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Exponentially many needles ?

There are many problems in combinatorial number theory where the
numbers of solutions for increasing values of n form a rapidly increasing
sequence.

Classical examples are the Fibonacci numbers and the Catalan numbers
which count dozens of different configurations.

However, there are examples where the numbers of solutions for small
values of n seem to increases exponentially, but there is no proof that such
solutions continue to appear; and no algorithm which guarantees our
finding a solution.

We are looking for exponentially many needles, but our haystack is
superexponential, so that it becomes increasingly difficult to find even a
single needle.
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Building Barrycades

Barry Cipra noticed that the partial sums of the numbers {1, 2, . . . , n}
were the triangular numbers {1, 3, 6, . . . , 12n(n + 1)} and asked if there
were several different permutations of the numbers from 1 to n, whose
partial sums, other than the complete sum 1

2n(n + 1), form the set of all
numbers from 1 to 1

2n(n + 1)− 1, each number appearing just once.

For example, {1, 2, 3, 4} has partial sums 1, 3, 6, 10, while {2, 3, 4, 1} has
partial sums 2, 5, 9, (10) and {4, 3, 1, 2} has partial sums 4, 7, 8, (10),
which between them include all the integers from 1 to 9 exactly once each.
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The problem may be visualized as building a barrycade, using logs of
lengths 1 to n in each layer.

We’ll call a barrycade breakfree if it has enough layers so that joins
appear at all possible places across the barrycade, but there are no two
joins one above another.

From now on we’ll assume that a barrycade is always breakfree. The
barrycade corresponding to the above example is shown in Figure 1.

Figure 1: A barrycade for n = 4
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Since the sum of the log-lengths is 1
2n(n + 1) and the number of joins in

each layer is n − 1, the number of layers is

1
2n(n + 1)− 1

n − 1
=

1

2
(n + 2)

so that, for a breakfree barrycade, n must be even (or n = 1).

Figure 2 shows breakfree barrycades for n = 2, 4, 6, 8 and 10. It seems
certain that they exist for all even values of n, but we don’t know how to
prove that.

Moreover, it also seems that the number of different barrycades, for a
given even value of n, grows quite rapidly as n increases. We won’t count
them as different if they just have their layers in a different order. In fact
we’ll always build our barrycades with the leftmost logs having increasing
lengths as we go from top to bottom.
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Figure 2: Breakfree barrycades for n = 4, 6, 2, 8 and 10
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The barrycades in Figure 2 are not only breakfree, but they also satisfy the
Fink condition (suggested by Alex Fink): that is, they are balanced in
the sense that, if we look at them as being made up of n − 1 sections of
equal width, the 1

2(n+2) joins in each section occur just one in each layer.

In Figure 3 the sections are separated by dashed vertical lines.

Figure 3: A balanced barrycade for n = 4
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How many are there? Can you always find one?

For n = 2 there is just one barrycade.

For n = 4, with the set {1,2,3,4} there are four different barricades.

Figure 4: Three unbalanced barrycades for n = 4

For n = 6, Sam Benner finds 1120 barrycades.

For n = 8, he has counted no fewer than 28432700 barrycades.
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In Figure 5 there is a rotary solution of the original problem for n = 6.

Figure 5: A rotary barrycade for n = 6

Stan Wagon used the problem of building barrycades as his Problem of the
Week, and Rob Pratt found examples for n = 2, 4, 6, . . . , 26 and rotary
examples for n = 26, 30, 34 and 38.
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Fibonacci Plays Biliards

At the July, 2002 Combinatorial Games Conference in Edmonton,
Berlekamp & I found Yoshiyuki Kotani looking for values of n which would
enable him to arrange the numbers 1 to n in a chain so that adjacent links
summed to a perfect cube. Part of such a chain might be

. . . 61 3 5 22 42 . . .

He had seen the corresponding problem asked for squares. Later Ed Pegg
said that this latter problem, with squares and with n = 15, was proposed
by Bernardo Recaman Santos, of Colombia, at the 2000 World Puzzle
Championship. More recently this has appeared as Puzzle 30 in [14].

(16→)9→7→2←14→11→5→4←12←13→3←6←10←15→1←
8(←17)

Figure 6: Solution(s) to Recaman’s problem for n = 15, 16, 17.
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This inspired Joe Kisenwether to ask for the numbers 1 to 32 to be
arranged as a necklace whose neighboring beads add to squares (Figure 7).

4 21 28 8 1 15 10 26 23
32 2
17 14
19 22
30 27
6 9
3 16
13 20
12 24 25 11 5 31 18 7 29

Figure 7: A necklace with adjacent pairs of beads adding to squares.
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The corresponding problem with neighbors summing to Fibonacci
numbers, F0 = 0, F1 = 1, Fk+1 = Fk + Fk−1, instead of squares, has a
better balanced solution.

We can draw a graph with the numbers 1 to n as vertices and edges joining
pairs whose sum is a Fibonacci number: for n = 11, this is Figure 8.

9 8
↓ ↓
4 5
↓ ↓
1 3

↗ ↖ ↙ ↖
7 2 10
↘ ↗ ↖ ↗

6 11

Figure 8: Graph whose adjacencies are Fibonacci sums
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9 8
↓ ↓
4 5
↓ ↓
1 3

↗ ↖ ↙ ↖
7 2 10
↘ ↗ ↖ ↗

6 11

The arrows are drawn from the larger to the smaller number: the larger
number is not part of the graph unless the smaller is already present.
From the graph we can read off 1 2; 1 2 3; 4 1 2 3;

4 1 2 3 5; 4 1 7 6 2 3 5; 4 1 7 6 2 3 5 8; 9 4 1 7 6 2 3 5 8
and 9 4 1 7 6 2 11 10 3 5 8.
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We can also verify that 6 and 10 can’t be included in a chain unless some
larger number is also present (in the former case 4, 5 and 6 are
monovalent vertices and all three can’t be ends of the chain; in the latter
case, 8, 9 and 10).

Evidently the Law of Small Numbers is at work. Six and ten are the only
numbers which are not powers of primes. Is there some connexion with
projective planes?

No, but the Law of Small Numbers is indeed at work, but the villains are 9
and 11.

Theorem. (Berlekamp, G.) There is a chain formed with the numbers 1
to n with each adjacent pair adding to a Fibonacci number, just if n = 9,
11, or Fk or Fk − 1, where Fk is a Fibonacci number with k ≥ 4. The
chain is essentially unique.
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Square necklaces for n = 32, 33, 34, . . . , 245 have been found, and it
appears that as n increases, the number of different necklaces for a given
value of n increases, too.

But no-one has been able to prove that there are square necklaces for all
n ≥ 32.
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Don’t Try to Solve these Problems !

The notorious 3x + 1 problem [12].

If odd, treble and add one; if even, halve.

7→ 22→ 11→ 34→ 17→ 52→ 26→ 13→ 40→ 20→ 10→ 5→ 16

→ 8→ 4→ 2→ 1→ 4→ 2→ 1 · · ·

Is the following problem just as recalcitrant ??
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Conway’s Subprime Fibonacci Sequences

When John Conway last visited the first author, he passed the time on the
plane by calculating what we now call subprime Fibonacci sequences.

There is some risk of their becoming as notorious as the 3x + 1 (Collatz)
problem [12], with which they seem to have something in common, and of
which Erdős has said, “Mathematics is not yet ripe for such problems.”

An SFS is formed in the same way as the Fibonacci sequence, but before
we accept a composite number we divide it by its smallest prime factor:
0, 1, 1, 2, 3, 5. Now not 8, but 8/2 = 4. 5 and 4 make 9, but we record
9/3 = 3. 4 and 3 make 7, which is prime. 3 and 7 give 10/2 = 5. 7 and 5
give 12/2 = 6. 5 and 6 give 11. 6 and 11 give 17. 11 and 17 give 28/2 =
14. And so on . . . .
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Does the sequence increase indefinitely, or does it go into a cycle ?

0 1 1 2 3 5 4 3 7 5 6 11 17 14 31 15 23 19
21 20 41 61 51 56 107 163 135 149 142 97 239 168 37 41 39 40
79 17 48 13 61 37 49 43 46 89 45 67 56 41 97 69 83 76
53 43 48 13 61 37 . . .

and we are in an 18-cycle.

Of course, you may start with any pair of integers.

We [10] have also found a 19-cycle, a 136-cycle, a 56-cycle, an 11-cycle
and a 10-cycle.

Is that the lot ?

Do any sequences increase indefinitely ?
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We [10] have also found a 19-cycle, a 136-cycle, a 56-cycle, an 11-cycle
and a 10-cycle.

Is that the lot ?

Do any sequences increase indefinitely ?
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Divisibility Sequences

The Lucas-Lehmer theory for second order recurring sequences is well
known, but there are (at least) two unsolved problems.

Recall that if a sequence is formed by starting with u0 = 0 and u1 = 1 and
continuing with un = aun−1 + bun−2, then we have a divisibility sequence;
i.e., if m divides n, then um divides un. In particular, if p is a prime, then p

divides u
p−

(
∆
p

), where (
∆
p

)
is the Legendre symbol, and ∆ = a2 + 4b is

the discriminant.

For example, for the Fibonacci numbers, ∆ = 5.
p divides up−1 if p ≡ ±1 (mod 5),
p divides up+1 if p ≡ ±2 (mod 5),
and 5 divides u5.

The least m for which p divides um is the rank of apparition of p.

So the rank of apparition is a divisor of p −
(
∆
p

)
WHICH ONE ??
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The Mersenne numbers, 2m − 1 are the case a = 3, b = −1.

ARE THERE INFINITELY MANY MERSENNE PRIMES ??

The Fibonacci numbers are given by a = b = 1

ARE THERE INFINITELY MANY FIBONACCI PRIMES ??

Are there infinitely many Jacobsthal (a = 1, b = 2) primes ?

And infinitely many similar questions !

Hugh Williams is interested in the corresponding problems for fourth and
higher order divisibility sequences.
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Diophantine Equations

It is surprising that there are quadratic Diophantine equations for which
we do not know if there are solutions
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Is there an integer box ?

Are there rectangular parallepipeds whose edges, face diagonals and body
diagonal are all integers ?

b2 + c2 = x2, c2 + a2 = y2, a2 + b2 = z2, a2 + b2 + c2 = d2.

where x , y , z are the face diagonals and d is the body diagonal.

An infinity of solutions have been found in each of the cases where we
drop the condition of rationality for one edge, or for one face diagonal,
or for the body diagonal.
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Heron triangles with three integer medians

Apollonius’s theorem states that the sum of the squares of two edges of a
triangle is equal to twice the square on half of the third edge plus twice
the square on the median.

b2 + c2 = 2(( 12a)
2 + x2), c2 + a2 = 2(( 12b)

2 + y2), a2 + b2 = 2(( 12c)
2 + z2)

where x , y , z are the lengths of the medians.

Are there triangles with integer edges, integer medians, and integer area ?

We also want 16∆2 = (a+ b + c)(b + c − a)(c + a− b)(a+ b − c)
to have integer solutions.

Richard K. Guy (UCalgary) Things I’d Like to Know 17 April, 2016 23 / 31



Heron triangles with three integer medians

Apollonius’s theorem states that the sum of the squares of two edges of a
triangle is equal to twice the square on half of the third edge plus twice
the square on the median.

b2 + c2 = 2(( 12a)
2 + x2), c2 + a2 = 2(( 12b)

2 + y2), a2 + b2 = 2(( 12c)
2 + z2)

where x , y , z are the lengths of the medians.

Are there triangles with integer edges, integer medians, and integer area ?

We also want 16∆2 = (a+ b + c)(b + c − a)(c + a− b)(a+ b − c)
to have integer solutions.

Richard K. Guy (UCalgary) Things I’d Like to Know 17 April, 2016 23 / 31



Heron triangles with three integer medians

Apollonius’s theorem states that the sum of the squares of two edges of a
triangle is equal to twice the square on half of the third edge plus twice
the square on the median.

b2 + c2 = 2(( 12a)
2 + x2), c2 + a2 = 2(( 12b)

2 + y2), a2 + b2 = 2(( 12c)
2 + z2)

where x , y , z are the lengths of the medians.

Are there triangles with integer edges, integer medians, and integer area ?

We also want 16∆2 = (a+ b + c)(b + c − a)(c + a− b)(a+ b − c)
to have integer solutions.

Richard K. Guy (UCalgary) Things I’d Like to Know 17 April, 2016 23 / 31



Heron triangles with three integer medians

Apollonius’s theorem states that the sum of the squares of two edges of a
triangle is equal to twice the square on half of the third edge plus twice
the square on the median.

b2 + c2 = 2(( 12a)
2 + x2), c2 + a2 = 2(( 12b)

2 + y2), a2 + b2 = 2(( 12c)
2 + z2)

where x , y , z are the lengths of the medians.

Are there triangles with integer edges, integer medians, and integer area ?

We also want 16∆2 = (a+ b + c)(b + c − a)(c + a− b)(a+ b − c)
to have integer solutions.

Richard K. Guy (UCalgary) Things I’d Like to Know 17 April, 2016 23 / 31



Papers continue to appear purporting to prove that no triangle with
integer edges can have all integer medians, . . .

but Euler gave a parametric solution:

a = 6λ4 + 20λ2 − 18, b, c = λ5 ± λ4 − 6λ3 ± 26λ2 + 9λ± 9

with medians −2λ5 + 20λ3 + 54λ, ±λ6 + 3λ4 ± 26λ3 − 18λ2 ± 9λ+ 27

and Cole [7] has shown that, up to symmetry, there are just two such
parametric solutions.

If we also require the area to be rational, then Buchholz & Rathbun [4, 5]
have shown that any rational point on the curve (xy + 2)(x − y + 1) = 3
with 0 < x , y < 1 and 2x + y > 1 corresponds to a triangle with rational
edges, rational area, and two rational medians.
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Integer distances from the corners of a square

Is there a point in the plane of a unit square which is at a rational distance
from each of its four corners ?

x2 + y2 = a2, (s−x)2 + y2 = b2, x2 + (s−y)2 = c2, (s−x)2 + (s−y)2 = d2

There are infinitely many points at rational distances from three of the
four corners.
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There are five configurations of four rational triangles covering the unit
square: delta, nu, kappa, lambda, and chi. An infinity of solutions is
known in each case except the last.

Figure 9: Rational(?) tilings of the square.
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Aliquot Sequences

An aliquot sequence is formed by iteration of the function s(n), the sum
of the aliquot parts of n, i.e., the divisors of n apart from n itself.

An aliquot sequence either terminates by hitting a prime (since s(p) = 1)
or hits a perfect number (e.g., s(8128) = 8128) or an amicable pair (e.g.,
s(1184) = 1210, s(1210 = 1184) or a longer cycle. Catalan [6], corrected
by Dickson [8], conjectured that all aliquot sequences behaved in one of
these ways.

But Guy & Selfridge[11] conjectured that almost all sequences starting
with an even number increase indefinitely.

This was suggested by the fact that the average order of s(n)/n, taken
over even values of n is 5π2/24 − 1 = 1.0562.
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HOWEVER, this is an arithmetic mean, and it’s the geometric mean that’s
relevant.

Bosma & Kane [1] have shown that this is no bigger than 0.969 < 1.

But this mean should be calculated over those n which are in the range of
s, and this is known not to include all even values of n.

Behavior of aliquot sequences is dominated by guides, which include the
downdriver, 2, and updrivers, such as 2 ∗ 3 and 22 ∗ 7. The longer the
guide has been a downdriver, the less likely it is to persist. The longer it
has been an updriver, the more likely it is to persist.

Any hope of quantifying this ?

An important paper by Pollack & Pomerance [13] has recently been
published. The fact that their formulas often contain three and four times
iterated logarithms does not bode well for being able to find computer
evidence.
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guide has been a downdriver, the less likely it is to persist. The longer it
has been an updriver, the more likely it is to persist.

Any hope of quantifying this ?

An important paper by Pollack & Pomerance [13] has recently been
published. The fact that their formulas often contain three and four times
iterated logarithms does not bode well for being able to find computer
evidence.
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