decomposition** of the sample covariance matrix.
2. The Setup

• Data matrix: a $p \times n$ matrix X consisting of n observations of a p-dimensional time series, i.e.

$$X = (X_{it})_{t=1,\ldots,n; i=1,\ldots,p}$$

• The $p \times p$ sample covariance matrix (normalized) is given by

$$XX' = \left(\sum_{t=1}^{n} X_{it}X_{jt} \right)_{i,j=1,\ldots,p}$$

• Objective: study the ordered eigenvalues

$$\lambda_{(1)} \geq \lambda_{(2)} \geq \cdots \geq \lambda_{(p)}$$

of the $p \times p$ sample covariance matrix XX'.
• **Note:** if the rows are independent and identically distributed strictly stationary ergodic time series (with mean 0 and variance 1), then for p fixed,

\[
\frac{1}{n}XX' = \left(\frac{1}{n} \sum_{t=1}^{n} X_{it}X_{jt} \right)_{i,j=1,...,p} \xrightarrow{\text{a.s.}} I_p
\]
3. Known results for the largest eigenvalue

• Assume the entries of X are iid standard normal.

• For $n \to \infty$ and fixed p, Anderson (1963) proved that

\[\sqrt{\frac{n}{2}} \left(\frac{\lambda_{(1)}}{n} - 1 \right) \xrightarrow{d} N(0, 1). \]

• Johnstone (2001) showed that for $p, n \to \infty$ such that

\[p/n \to \gamma \in (0, \infty) \]

\[\frac{\sqrt{n} + \sqrt{p}}{(1/\sqrt{n} + 1/\sqrt{p})^{1/3}} \left(\frac{\lambda_{(1)}}{(\sqrt{n} + \sqrt{p})^2} - 1 \right) \xrightarrow{d} \text{Tracy-Widom distr.} \]
4. Our objective

- The assumption of Gaussianity in Johnstone’s result can be relaxed to a moment condition; cf. Four Moment Theorem by Tao and Vu (2011); and work by Erdös, Johansson, Péché, Schlein, Soshnikov, Yau, and others.

- **BUT:** in applications one often has neither independent observations, nor Gaussianity or even the existence of sufficient moments.

This led us to consider heavy-tailed random matrices with dependent entries.
5. Model setup

• Suppose $X = (X_{it})_{i=1,...,p; t=1,...,n}$ with

$$X_{it} = \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{kl} Z_{i-k,t-l}.$$

• Regularly varying iid noise (Z_{it}) with index $\alpha \in (0, 4)$, (infinite 4th moment) i.e. there exists $a_n = n^{1/\alpha} \ell(n)$ such that

$$n P(|Z| > a_n x) \rightarrow x^{-\alpha}, \quad n \rightarrow \infty, \quad x > 0.$$

and a tail balance condition holds.

• Summability condition on $H = (h_{kl})$.

• Growth conditions on $p = p_n \rightarrow \infty$.

$\alpha \in (0, 1) : p = O(n^\beta)$ for any $\beta > 0$.

$\alpha \in [1, 2) : p = O(n^\beta)$ for any $\beta < (\alpha - 1)^{-1}$.

$\alpha \in [2, 4) : p = O(n^\beta)$ for any $\beta < (2 - 0.5\alpha)(\alpha - 1)^{-1}$.

(excludes case $p/n \rightarrow \gamma > 0$)

• A crucial role play the quantities

$$D_i = D_i^{(n)} = \sum_{t=1}^{n} Z_{it}^2, \quad i = 1, \ldots, p,$$

and their order statistics $D_{(1)} \geq \cdots \geq D_{(p)}$.

• as well as the operator $M = HH'$, where

$$M_{ij} = \sum_{l=0}^{\infty} h_{il}h_{jl}, \quad i, j = 0, 1, \ldots,$$

and its eigenvalues $v_1 \geq v_2 \geq \cdots$.
6. Main result

• Let \((\lambda_i)\) be the eigenvalues of \(XX'\) for \(\alpha \in (0, 2)\) and of \(XX' - EXX'\) for \(\alpha \in (2, 4)\), \(\lambda_{(1)} \geq \cdots \geq \lambda_{(p)}\) the ordered eigenvalues, \(k^2 = o(p)\) an integer sequence,

• Then

\[a_{np}^{-2} \max_{i=1,\ldots,p} |\lambda_{(i)} - \delta_{(i)}| \xrightarrow{P} 0, \quad n \to \infty, \]

• where \(\delta_{(1)} \geq \cdots \geq \delta_{(p)}\) are the ordered values of the set

\(\{D_{(i)}v_j, i = 1, \ldots, k; j = 1, 2, \ldots\}\) for \(\alpha \in (0, 2)\)

and of the set \(\{(D_{\ell_i} - ED)v_j, i = 1, \ldots, k; j = 1, 2, \ldots\}\),

\(|D_{\ell_1} - ED| \geq \cdots \geq |D_{\ell_p} - ED|\) for \(\alpha \in (2, 4)\).
7. **Point process convergence**

- It follows from Nagaev-type large deviations that for $\alpha \in (0, 2)$,
 \[
 \sum_{i=1}^{p} \varepsilon_{\alpha n^2 p D_i} \overset{d}{\to} \sum_{i=1}^{\infty} \varepsilon_{\Gamma_i^{-2/\alpha}},
 \]
 where $\Gamma_i = E_1 + \cdots + E_i$, $i \geq 1$, for iid standard exponentials (E_i).

- The continuous mapping theorem implies (r is the rank of M)
 \[
 \sum_{j=1}^{r} \sum_{i=1}^{p} \varepsilon_{\alpha n^2 p D_i v_j} \overset{d}{\to} \sum_{j=1}^{r} \sum_{i=1}^{\infty} \varepsilon_{\Gamma_i^{-2/\alpha} v_j}.
 \]

- Hence, by the Main Result,
 \[
 \sum_{i=1}^{p} \varepsilon_{\alpha n^2 p \lambda_i} \overset{d}{\to} \sum_{j=1}^{r} \sum_{i=1}^{\infty} \varepsilon_{\Gamma_i^{-2/\alpha} v_j}.
 \]

- The corresponding result holds for $\alpha \in (2, 4)$ for $(D_i - ED)$.
• According to Resnick (1987),

\[
\sum_{i=1}^{p} \varepsilon_{a_{np}D_i} \overset{d}{\to} N = \sum_{i=1}^{\infty} \varepsilon_{\Gamma_i}^{-2/\alpha}
\]

holds for \(\alpha \in (0, 2) \) if and only if A. Nagaev (1968), S. Nagaev (1979)

\[
p P(D_1 > a_{np}^2 x) \to x^{-\alpha} = \mu(x, \infty), \quad x > 0,
\]

• For \(\alpha \in (2, 4) \),

\[
\sum_{i=1}^{p} \varepsilon_{a_{np}^2(D_i-ED)} \overset{d}{\to} N = \sum_{i=1}^{\infty} \varepsilon_{\Gamma_i}^{-2/\alpha}
\]

holds if and only if

\[
p P(D - ED > a_{np}^2 x) \to x^{-\alpha} = \mu(x, \infty)
\]

\[
p P(D - ED \leq -a_{np}^2 x) \to 0 = \mu[-\infty, -x], \quad x > 0,
\]

• \(\mu \) is the intensity measure of the Poisson process \(N \).
8. The largest eigenvalues

- The point process convergence implies for fixed \(m \)

\[
a_{np}^{-2}(\lambda(1), \ldots, \lambda(m)) \xrightarrow{d} (d(1), \ldots, d(m)),
\]

where \(d(1) \geq \cdots \geq d(m) \) are the \(m \) largest values of

\[
\{\Gamma_i^{-2/\alpha} v_j, i = 1, 2, \ldots, j = 1, \ldots, r\}.
\]

- For independent entries this was shown by Soshnikov (2006) for \(\alpha < 2 \) and by Auffinger, Ben Arous, Péché (2009) for \(\alpha \in (2, 4) \).

- For matrices with linear structure in each of the iid rows this was shown by Davis, Pfaffel, Stelzer (2013) for \(\alpha \in (0, 4) \).
• Example. \(X_{it} = Z_{i,t} - Z_{i,t-1} - 2(Z_{i-1,t} - Z_{i-1,t-1}) \). Then \(v_1 = 8 \) and \(v_2 = 2 \) so that

\[
a_{np}^{-2}(\lambda(1), \lambda(2)) \xrightarrow{d} (8\Gamma_1^{-2/\alpha}, 2\Gamma_1^{-2/\alpha} \lor 8\Gamma_2^{-2/\alpha})
\]

• Example: The separable case \(h_{kl} = \theta_k c_l \). Then

\[
M = \sum_{l=0}^{\infty} c_l^2 (\theta_i \theta_j)_{i,j \ge 0}
\]

has rank \(r = 1 \) and \(v_1 = \sum_{l=0}^{\infty} c_l^2 \sum_{k=0}^{\infty} \theta_k^2 \).

The limit point process is Poisson as in the iid case.

\[
a_{np}^{-2}(\lambda(1), \ldots, \lambda(m)) \xrightarrow{d} v_1(\Gamma_1^{-2/\alpha}, \ldots, \Gamma_m^{-2/\alpha}),
\]

\[
\frac{\lambda(1)}{\lambda(1) + \cdots + \lambda(m)} \xrightarrow{d} \frac{\Gamma_1^{-2/\alpha}}{\Gamma_1^{-2/\alpha} + \cdots + \Gamma_m^{-2/\alpha}}.
\]
9. **The Trace**

- Point process convergence and the continuous mapping theorem also imply that for $\alpha \in (0, 2)^2$

$$a_{np}^{-2}(\lambda(1), \sum_{i=1}^{p} \lambda_i) \xrightarrow{d} \left(v_1 \Gamma_1^{-2/\alpha}, \sum_{j=1}^{r} v_j \sum_{i=1}^{\infty} \Gamma_i^{-2/\alpha} \right).$$

- Here $\Gamma_1^{-2/\alpha}$ has a Fréchet $\Phi_{\alpha/2}$ distribution and $\sum_{i=1}^{\infty} \Gamma_i^{-2/\alpha}$ has an $\alpha/2$-stable distribution.

- In particular,

$$\frac{\lambda(1)}{\text{trace}(XX')} \xrightarrow{d} \frac{v_1}{v_1 + \cdots + v_r} \frac{\Gamma_1^{-2/\alpha}}{\sum_{i=1}^{\infty} \Gamma_i^{-2/\alpha}}.$$

\(^2\text{The corresponding result for } \alpha \in (2, 4) \text{ holds but requires compensation for the sums.}\)
• For $\alpha \in (2, 4)$, $\lambda_{(1)}/n$ is the largest eigenvalue of $n^{-1}(X_nX_n' - EX_nX_n')$.

• One might expect that $(\lambda_{(1)} - \delta_{(1)})/n \xrightarrow{P} 0$ but this is true if and only if $a_{np}^2/n \to 0$ (satisfied if $p = o(n^\gamma)$ for small γ because we also have $p = O(n^\beta)$ for $\beta < (2 - 0.5\alpha)(\alpha - 1)^{-1}$).
11. Elements of proof

Special case: $X_{it} = \theta_0 Z_{i,t} + \theta_1 Z_{i-1,t}$ and $\alpha \in (0, 2)$.

$$\sum_{t=1}^{n} X_{i,t}^2 = \sum_{t=1}^{n} \left(\theta_0^2 Z_{i,t}^2 + \theta_1^2 Z_{i-1,t}^2 \right) + 2\theta_0\theta_1 \sum_{t=1}^{n} Z_{i,t}Z_{i-1,t}$$

$$= \theta_0^2 D_i + \theta_1^2 D_{i-1} + o_P(a_n^2).$$

Here we used that Z^2 has tail index $\alpha/2$, while Z_1Z_2 has tail index α. Similarly,

$$\sum_{t=1}^{n} X_{i,t}X_{i+1,t} = \theta_0\theta_1 \sum_{t=1}^{n} Z_{i,t}^2 + o_P(a_n^2)$$

$$= \theta_0\theta_1 D_i + o_P(a_n^2).$$
This leads to the approximation
\[
\left(\begin{array}{cc}
\sum_{t=1}^{n} X_{i,t}^2 & \sum_{t=1}^{n} X_{i,t} X_{i+1,t} \\
\sum_{t=1}^{n} X_{i,t} X_{i+1,t} & \sum_{t=1}^{n} X_{i+1,t}^2
\end{array} \right)
\approx \left(\begin{array}{cc}
\theta_0^2 & \theta_0 \theta_1 \\
\theta_0 \theta_1 & \theta_1^2
\end{array} \right) D_i + \left(\begin{array}{cc}
\theta_1^2 & 0 \\
0 & 0
\end{array} \right) D_{i-1} + \left(\begin{array}{cc}
0 & 0 \\
0 & \theta_0^2
\end{array} \right) D_{i+1}.
\]

The sample covariance matrix can be approximated by
\[
\|XX' - \sum_{i=1}^{p} D_i M_i\|_2 = o_P(a_{np}^2),
\]
where
\[
M_1 = \left(\begin{array}{cccccc}
\theta_0^2 & \theta_0 \theta_1 & 0 & \cdots & 0 \\
\theta_0 \theta_1 & \theta_1^2 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array} \right), \quad
M_2 = \left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 \\
0 & \theta_0^2 & \theta_0 \theta_1 & \cdots & 0 \\
0 & \theta_0 \theta_1 & \theta_1^2 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array} \right), \ldots
\]
• Denote the order statistics of the \(D_i \)'s by \(D_{(1)} \geq \cdots \geq D_{(p)} \) and \(D_{L_i} = D_{(i)} \).

• Then

\[
a_n^{-2} \left\| XX' - \sum_{i=1}^{p} D_{L_i} M_{L_i} \right\|_2 \overset{P}{\rightarrow} 0.
\]

• For \(k = k_n \rightarrow \infty \) slowly,

\[
a_n^{-2} \left\| XX' - \sum_{i=1}^{k} D_{L_i} M_{L_i} \right\|_2 \overset{P}{\rightarrow} 0.
\]

• Since \((D_i) \) is iid, \((L_1, \ldots, L_p) \) is a random permutation of \((1, \ldots, p)\), hence the event

\[
A_k = \{|L_i - L_j| > 1, i \neq j = 1, \ldots, k\}
\]

has probability close to one provided \(k = o(p^2) \).
• On the set A_k, the matrix $\sum_{i=1}^k D_Li M_{Li}$ is block-diagonal with non-zero eigenvalues $D_Li(\theta_0^2 + \theta_1^2)$, $i = 1, \ldots, k$.

• Here we used that M_{Li} has rank 1 with non-zero eigenvalue equal to $\theta_0^2 + \theta_1^2$.

• By Weyl’s inequality,

$$a_{np}^{-2} \max_{i=1,\ldots,k} \left| \lambda(i) - D_Li(\theta_0^2 + \theta_1^2) \right| \leq a_{np}^{-2} \left\| XX' - \sum_{i=1}^k D_Li M_{Li} \right\|_2 \overset{P}{\rightarrow} 0.$$

• Extension to general structure: Use truncation.
12. **Open problems**

• Centering in the case $\alpha \in (2, 4)$.

• Order of magnitude of $p = p_n \to \infty$.

• Minima, lower order statistics, eigenvectors, determinant,

• Non-linear structure of X_{it}, where the tail of the squares of the noise does not dominate.