An $O(\log m)$-Competitive Algorithm for Online Machine Minimization

Nicole Megow
with Lin Chen and Kevin Schewior

Technische Universität München

Workshop on Approximation Algorithms and Parameterized Complexity
Banff, December 2015
The Problem: Definition

- **Input**: set of preemptable jobs \(J = \{1, \ldots, n\} \) where each job \(j \) is
The Problem: Definition

- **Input**: set of preemptable jobs $J = \{1, \ldots, n\}$ where each job j is

 - release date r_j,
 - deadline d_j

 Task: Find a feasible schedule on a min. number of machines.

 - Each job j is processing for p_j time units within $[r_j, d_j]$.
 - At any time, any job runs on at most one machine.
The Problem: Definition

- **Input**: set of preemptable jobs $J = \{1, \ldots, n\}$ where each job j is

 - \text{release date } r_j, \quad \text{deadline } d_j

 \begin{center}
 \begin{tikzpicture}
 \draw[->] (0,0) -- (5,0) node[below] {time};
 \draw (0,0) -- (1,0); \node at (0.5,0.2) {0};
 \draw (1,0) -- (2,0); \node at (1.5,0.2) {1};
 \draw (2,0) -- (5,0);
 \draw (2,0.2) -- (2,0.6);
 \draw (3,0) -- (5,0) node[midway,above] {processing time } node[midway,below] {p_j};
 \end{tikzpicture}
 \end{center}
The Problem: Definition

- **Input**: set of preemptable jobs $J = \{1, \ldots, n\}$ where each job j is
 - release date r_j,
 - deadline d_j,
 - processing time p_j.

- **Task**: Find a feasible schedule on a min. number of machines.
The Problem: Definition

- **Input**: set of preemptable jobs \(J = \{1, \ldots, n\} \) where each job \(j \) is

 release date \(r_j \), deadline \(d_j \)

 processing time \(p_j \)

- **Task**: Find a feasible schedule on a min. number of machines.
 - Each job \(j \) is processing for \(p_j \) time units within \([r_j, d_j]\).
The Problem: Definition

- **Input**: set of preemptable jobs $J = \{1, \ldots, n\}$ where each job j is

 release date r_j, deadline d_j

 0 1 -- time

 processing time p_j

- **Task**: Find a **feasible** schedule on a **min. number of machines**.
 - Each job j is processing for p_j time units within $[r_j, d_j]$.
 - At any time, any job runs on at most one machine.
The Problem: Definition

- **Input**: set of preemptable jobs $J = \{1, \ldots, n\}$ where each job j is

 - release date r_j,
 - deadline d_j

![Diagram of release date and deadline](image)

- **Task**: Find a feasible schedule on a min. number of machines.
 - Each job j is processing for p_j time units within $[r_j, d_j]$.
 - At any time, any job runs on at most one machine.

![Diagram of schedule](image)
The Problem: Definition

- **Input**: set of preemptable jobs $J = \{1, \ldots, n\}$ where each job j is
 - release date r_j,
 - deadline d_j,
 - processing time p_j.

- **Task**: Find a feasible schedule on a min. number of machines.
 - Each job j is processing for p_j time units within $[r_j, d_j]$.
 - At any time, any job runs on at most one machine.
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn '74
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn ’74

Online: A job becomes known only at its release date.
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn ’74

Online: A job becomes known only at its release date.

Slack versus processing time?
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn '74

Online: A job becomes *known only at its release date*.

Slack versus processing time?
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn ’74

Online: A job becomes known only at its release date.

Slack versus processing time?

Case 1:
The blue job is scheduled to some extent in [0, 1], i.e., some green job unfinished by 1.

Online:
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn ’74

Online: A job becomes known only at its release date.

Slack versus processing time?

Case 1:

The blue job is scheduled to some extent in [0, 1], i.e., some green job unfinished by 1.
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn '74

Online: A job becomes known only at its release date.

Slack versus processing time?

Case 1:
The blue job is scheduled to some extent in [0, 1], i.e., some green job unfinished by 1.
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn '74

Online: A job becomes known only at its release date.

Slack versus processing time?

Case 1:
The blue job is scheduled to some extent in [0, 1], i.e., some green job unfinished by 1.
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn '74

Online: A job becomes *known only at its release date*.

Slack versus processing time?

Case 2: The blue job is *not* scheduled in [0, 1], i.e., does not finish by 2.
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn ’74

Online: A job becomes known only at its release date.

Slack versus processing time?

Case 2:

The blue job is *not* scheduled in $[0, 1]$, i.e., does not finish by 2.

[Diagram showing time intervals and job schedules]
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn ’74

Online: A job becomes known only at its release date.

Slack versus processing time?

Case 2:

The blue job is not scheduled in [0, 1], i.e., does not finish by 2.
The Problem: Offline vs. Online

Offline: Optimally solvable in polynomial time (LP or max flow). Horn '74

Online: A job becomes known only at its release date.

Slack versus processing time?

Case 2:

The blue job is not scheduled in [0, 1], i.e., does not finish by 2.
The Problem: Online

Bad news: No (preemptive) online algorithm can guarantee to find always a feasible schedule on the minimum number of machines.

Dertousoz and Mok (TSE 1989)
The Problem: Online

Bad news: No (preemptive) online algorithm can guarantee to find always a feasible schedule on the minimum number of machines.

Dertousoz and Mok (TSE 1989)

Competitive analysis: An online algorithm ALG is *c*-competitive if

\[ALG(I) \leq c \cdot m(I), \]

for all instances \(I \) with a feasible offline schedule on \(m(I) \) machines.
Phillips et al. (STOC 1996)

- Best known algorithm (LLF) is $\mathcal{O}(\log \frac{p_{\text{max}}}{p_{\text{min}}})$-competitive.
- No deterministic algorithm is $(5/4 - \varepsilon)$-competitive.
Phillips et al. (STOC 1996)

- Best known algorithm (LLF) is $O(\log \frac{p_{\text{max}}}{p_{\text{min}}})$-competitive.
- No deterministic algorithm is $(\frac{5}{4} - \varepsilon)$-competitive.
- Open if there is an $f(m)$-competitive algorithm for any fct. f.
Previous Results

Phillips et al. (STOC 1996)

- Best known algorithm (LLF) is $O(\log \frac{p_{\max}}{p_{\min}})$-competitive.
- No deterministic algorithm is $(\frac{5}{4} - \varepsilon)$-competitive.

- Open if there is an $f(m)$-competitive algorithm for any fct. f.
- No better result even for $m = 2$.
Our Contribution

Theorem

There is an online algorithm with competitive ratio $O(\log m)$.
Our Contribution

Theorem

There is an online algorithm with competitive ratio $O(\log m)$.

Key ingredients

1. New algorithm carefully balancing the delay of tight jobs.
2. New lower bound relating number and laxity of critical jobs.
Our Contribution

Theorem

There is an online algorithm with competitive ratio $O(\log m)$.

Key ingredients

1. New algorithm carefully balancing the delay of tight jobs.
2. New lower bound relating number and laxity of critical jobs.

At the loss of a factor 4, we may assume m is known.

\rightarrow Guess-and-Double
Earliest Deadline First

Algorithm EDF\(_{m'}\): At any time schedule \(m' \) available jobs with minimum deadline and preempt other jobs if necessary.
Earliest Deadline First

Algorithm $\text{EDF}_{m'}$: At any time schedule m' available jobs with minimum deadline and preempt other jobs if necessary.

Theorem [Phillips et al., STOC 1997]

There are instances (for any $m \geq 2$) on which EDF_{n-1} fails.
Algorithm $EDF_{m'}$: At any time schedule m' available jobs with minimum deadline and preempt other jobs if necessary.

Theorem [Phillips et al., STOC 1997]

There are instances (for any $m \geq 2$) on which EDF_{n-1} fails.
Earliest Deadline First

Algorithm $\text{EDF}_{m'}$: At any time schedule m' available jobs with minimum deadline and preempt other jobs if necessary.

Theorem [Phillips et al., STOC 1997]

There are instances (for any $m \geq 2$) on which EDF_{n-1} fails.

Nicole Megow
Earliest Deadline First

Algorithm EDF

At any time schedule m' available jobs with minimum deadline and preempt other jobs if necessary.

Theorem [Phillips et al., STOC 1997]

There are instances (for any $m \geq 2$) on which EDF$_{n-1}$ fails.

Def. Let $\alpha < 1$. Job j is α-tight if $p_j > \alpha(d_j - r_j)$ and α-loose othw.
Algorithm $EDF_{m'}$: At any time schedule m' available jobs with minimum deadline and preempt other jobs if necessary.

Theorem [Phillips et al., STOC 1997]

There are instances (for any $m \geq 2$) on which EDF_{n-1} fails.

Def. Let $\alpha < 1$. Job j is α-tight if $p_j > \alpha(d_j - r_j)$ and α-loose othw.

Theorem [Chen, M., Schewior (2015)]

If every job is α-loose, then EDF_\ast is $\frac{1}{(1-\alpha)^2}$-competitive.
Least Laxity First (LLF)

Laxity of a job

\[l_j(t) \]

Algorithm Least Laxity First: At any time schedule the jobs with minimum laxity and preempt other jobs if necessary.

Theorem [Phillips et al., STOC 1997]
LLF may fail on \(f(m) \) machines, for any \(f \).

Theorem [Chen, M., Schewior 2015]
LLF may fail on \(f(m) \) machines, for any \(f \), even if jobs are \(\alpha \)-tight.
Least Laxity First (LLF)

Laxity of a job

\[\ell_j(t) \]

Algorithm Least Laxity First: At any time schedule the jobs with minimum laxity and preempt other jobs if necessary.

Theorem [Phillips et al., STOC 1997] LLF may fail on \(f(m) \) machines, for any \(f \).

Theorem [Chen, M., Schewior 2015] LLF may fail on \(f(m) \) machines, for any \(f \), even if jobs are \(\alpha \)-tight.
Least Laxity First (LLF)

Laxity of a job

Laxity \(\ell_j(t) = d_j - t - p_j(t) \)
Least Laxity First (LLF)

Laxity of a job

\[
l_j(t) = d_j - t - p_j(t)
\]

Algorithm Least Laxity First: At any time schedule the jobs with minimum laxity and preempt other jobs if necessary.
Least Laxity First (LLF)

Laxity of a job

\[\text{laxity } \ell_j(t) = d_j - t - p_j(t) \]

Algorithm Least Laxity First: At any time schedule the jobs with minimum laxity and preempt other jobs if necessary.

Theorem [Phillips et al., STOC 1997]

LLF may fail on \(f(m) \) machines, for any \(f \).
Least Laxity First (LLF)

Laxity of a job

\[\ell_j(t) = d_j - t - p_j(t) \]

Algorithm Least Laxity First: At any time schedule the jobs with minimum laxity and preempt other jobs if necessary.

Theorem [Phillips et al., STOC 1997]

LLF may fail on \(f(m) \) machines, for any \(f \).

Theorem [Chen, M., Schewior 2015]

LLF may fail on \(f(m) \) machines, for any \(f \), even if jobs are \(\alpha \)-tight.
A New Lower Bound – Tight Jobs Only

Load-based lower bounds.
Load-based lower bounds.

Definition: Let (μ, β)-critical pair (G, T)

1. Each time $t \in T$ is covered by $\geq \mu$ distinct jobs in G.
2. $|T \cap I(j)| \geq \beta \cdot \ell_j$, for any $j \in G$.

Theorem. If there is a (μ, β)-critical pair then $m = \Omega(\mu \log 1/\beta)$.

Given m: If there is a (μ, β)-critical pair then $\mu = O(m \cdot \log 1/\beta)$.
A New Lower Bound – Tight Jobs Only

Load-based lower bounds.

Definition:

(i) each time $t \in T$ is covered by $\geq \mu$ distinct jobs in G

(ii) $|T \cap I(j)| \geq \beta \cdot \ell_j$, for any $j \in G$

Theorem. If there is a (μ, β)-critical pair then $m = \Omega(\mu \log \frac{1}{\beta})$.

Given m: If there is a (μ, β)-critical pair then $\mu = O(m \cdot \log \frac{1}{\beta})$.
A New Lower Bound – Tight Jobs Only

Relate laxity and number of intersecting intervals.

Definition: \((\mu, \beta)-\text{critical pair} (G, T)\)

(i) each time \(t \in T\) is covered by \(\geq \mu\) distinct jobs in \(G\)

(ii) \(|T \cap I(j)| \geq \beta \cdot \ell_j\), for any \(j \in G\)

Theorem. If there is a \((\mu, \beta)-\)critical pair then \(m = \Omega(\mu \log \frac{1}{\beta})\).

Given \(m\): If there is a \((\mu, \beta)-\)critical pair then \(\mu = O(m \cdot \log \frac{1}{\beta})\).
A New Lower Bound – Tight Jobs Only

Relate laxity and number of intersecting intervals.

Definition: \((\mu, \beta)\)-critical pair \((G, T)\)

(i) each time \(t \in T\) is covered by \(\geq \mu\) distinct jobs in \(G\)

(ii) \(|T \cap I(j)| \geq \beta \cdot \ell_j\), for any \(j \in G\)
Relate laxity and number of intersecting intervals.

Definition: \((\mu, \beta)\)-critical pair \((G, T)\)

(i) each time \(t \in T\) is covered by \(\geq \mu\) distinct jobs in \(G\)

(ii) \(|T \cap I(j)| \geq \beta \cdot \ell_j\), for any \(j \in G\)

Theorem. If there is a \((\mu, \beta)\)-critical pair then \(m = \Omega(\frac{\mu}{\log 1/\beta})\).
A New Lower Bound – Tight Jobs Only

Relate laxity and number of intersecting intervals.

Definition: \((\mu, \beta)\)-critical pair \((G, T)\)

(i) each time \(t \in T\) is covered by \(\geq \mu\) distinct jobs in \(G\)
(ii) \(|T \cap I(j)| \geq \beta \cdot \ell_j\), for any \(j \in G\)

Theorem. If there is a \((\mu, \beta)\)-critical pair then \(m = \Omega(\frac{\mu}{\log 1/\beta})\).

Given \(m\): If there is a \((\mu, \beta)\)-critical pair then \(\mu = O(m \cdot \log \frac{1}{\beta})\).
Our Algorithm

Open m' machines. Charge the delay of a job to its laxity (= budget).
Our Algorithm

Open m' machines. Charge the delay of a job to its laxity (\(=\) budget).

![Diagram showing open machines and their allocation of budget]

Open m' machines. Charge the delay of a job to its laxity (\(=\) budget).
Our Algorithm

Open m' machines. Charge the delay of a job to its laxity ($= \text{budget}$).

Use i-th budget (originally $\ell_j/(m' + 1)$) when $i - 1$ other jobs are active.
Our Algorithm

Open m' machines. Charge the delay of a job to its laxity (\(=\) budget).

Use i-th budget (originally $\ell_j/(m' + 1)$) when $i - 1$ other jobs are active.
Our Algorithm

Open m' machines. Charge the delay of a job to its laxity (= budget).

Use i-th budget (originally $\ell_j/(m' + 1)$) when $i - 1$ other jobs are active.
Our Algorithm

Open \(m' \) machines. Charge the delay of a job to its laxity (\(= \) budget).

Use \(i \)-th budget (originally \(\ell_j/(m' + 1) \)) when \(i - 1 \) other jobs are active.

1st budget empty, delay job, and charge 1st budget
Our Algorithm

Open m' machines. Charge the delay of a job to its laxity (= budget).

Use i-th budget (originally $\ell_j/(m' + 1)$) when $i - 1$ other jobs are active.
Our Algorithm

Open m' machines. Charge the delay of a job to its laxity ($= \text{budget}$).

Use i-th budget (originally $\ell_j/(m' + 1)$) when $i - 1$ other jobs are active.
Our Algorithm

Open m' machines. Charge the delay of a job to its laxity ($= \text{budget}$).

Use i-th budget (originally $\ell_j/(m' + 1)$) when $i - 1$ other jobs are active.
To show: when $m' = \mathcal{O}(m \log m)$, there is no $(m' + 1)$-th active job.
To show: when \(m' = \mathcal{O}(m \log m) \), there is no \((m' + 1)\)-th active job.

- Suppose some job \(j^* \) has an empty \(m' \)-th budget.
Analysis Sketch

To show: when \(m' = \mathcal{O}(m \log m) \), there is no \((m' + 1)\)-th active job.

- Suppose some job \(j^* \) has an empty \(m' \)-th budget.
- We construct a failure set \((F, T)\).

\[
\text{Lower Bound Theorem implies } m' = \mathcal{O}(m \log m) .
\]

Choosing \(m' = \mathcal{O}(m \log m) \) gives a contradiction.

Theorem Algorithm is \(\mathcal{O}(\log m) \)-competitive for online machine minimization.
To show: when \(m' = \mathcal{O}(m \log m) \), there is no \((m' + 1)\)-th active job.

- Suppose some job \(j^* \) has an empty \(m' \)-th budget.
- We construct a failure set \((F, T)\).
Analysis Sketch

To show: when \(m' = \mathcal{O}(m \log m) \), there is no \((m' + 1)\)-th active job.

- Suppose some job \(j^* \) has an empty \(m' \)-th budget.
- We construct a failure set \((F, T)\).

Job set \(F \)

Time points \(T \)
\[m' \text{-th budget was charged} \]
Analysis Sketch

To show: when $m' = \mathcal{O}(m \log m)$, there is no $(m' + 1)$-th active job.

- Suppose some job j^* has an empty m'-th budget.
- We construct a failure set (F, T).

Job set F

- (m'−1)-th active job

Time points T

- m’-th budget was charged

(1/m'+1, 1)

Lemma: Failure set (F, T) is a $(m'+1, 1/m'+1)$-critical pair.

→ Each $t \in T$ is covered by $\geq m' + 1$ distinct jobs from F.

→ Each $j \in F$ run out of budget during T, i.e., $|T \cap I(j)| \geq 1/m' + 1 \cdot \ell_j$.

Lower Bound Theorem implies $m' = \mathcal{O}(m \log m)$.

Choosing $m' = \mathcal{O}(m \log m)$ gives a contradiction.

Theorem: Algorithm is $O(\log m)$-competitive for online machine minimization.
To show: when $m' = \mathcal{O}(m \log m)$, there is no $(m' + 1)$-th active job.

- Suppose some job j^* has an empty m'-th budget.
- We construct a failure set (F, T).

Job set F

Time points T

$(m' - 2)$-th budget was charged
Analysis Sketch

To show: when $m' = \mathcal{O}(m \log m)$, there is no $(m' + 1)$-th active job.

- Suppose some job j^* has an empty m'-th budget.
- We construct a failure set (F, T).

![Diagram showing job set F and time points T with (m’–2)–th active jobs highlighted]
To show: when $m' = \mathcal{O}(m \log m)$, there is no $(m' + 1)$-th active job.

- Suppose some job j^* has an empty m'-th budget.
- We construct a failure set (F, T).

Lemma
Failure set (F, T) is a $(m' + 1, 1)$-critical pair.

- Each $t \in T$ is covered by $\geq m' + 1$ distinct jobs from F.
- Each $j \in F$ runs out of budget during T, i.e., $|T \cap I(j)| \geq 1 \cdot m' + 1 \cdot \ell_j$.

Lower Bound Theorem implies $m' = \mathcal{O}(m \log m)$.

Choosing $m' = \mathcal{O}(m \log m)$ gives a contradiction.

Theorem: Algorithm is $\mathcal{O}(\log m)$-competitive for online machine minimization.
Analysis Sketch

To show: when \(m' = \mathcal{O}(m \log m) \), there is no \((m' + 1)\)-th active job.

- Suppose some job \(j^* \) has an empty \(m' \)-th budget.
- We construct a failure set \((F, T)\).

Lemma: Failure set \((F, T)\) is a \((m' + 1, \frac{1}{m' + 1})\)-critical pair.
Analysis Sketch

To show: when $m' = \mathcal{O}(m \log m)$, there is no $(m' + 1)$-th active job.

- Suppose some job j^* has an empty m'-th budget.
- We construct a failure set (F, T).

Lemma: Failure set (F, T) is a $(m' + 1, \frac{1}{m'+1})$-critical pair.

- Each $t \in T$ is covered by $\geq m' + 1$ distinct jobs from F.
- Each $j \in F$ run out of budget during T, i.e., $|T \cap I(j)| \geq \frac{1}{m'+1} \cdot \ell_j$.

Lower Bound Theorem implies $m' = \mathcal{O}(m \log m)$.

Choosing $m' = \mathcal{O}(m \log m)$ gives a contradiction.

Theorem: Algorithm is $O(\log m)$-competitive for online machine minimization.
Analysis Sketch

To show: when \(m' = \mathcal{O}(m \log m) \), there is no \((m' + 1)\)-th active job.

- Suppose some job \(j^* \) has an empty \(m' \)-th budget.
- We construct a failure set \((F, T)\).

Lemma: Failure set \((F, T)\) is a \((m' + 1, \frac{1}{m'+1})\)-critical pair.

- Each \(t \in T \) is covered by \(\geq m' + 1 \) distinct jobs from \(F \).
- Each \(j \in F \) run out of budget during \(T \), i.e., \(|T \cap I(j)| \geq \frac{1}{m'+1} \cdot \ell_j\).

- Lower Bound Theorem implies \(m' = \mathcal{O}(m \log m') \).
Analysis Sketch

To show: when \(m' = \mathcal{O}(m \log m) \), there is no \((m' + 1)\)-th active job.

- Suppose some job \(j^* \) has an empty \(m' \)-th budget.
- We construct a failure set \((F, T)\).

Lemma: Failure set \((F, T)\) is a \((m' + 1, \frac{1}{m'+1})\)-critical pair.

\[
\rightarrow \text{ Each } t \in T \text{ is covered by } \geq m' + 1 \text{ distinct jobs from } F.
\rightarrow \text{ Each } j \in F \text{ run out of budget during } T, \text{ i.e., } |T \cap I(j)| \geq \frac{1}{m'+1} \cdot \ell_j.
\]

- Lower Bound Theorem implies \(m' = \mathcal{O}(m \log m') \).
- Choosing \(m' = \mathcal{O}(m \log m) \) gives a contradiction.
Analysis Sketch

To show: when $m' = \mathcal{O}(m \log m)$, there is no $(m' + 1)$-th active job.

- Suppose some job j^* has an empty m'-th budget.
- We construct a failure set (F, T).

Lemma: Failure set (F, T) is a $(m' + 1, \frac{1}{m' + 1})$-critical pair.

- Each $t \in T$ is covered by $\geq m' + 1$ distinct jobs from F.
- Each $j \in F$ run out of budget during T, i.e., $|T \cap I(j)| \geq \frac{1}{m' + 1} \cdot \ell_j$.

- Lower Bound Theorem implies $m' = \mathcal{O}(m \log m')$.
- Choosing $m' = \mathcal{O}(m \log m)$ gives a contradiction.

Theorem

Algorithm is $\mathcal{O}(\log m)$-competitive for online machine minimization.
Two major special cases

Agreeable instances
for any two jobs j and k:
$r_j < r_k$ implies $d_j \leq d_k$

Laminar instances
for any two intersecting time windows I_j, I_k: either $I_j \subseteq I_k$ or $I_k \subseteq I_j$
Two major special cases

Agreeable instances
for any two jobs j and k:
$r_j < r_k$ implies $d_j \leq d_k$

Laminar instances
for any two intersecting time windows I_j, I_k: either $I_j \subseteq I_k$ or $I_k \subseteq I_j$

Theorem
Our algorithm is $O(1)$-competitive for agreeable and laminar instances.
Two major special cases

Agreeable instances
for any two jobs \(j\) and \(k\):
\[r_j < r_k \text{ implies } d_j \leq d_k \]

Laminar instances
for any two intersecting time windows \(I_j, I_k\):
either \(I_j \subseteq I_k\) or \(I_k \subseteq I_j\)

Theorem
Our algorithm is \(O(1)\)-competitive for **agreeable** and **laminar** instances.

→ slightly modified lower bound and failure-set construction
Open questions

Does there exist a constant-competitive online algorithm?
– Decrease the gap between $\frac{5}{4}$ and $O(\log m)$.

Approximability of non-preemptive offline problem?
– $O(\sqrt{\log n \log \log n})$-approximation Chuzhoy et al. (FOCS 2004)

Fixed-parameter tractability/approximability?
– Parameters such as: m, laxity ℓ_j, α, p_{max}, or p_{max}/p_{min}
– Some first results Cieliebak et al. IFIP 2004 van Bevern, Niedermeier, Suchy arxiv 2016
Open questions

- Does there exist a constant-competitive \textit{online} algorithm?
Open questions

- Does there exist a constant-competitive online algorithm?
 - Decrease the gap between $5/4$ and $O(\log m)$.
Open questions

- Does there exist a constant-competitive online algorithm?
 - Decrease the gap between $5/4$ and $\mathcal{O}(\log m)$.
- Approximability of non-preemptive offline problem?
 - $\mathcal{O}(\sqrt{\frac{\log n}{\log \log n}})$-approximation

 Chuzhoy et al. (FOCS 2004)
Open questions

- Does there exist a constant-competitive online algorithm?
 - Decrease the gap between $5/4$ and $O(\log m)$.

- Approximability of non-preemptive offline problem?
 - $O(\sqrt{\log n / \log \log n})$-approximation
 Chuzhoy et al. (FOCS 2004)

- Fixed-parameter tractability/approximability?
Open questions

- Does there exist a constant-competitive online algorithm?
 - Decrease the gap between $5/4$ and $O(\log m)$.

- Approximability of non-preemptive offline problem?
 - $O(\sqrt{\frac{\log n}{\log \log n}})$-approximation by Chuzhoy et al. (FOCS 2004)

- Fixed-parameter tractability/approximability?
 - Parameters such as: m, laxity ℓ_j, α, p_{max}, or $p_{\text{max}}/p_{\text{min}}$
Open questions

- Does there exist a constant-competitive **online** algorithm?
 - Decrease the gap between $5/4$ and $\mathcal{O}(\log m)$.

- **Approximability of non-preemptive offline** problem?
 - $\mathcal{O}(\sqrt{\frac{\log n}{\log \log n}})$-approximation
 Chuzhoy et al. (FOCS 2004)

- **Fixed-parameter** tractability/approximability?
 - Parameters such as: m, laxity ℓ_j, α, p_{max}, or $p_{\text{max}}/p_{\text{min}}$
 - some first results
 Cieliebak et al. IFIP 2004
 van Bevern, Niedermeier, Suchy arxiv 2016