Abstract regular polytopes acting as transitive subgroups of Sym(n)
Abstract regular polytopes acting as transitive subgroups of Sym(n)

Mark Mixer
Wentworth Institute of Technology
February 14 2015
Abstract regular polytopes acting as transitive subgroups of Sym(n)

Mark Mixer
Wentworth Institute of Technology
Happy Valentine’s Day 2015
Platonic Solids

Mark Mixer
Outline

- Introduction
 - Regular polytopes and string C-groups
 - String C-groups acting on sets
 - Permutation graphs
- Fracture Graphs
- Ideas and Results in High Ranks
[5, 3] = \langle \rho_0, \rho_1, \rho_2 \mid \rho_i^2 = 1 = (\rho_0 \rho_2)^2 = (\rho_0 \rho_1)^5 = (\rho_1 \rho_2)^3 \rangle
[5, 3] = \langle \rho_0, \rho_1, \rho_2 \mid \rho_i^2 = 1 = (\rho_0 \rho_2)^2 = (\rho_0 \rho_1)^5 = (\rho_1 \rho_2)^3 \rangle

[3, 5] = \langle \rho_0, \rho_1, \rho_2 \mid \rho_i^2 = 1 = (\rho_0 \rho_2)^2 = (\rho_0 \rho_1)^3 = (\rho_1 \rho_2)^5 \rangle

[3, 3] = \langle \rho_0, \rho_1, \rho_2 \mid \rho_i^2 = 1 = (\rho_0 \rho_2)^2 = (\rho_0 \rho_1)^3 = (\rho_1 \rho_2)^3 \rangle

[3, 4] = \langle \rho_0, \rho_1, \rho_2 \mid \rho_i^2 = 1 = (\rho_0 \rho_2)^2 = (\rho_0 \rho_1)^3 = (\rho_1 \rho_2)^4 \rangle

[4, 3] = \langle \rho_0, \rho_1, \rho_2 \mid \rho_i^2 = 1 = (\rho_0 \rho_2)^2 = (\rho_0 \rho_1)^4 = (\rho_1 \rho_2)^3 \rangle
Let Γ be a (string C) group, and let it act on the set $[1, \ldots, n]$.

This makes n really big.

$[1, \ldots, n]$ = orbits of flags of the polytope.

This makes n small, but we lose the group structure in the graph.
String C-groups acting

Let Γ be a (string C) group, and let it act on the set $[1, \ldots, n]$.

- $[1, \ldots, n] = \text{flags of the polytope or elements of } \Gamma$
 - Maniplexes
 - Monodromy
 - Caley Graphs
 - Colorful Polytopes

This makes n really big.

$[1, \ldots, n] = \text{orbits of flags of the polytope}$. But we lose the group structure in the graph.
Let Γ be a (string C) group, and let it act on the set $[1, \ldots, n]$.

- $[1, \ldots, n] = \text{flags of the polytope or elements of } \Gamma$
 - Maniplexes
 - Monodromy
 - Caley Graphs
 - Colorful Polytopes

This makes n really big.

- $[1, \ldots, n] = \text{orbits of flags of the polytope.}$
 - Symmetry type graphs

This makes n small.
Let Γ be a (string C) group, and let it act on the set $[1, \ldots, n]$.

- $[1, \ldots, n] = \text{flags of the polytope or elements of } \Gamma$
 - Maniplexes
 - Monodromy
 - Caley Graphs
 - Colorful Polytopes

This makes n really big.

- $[1, \ldots, n] = \text{orbits of flags of the polytope.}$
 - Symmetry type graphs

This makes n small, but we lose the group structure in the graph.
Let \(n \) be as small as possible so that the action of \(\Gamma \) on \([1, \ldots, n]\) is faithful.

A string \(C \)-group \(\Gamma \) will be of “high rank” if its rank is “close” to \(n \).
Let n be as small as possible so that the action of Γ on $[1, \ldots, n]$ is faithful.

A string \mathbb{C}-group Γ will be of “high rank” if its rank is “close” to n.

Example 1: High rank

Let Γ be the automorphism group of the regular tetrahedron $[3, 3]$. Then $r = 3$ and $n = 4$ where $[1, \ldots, n]$ can be the vertices of the tetrahedron.
Let \(n \) be as small as possible so that the action of \(\Gamma \) on \([1, \ldots, n]\) is faithful.

A string C-group \(\Gamma \) will be of “high rank” if its rank is “close” to \(n \).

Example 2: High rank

Let \(\Gamma \) be the automorphism group of the regular cube \([4, 3]\). Then \(r = 3 \) and \(n = 6 \) where \([1, \ldots, n]\) can be the 2-faces of the cube.

Since \(\Gamma \cong \text{Sym}(4) \times 2 \) no smaller \(n \) will work.
Let n be as small as possible so that the action of Γ on $[1, \ldots, n]$ is faithful.

A string C-group Γ will be of “high rank” if its rank is “close” to n.

Example 3: Not high rank

Let Γ be the O’Nan sporadic group.
Then $r = 4$ and $n = 122760$.
Let Γ be a permutation group of degree n generated by involutions $\rho_0, \ldots, \rho_{r-1}$.

The graph X with vertices $[1, \ldots, n]$ and $\{a, b\} \in E(X) \iff a\rho_i = b$ is called the permutation representation graph of Γ.

Note 1: This is not a new idea. Marston had already been studying “Schreier coset graphs and their applications” in 1992.

Note 2: These are edge labeled multigraphs. Where each transposition in the involution ρ_i gives one i-edge.
Symmetries of a cube acting on faces
Symmetries of a cube acting on faces
Symmetries of a cube acting on faces

Mark Mixer
Symmetries of a cube acting on faces
Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be a permutation group of degree n generated by involutions, and let X be its permutation representation graph.

\{5, 6, 3\}
Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be a permutation group of degree n generated by involutions, and let X be its permutation representation graph.

\[\{5, 6, 3\} \]

If $\Gamma_i := \langle \rho_j \mid j \neq i \rangle$ is intransitive for all i then we can define a “fracture graph” for Γ.
Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be a permutation group of degree n generated by involutions, and let X be its permutation representation graph.

\[\{5, 6, 3\} \]

If $\Gamma_i := \langle \rho_j \mid j \neq i \rangle$ is intransitive for all i then we can define a “fracture graph” for Γ.
Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be a permutation group of degree n generated by involutions, and let X be its permutation representation graph.

If $\Gamma_i := \langle \rho_j \mid j \neq i \rangle$ is intransitive for all i then we can define a “fracture graph” for Γ.

\{5, 6, 3\}
Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be a permutation group of degree n generated by involutions, and let X be its permutation representation graph.

If $\Gamma_i := \langle \rho_j \mid j \neq i \rangle$ is intransitive for all i then we can define a “fracture graph” for Γ.

$\{5, 6, 3\}$
Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be a permutation group of degree n generated by involutions, and let X be its permutation representation graph.

If $\Gamma_i := \langle \rho_j \mid j \neq i \rangle$ is intransitive for all i then we can define a “fracture graph” for Γ.

\{5, 6, 3\}
Let \(\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle \) be a permutation group of degree \(n \) generated by involutions, and let \(X \) be its permutation representation graph.

\[\{5, 6, 3\} \]

If \(\Gamma_i := \langle \rho_j \mid j \neq i \rangle \) is intransitive for all \(i \) then we can define a “fracture graph” for \(\Gamma \).
Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be a permutation group of degree n generated by involutions, and let X be its permutation representation graph.

If $\Gamma_i := \langle \rho_j \mid j \neq i \rangle$ is intransitive for all i then we can define a “fracture graph” for Γ.

\{5, 6, 3\}
Let $\Gamma = \langle \rho_0, \ldots, \rho_{r-1} \rangle$ be a permutation group of degree n generated by involutions, and let X be its permutation representation graph.

If $\Gamma_i := \langle \rho_j \mid j \neq i \rangle$ is intransitive for all i then we can define a “fracture graph” for Γ.

\{5, 6, 3\}
Define F as follows from a permutation representation graph X with all Γ_i intransitive.

- $V(F) = V(X)$
- $|E(F)| = r$ where r is the rank of Γ
- $\{a, b\} \in E(F) \Rightarrow a \rho_i = b \Rightarrow a \rho_i \neq b$ for all $\rho_i \in \Gamma_i$
Define F as follows from a permutation representation graph X with all Γ_i intransitive.

- $V(F) = V(X)$
- $|E(F)| = r$ where r is the rank of Γ
- $\{a, b\} \in E(F) \Rightarrow$
 - $a \rho_i = b$
 - $a \rho \neq b$ for all $\rho \in \Gamma_i$
Fracture Graphs
Fracture Graphs

Mark Mixer
Fracture Graphs
Lemma:

Let F be a fracture graph and X be a permutation representation graph for a group of degree n generated by r involutions.

- F contains no cycles.
- F has $n - r$ connected components.
- If there is a multi-edge in X then the vertices are in different connected components of F.
- If there are two i-edges in X then all the vertices of these edges are not in the same connected component of F.
High Rank Fracture Graphs

Lemma:

Let F be a fracture graph and X be a permutation representation graph for a group of degree n generated by r involutions.

- F contains no cycles.
- F has $n - r$ connected components.
- If there is a multi-edge in X then the vertices are in different connected components of F.
- If there are two i-edges in X then all the vertices of these edges are not in the same connected component of F.

Let $r = n - 1$. F is a tree. X has no multi-edges. There are not two i-edges in X for any i.

Mark Mixer
Lemma:
Let F be a fracture graph and X be a permutation representation graph for a group of degree n generated by r involutions.

- F contains no cycles.
- F has $n - r$ connected components.
- If there is a multi-edge in X then the vertices are in different connected components of F.
- If there are two i-edges in X then all the vertices of these edges are not in the same connected component of F.

Let $r = n - 1$.
Lemma:

Let F be a fracture graph and X be a permutation representation graph for a group of degree n generated by r involutions.

- F contains no cycles.
- F has $n - r$ connected components.
- If there is a multi-edge in X then the vertices are in different connected components of F.
- If there are two i-edges in X then all the vertices of these edges are not in the same connected component of F.

Let $r = n - 1$.

- F is a tree.
Lemma:

Let F be a fracture graph and X be a permutation representation graph for a group of degree n generated by r involutions.

- F contains no cycles.
- F has $n - r$ connected components.
- If there is a multi-edge in X then the vertices are in different connected components of F.
- If there are two i-edges in X then all the vertices of these edges are not in the same connected component of F.

Let $r = n - 1$.

- F is a tree.
- X has no multi-edges.
Lemma: Let F be a fracture graph and X be a permutation representation graph for a group of degree n generated by r involutions.

- F contains no cycles.
- F has $n - r$ connected components.
- If there is a multi-edge in X then the vertices are in different connected components of F.
- If there are two i-edges in X then all the vertices of these edges are not in the same connected component of F.

Let $r = n - 1$.

- F is a tree.
- X has no multi-edges.
- There are not two i edges in X for any i.
If \(r = n - 1 \) then \(X \) is a tree.
If $r = n - 1$ then X is a tree.

Additionally, if $(\rho_i \rho_j)^2$ for $|i - j| > 1$

then $\Gamma \cong \text{Sym}(n)$ and $\langle \rho_0, \ldots, \rho_{r-1} \rangle$ gives the Coxeter generators of the $n - 1$ simplex
If \(r = n - 1 \) then \(X \) is a tree.

Additionally, if \((\rho_i \rho_j)^2\) for \(|i - j| > 1\)

then \(\Gamma \cong \text{Sym}(n) \) and \(\langle \rho_0, \ldots, \rho_{r-1} \rangle \) gives the Coxeter generators of the \(n - 1 \) simplex, if all \(\Gamma_i \) are intransitive.
Abstract regular polytopes acting as transitive subgroups of S_n

Theorem: Cameron, Fernandes, Leemans, M

Let Γ be a string C-group of rank r which is isomorphic to a transitive subgroup of S_n other than S_n or A_n. Then one of the following holds:

1. $r \leq n/2$;
2. $n \equiv 2 \mod 4$, $r = n/2 + 1$ and Γ is $2 \wr S_{n/2}$. The Schläfli type is $[2, 3, \ldots, 3, 4]$.
3. $n = 6, 8$, and Γ is one of four imprimitive examples.
4. $n = 6$, and Γ is $PGL_2(5) \cong S_5$ (the 4-simplex).
Thanks and Happy Birthday!!!