A Spiky Ball

Márton Naszódi

École polytechnique fédérale de Lausanne (Lausanne)

Eötvös University (Budapest)
Special Case: The Illumination Problem

Gohberg–Markus–Levi–Boltyanskii–Hadwiger Illumination Conjecture

Fix n. Then the maximum of $N(K, \text{int } K)$ over all convex bodies K in \mathbb{R}^n is 2^n, and only attained by parallelotopes.

Known:
If K is smooth then $i(K) = n + 1$.

Rogers

$$i(K) := N(K, \text{int } K) \leq \begin{cases} 2^n(n \ln n + n \ln \ln n + 5n) & \text{if } K = -K, \\ \binom{2n}{n}(n \ln n + n \ln \ln n + 5n) & \text{otherwise}. \end{cases}$$
Main Result

Theorem

Let $1 < D < 1.116$ be given. Then for any, sufficiently large dimension n, there is an o-symmetric convex body K in \mathbb{R}^n, with illumination number

$$i(K) = N(K, \text{int } K) \geq .05D^n,$$

for which

$$\frac{1}{D} B^n \subset K \subset B^n.$$
Main Result

Theorem

Let $1 < D < 1.116$ be given. Then for any, sufficiently large dimension n, there is an o-symmetric convex body K in \mathbb{R}^n, with illumination number

$$i(K) = N(K, \text{int } K) \geq .05D^n,$$

for which

$$\frac{1}{D} B^n \subset K \subset B^n.$$ \hspace{1cm} (1)

Sharp:

If $\frac{1}{D} B^n \subset K \subset B^n$ for some $D > 1$, then

$$i(K) \leq \frac{n \ln n + n \ln \ln n + 5n}{\Omega_{n-1}(\alpha)},$$

where $\alpha = \arcsin(1/D)$. \hspace{1cm} (3)
Application: Gap between ill and vein

\(K = -K \)

Illumination parameter [K. Bezdek ’06]:

\[
\text{ill}(K) = \inf \left\{ \sum_{p \in \text{vert} P} \|p\|_K \mid P \text{ a polytope such that } \text{vert} P \text{ illuminates } K \right\}.
\]

Vertex index [K. Bezdek – A. Litvak ’07]:

\[
\text{vein}(K) = \inf \left\{ \sum_{p \in \text{vert} P} \|p\|_K \mid P \text{ a polytope such that } K \subseteq P \right\}.
\]
Application: Gap between ill and vein

\[K = -K \]

Illumination parameter [K. Bezdek ’06]:

\[\text{ill}(K) = \inf \left\{ \sum_{p \in \text{vert } P} \|p\|_K \mid P \text{ a polytope such that } \text{vert } P \text{ illuminates } K \right\}. \]

Vertex index [K. Bezdek – A. Litvak ‘07]:

\[\text{vein}(K) = \inf \left\{ \sum_{p \in \text{vert } P} \|p\|_K \mid P \text{ a polytope such that } K \subseteq P \right\}. \]

\[\text{ill}(K) \geq \text{vein}(K), \quad \text{and} \quad \text{equal for smooth bodies.} \]

[B-L ’07, Gluskin – L. ’12]: \(\text{vein}(\mathcal{B}^n) \) is of order \(n^{3/2} \).
Application: Gap between \(\text{ill} \) and \(\text{vein} \)

\[K = -K \]

Illumination parameter [K. Bezdek ’06]:

\[
\text{ill}(K) = \inf \left\{ \sum_{p \in \text{vert } P} \|p\|_K \mid P \text{ a polytope such that } \text{vert } P \text{ illuminates } K \right\}.
\]

Vertex index [K. Bezdek – A. Litvak ’07]:

\[
\text{vein}(K) = \inf \left\{ \sum_{p \in \text{vert } P} \|p\|_K \mid P \text{ a polytope such that } K \subseteq P \right\}.
\]

\[\text{ill}(K) \geq \text{vein}(K), \quad \text{and equal for smooth bodies.} \]

[B-L ’07, Gluskin – L. ’12]: \(\text{vein}(B^n) \) is of order \(n^{3/2} \).

Let \(K \) be a spiky ball. Then

\(\text{vein}(K) \) is of order \(n^{3/2} \),

\(\text{ill}(K) \geq i(K) \) is exponentially large.
Preliminaries

$u \in \mathbb{S}^{n-1}$, and $0 < \varphi < \pi/2$.

Spherical cap: $C(u, \varphi) = \{ v \in \mathbb{S}^{n-1} : \angle(u, v) \leq \varphi \}$.

Probability measure of cap: $\Omega_{n-1}(\varphi)$.

Lemma (Böröczky – Wintsche '03)

Let $0 < \varphi < \pi/2$. Then

\[
\Omega_n(\varphi) > \frac{\sin^n \varphi}{\sqrt{2\pi(n+1)}},
\]

\[
\Omega_n(\varphi) < \frac{\sin^n \varphi}{\sqrt{2\pi n} \cos \varphi}, \quad \text{if } \varphi \leq \arccos \frac{1}{\sqrt{n+1}};
\]

\[
\Omega_n(t\varphi) < t^n \Omega_n(\varphi), \quad \text{if } 1 < t < \frac{\pi}{2\varphi}.
\]

Roughly,

\[\Omega_n(\varphi) \approx \sin^n \varphi. \]
The construction

X_1, \ldots, X_N independent random points on S^n.

$$K = \text{conv} \left(\{ \pm X_i : i \in [N] \} \cup \frac{1}{D}B^{n+1} \right).$$

Clearly, K is o-symmetric and $\frac{1}{D}B^{n+1} \subset K \subset B^{n+1}$.

Need: illumination number not small.
Bad event E_1

Notation: $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$ is such that $\sin \alpha = 1/D$.

E_1

The event that there are $i \neq j \in [N]$ with $\angle(X_i, X_j) < \pi - 2\alpha$ or $\angle(-X_i, X_j) < \pi - 2\alpha$.

If E_1 does not occur, then

for all $i \in [N]$: the set of directions that illuminate K at X_i is the spherical cap $C(-X, \alpha)$.
Bad event E_2

$T \in \mathbb{Z}^+$ fixed.

E_2

There is a direction $u \in \mathbb{S}^n$ with $|C(u, \alpha) \cap \{\pm X_i : i \in [N]\}| > T$.

If NOT(E_1) AND NOT(E_2), then

$$i(K) \geq 2N / T.$$
Bad event E_2

$T \in \mathbb{Z}^+ \text{ fixed.}$

<table>
<thead>
<tr>
<th>E_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a direction $u \in S^n$ with $</td>
</tr>
</tbody>
</table>

If NOT(E_1) AND NOT(E_2), then

$$i(K) \geq 2N/T.$$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{P}(E_2)$ is hard to estimate.</td>
</tr>
</tbody>
</table>
E'_2: finitize E_2

E_2
There is a direction $u \in \mathbb{S}^n$ with $|C(u, \alpha) \cap \{\pm X_i : i \in [N]\}| > T$.

Fix $\delta > 0$.
Let Λ be a δ-net of \mathbb{S}^n.
Let $p = 2\Omega_n(\alpha + \delta)$.
Let $\Theta > 1$ be fixed, and set $T = N\Theta p$.

E'_2
There is a direction $v \in \Lambda$ with $|C(v, \alpha + \delta) \cap \{\pm X_i : i \in [N]\}| > N\Theta p$.

Clearly, if $E_2 \implies E'_2$.

If $\text{NOT}(E_1) \text{ AND } \text{NOT}(E'_2)$, then

$$i(K) \geq 2/(\Theta p).$$
Is it possible?

If \(\neg E_1 \) AND \(\neg E_2' \), then

\[i(K) \geq \frac{2}{(\Theta p)}. \]

The task

Need to set \(N, \Theta, \delta \) such that \(P(\neg E_1 \text{ and } \neg E_2') > 0 \) and \(2/(\Theta p) \) is exponentially large in \(n \).
Is it possible?

If $\text{NOT}(E_1) \text{ AND NOT}(E_2')$, then

$$i(K) \geq \frac{2}{(\Theta p)}.$$

The task

Need to set N, Θ, δ such that $\mathbb{P}(\text{not}(E_1) \text{ and not}(E_2')) > 0$ and $\frac{2}{(\Theta p)}$ is exponentially large in n.

E_1

The event that there are $i \neq j \in [N]$ with $\angle(X_i, X_j) < \pi - 2\alpha$ or

$$\angle(-X_i, X_j) < \pi - 2\alpha.$$

Equation 1

$$\mathbb{P}(E_1) \leq N^2 \Omega_n (\pi - 2\alpha) \leq 1/4.$$
How to set N, Θ, δ

E'_2

There is a direction $\nu \in \Lambda$ with $|C(\nu, \alpha + \delta) \cap \{\pm X_i : i \in [N]\}| > N\Theta p$.

Fix $\nu \in \Lambda$.

When X_i is picked randomly, the probability that ν is contained in $C(X_i, \alpha + \delta)$ or in $C(-X_i, \alpha + \delta)$ is $p = 2\Omega_n(\alpha + \delta)$. Thus,

$$\mathbb{P}(E'_2) \leq |\Lambda| \mathbb{P}(\xi > N\Theta p) \leq 1/4 \quad \text{with } \xi \sim \text{Binom}(N, p).$$
How to set N, Θ, δ

E'_2

There is a direction $v \in \Lambda$ with $|C(v, \alpha + \delta) \cap \{\pm X_i : i \in [N]\}| > N\Theta p$.

Fix $v \in \Lambda$.
When X_i is picked randomly, the probability that v is contained in $C(X_i, \alpha + \delta)$ or in $C(-X_i, \alpha + \delta)$ is $p = 2\Omega_n(\alpha + \delta)$. Thus,

$$P(E'_2) \leq |\Lambda| P(\xi > N\Theta p) \leq 1/4 \text{ with } \xi \sim \text{Binom}(N, p).$$

Easy: There is a Λ with $|\Lambda| \leq n^2 / \sin^n(\delta)$.

Equation 2

$$P(E'_2) \leq \frac{n^2}{\sin^n(\delta)} P(\xi > N\Theta p) \leq 1/4 \text{ with } \xi \sim \text{Binom}(N, p).$$
Can we set N, Θ, δ properly?

Equation 1

\[\mathbb{P}(E_1) \leq N^2 \Omega_n(\pi - 2\alpha) \leq 1/4. \]

Equation 2

\[\mathbb{P}(E_2') \leq \frac{n^2}{\sin^n(\delta)} \mathbb{P}(\xi > N\Theta p) \leq 1/4 \quad \text{with } \xi \sim \text{Binom}(N, p). \]

Equation 3

Make $2/(\Theta p)$ exponentially large.
Can we set N, Θ, δ properly?

Equation 1

$$\mathbb{P}(E_1) \leq N^2 \Omega_n(\pi - 2\alpha) \leq 1/4.$$

Equation 2

$$\mathbb{P}(E'_2) \leq \frac{n^2}{\sin^n(\delta)} \mathbb{P}(\xi > N\Theta p) \leq 1/4 \quad \text{with} \quad \xi \sim \text{Binom}(N, p).$$

Equation 3

Make $2/(\Theta p)$ exponentially large.

Yes, we can!
Good event: Happy Birthday, Karcsi and Egon!