Things I'd Like to Know

Richard K. Guy
Department of Mathematics \& Statistics, The University of Calgary

Alberta Number Theory Days, 2016 April 17

Exponentially many needles?

Exponentially many needles?

There are many problems in combinatorial number theory where the numbers of solutions for increasing values of n form a rapidly increasing sequence.

Exponentially many needles?

There are many problems in combinatorial number theory where the numbers of solutions for increasing values of n form a rapidly increasing sequence.

Classical examples are the Fibonacci numbers and the Catalan numbers which count dozens of different configurations.

Exponentially many needles?

There are many problems in combinatorial number theory where the numbers of solutions for increasing values of n form a rapidly increasing sequence.

Classical examples are the Fibonacci numbers and the Catalan numbers which count dozens of different configurations.

However, there are examples where the numbers of solutions for small values of n seem to increases exponentially, but there is no proof that such solutions continue to appear; and no algorithm which guarantees our finding a solution.

Exponentially many needles?

There are many problems in combinatorial number theory where the numbers of solutions for increasing values of n form a rapidly increasing sequence.

Classical examples are the Fibonacci numbers and the Catalan numbers which count dozens of different configurations.

However, there are examples where the numbers of solutions for small values of n seem to increases exponentially, but there is no proof that such solutions continue to appear; and no algorithm which guarantees our finding a solution.

We are looking for exponentially many needles, but our haystack is superexponential, so that it becomes increasingly difficult to find even a single needle.

Building Barrycades

Barry Cipra noticed that the partial sums of the numbers $\{1,2, \ldots, n\}$ were the triangular numbers $\left\{1,3,6, \ldots, \frac{1}{2} n(n+1)\right\}$ and asked if there were several different permutations of the numbers from 1 to n, whose partial sums, other than the complete sum $\frac{1}{2} n(n+1)$, form the set of all numbers from 1 to $\frac{1}{2} n(n+1)-1$, each number appearing just once.

Building Barrycades

Barry Cipra noticed that the partial sums of the numbers $\{1,2, \ldots, n\}$ were the triangular numbers $\left\{1,3,6, \ldots, \frac{1}{2} n(n+1)\right\}$ and asked if there were several different permutations of the numbers from 1 to n, whose partial sums, other than the complete sum $\frac{1}{2} n(n+1)$, form the set of all numbers from 1 to $\frac{1}{2} n(n+1)-1$, each number appearing just once. For example, $\{1,2,3,4\}$ has partial sums $1,3,6,10$, while $\{2,3,4,1\}$ has partial sums $2,5,9,(10)$ and $\{4,3,1,2\}$ has partial sums $4,7,8,(10)$, which between them include all the integers from 1 to 9 exactly once each.

The problem may be visualized as building a barrycade, using logs of lengths 1 to n in each layer.

The problem may be visualized as building a barrycade, using logs of lengths 1 to n in each layer.

We'll call a barrycade breakfree if it has enough layers so that joins appear at all possible places across the barrycade, but there are no two joins one above another.

The problem may be visualized as building a barrycade, using logs of lengths 1 to n in each layer.

We'll call a barrycade breakfree if it has enough layers so that joins appear at all possible places across the barrycade, but there are no two joins one above another.

From now on we'll assume that a barrycade is always breakfree. The barrycade corresponding to the above example is shown in Figure 1.

Figure 1: A barrycade for $n=4$

Since the sum of the log-lengths is $\frac{1}{2} n(n+1)$ and the number of joins in each layer is $n-1$, the number of layers is

$$
\frac{\frac{1}{2} n(n+1)-1}{n-1}=\frac{1}{2}(n+2)
$$

so that, for a breakfree barrycade, n must be even (or $n=1$).

Since the sum of the log-lengths is $\frac{1}{2} n(n+1)$ and the number of joins in each layer is $n-1$, the number of layers is

$$
\frac{\frac{1}{2} n(n+1)-1}{n-1}=\frac{1}{2}(n+2)
$$

so that, for a breakfree barrycade, n must be even (or $n=1$).
Figure 2 shows breakfree barrycades for $n=2,4,6,8$ and 10. It seems certain that they exist for all even values of n, but we don't know how to prove that.

Since the sum of the log-lengths is $\frac{1}{2} n(n+1)$ and the number of joins in each layer is $n-1$, the number of layers is

$$
\frac{\frac{1}{2} n(n+1)-1}{n-1}=\frac{1}{2}(n+2)
$$

so that, for a breakfree barrycade, n must be even (or $n=1$).
Figure 2 shows breakfree barrycades for $n=2,4,6,8$ and 10. It seems certain that they exist for all even values of n, but we don't know how to prove that.

Moreover, it also seems that the number of different barrycades, for a given even value of n, grows quite rapidly as n increases. We won't count them as different if they just have their layers in a different order. In fact we'll always build our barrycades with the leftmost logs having increasing lengths as we go from top to bottom.

Figure 2: Breakfree barrycades for $n=4,6,2,8$ and 10

The barrycades in Figure 2 are not only breakfree, but they also satisfy the Fink condition (suggested by Alex Fink): that is, they are balanced in the sense that, if we look at them as being made up of $n-1$ sections of equal width, the $\frac{1}{2}(n+2)$ joins in each section occur just one in each layer.

The barrycades in Figure 2 are not only breakfree, but they also satisfy the Fink condition (suggested by Alex Fink): that is, they are balanced in the sense that, if we look at them as being made up of $n-1$ sections of equal width, the $\frac{1}{2}(n+2)$ joins in each section occur just one in each layer.

In Figure 3 the sections are separated by dashed vertical lines.

Figure 3: A balanced barrycade for $n=4$

How many are there? Can you always find one?

How many are there? Can you always find one?
For $n=2$ there is just one barrycade.

How many are there? Can you always find one?

For $n=2$ there is just one barrycade.
For $n=4$, with the set $\{1,2,3,4\}$ there are four different barricades.

Figure 4: Three unbalanced barrycades for $n=4$

How many are there? Can you always find one?

For $n=2$ there is just one barrycade.
For $n=4$, with the set $\{1,2,3,4\}$ there are four different barricades.

Figure 4: Three unbalanced barrycades for $n=4$

For $n=6$, Sam Benner finds 1120 barrycades.

How many are there? Can you always find one?

For $n=2$ there is just one barrycade.
For $n=4$, with the set $\{1,2,3,4\}$ there are four different barricades.

Figure 4: Three unbalanced barrycades for $n=4$

For $n=6$, Sam Benner finds 1120 barrycades.
For $n=8$, he has counted no fewer than 28432700 barrycades.

In Figure 5 there is a rotary solution of the original problem for $n=6$.

Figure 5: A rotary barrycade for $n=6$

Stan Wagon used the problem of building barrycades as his Problem of the Week, and Rob Pratt found examples for $n=2,4,6, \ldots, 26$ and rotary examples for $n=26,30,34$ and 38 .

Fibonacci Plays Biliards

At the July, 2002 Combinatorial Games Conference in Edmonton, Berlekamp \& I found Yoshiyuki Kotani looking for values of n which would enable him to arrange the numbers 1 to n in a chain so that adjacent links summed to a perfect cube. Part of such a chain might be

$$
\ldots \quad 61 \quad 3 \quad 5 \quad 22 \quad 42 \quad \ldots
$$

Fibonacci Plays Biliards

At the July, 2002 Combinatorial Games Conference in Edmonton, Berlekamp \& I found Yoshiyuki Kotani looking for values of n which would enable him to arrange the numbers 1 to n in a chain so that adjacent links summed to a perfect cube. Part of such a chain might be

$$
\ldots \quad 61 \quad 3 \quad 5 \quad 22 \quad 42 \quad \ldots
$$

He had seen the corresponding problem asked for squares. Later Ed Pegg said that this latter problem, with squares and with $n=15$, was proposed by Bernardo Recaman Santos, of Colombia, at the 2000 World Puzzle Championship. More recently this has appeared as Puzzle 30 in [14].

Fibonacci Plays Biliards

At the July, 2002 Combinatorial Games Conference in Edmonton, Berlekamp \& I found Yoshiyuki Kotani looking for values of n which would enable him to arrange the numbers 1 to n in a chain so that adjacent links summed to a perfect cube. Part of such a chain might be

$$
\ldots \quad 61 \quad 3 \quad 5 \quad 22 \quad 42 \quad \ldots
$$

He had seen the corresponding problem asked for squares. Later Ed Pegg said that this latter problem, with squares and with $n=15$, was proposed by Bernardo Recaman Santos, of Colombia, at the 2000 World Puzzle Championship. More recently this has appeared as Puzzle 30 in [14].

$$
\begin{gathered}
(16 \rightarrow) 9 \rightarrow 7 \rightarrow 2 \leftarrow 14 \rightarrow 11 \rightarrow 5 \rightarrow 4 \leftarrow 12 \leftarrow 13 \rightarrow 3 \leftarrow 6 \leftarrow 10 \leftarrow 15 \rightarrow 1 \leftarrow \\
8(\leftarrow 17)
\end{gathered}
$$

Figure 6: Solution(s) to Recaman's problem for $n=15,16,17$.

This inspired Joe Kisenwether to ask for the numbers 1 to 32 to be arranged as a necklace whose neighboring beads add to squares (Figure 7).

This inspired Joe Kisenwether to ask for the numbers 1 to 32 to be arranged as a necklace whose neighboring beads add to squares (Figure 7).

Figure 7: A necklace with adjacent pairs of beads adding to squares.

The corresponding problem with neighbors summing to Fibonacci numbers, $F_{0}=0, F_{1}=1, F_{k+1}=F_{k}+F_{k-1}$, instead of squares, has a better balanced solution.

The corresponding problem with neighbors summing to Fibonacci numbers, $F_{0}=0, F_{1}=1, F_{k+1}=F_{k}+F_{k-1}$, instead of squares, has a better balanced solution.

We can draw a graph with the numbers 1 to n as vertices and edges joining pairs whose sum is a Fibonacci number: for $n=11$, this is Figure 8.

The corresponding problem with neighbors summing to Fibonacci numbers, $F_{0}=0, F_{1}=1, F_{k+1}=F_{k}+F_{k-1}$, instead of squares, has a better balanced solution.

We can draw a graph with the numbers 1 to n as vertices and edges joining pairs whose sum is a Fibonacci number: for $n=11$, this is Figure 8.

Figure 8: Graph whose adjacencies are Fibonacci sums

The arrows are drawn from the larger to the smaller number: the larger number is not part of the graph unless the smaller is already present. From the graph we can read off $12 ; 123 ; 4123$; $41235 ; 4176235 ; 41762358 ; 941762358$ and 9417621110358 .

We can also verify that 6 and 10 can't be included in a chain unless some larger number is also present (in the former case 4,5 and 6 are monovalent vertices and all three can't be ends of the chain; in the latter case, 8, 9 and 10).

We can also verify that 6 and 10 can't be included in a chain unless some larger number is also present (in the former case 4,5 and 6 are monovalent vertices and all three can't be ends of the chain; in the latter case, 8, 9 and 10).

Evidently the Law of Small Numbers is at work. Six and ten are the only numbers which are not powers of primes. Is there some connexion with projective planes?

We can also verify that 6 and 10 can't be included in a chain unless some larger number is also present (in the former case 4,5 and 6 are monovalent vertices and all three can't be ends of the chain; in the latter case, 8, 9 and 10).

Evidently the Law of Small Numbers is at work. Six and ten are the only numbers which are not powers of primes. Is there some connexion with projective planes?

No, but the Law of Small Numbers is indeed at work, but the villains are 9 and 11.

We can also verify that 6 and 10 can't be included in a chain unless some larger number is also present (in the former case 4,5 and 6 are monovalent vertices and all three can't be ends of the chain; in the latter case, 8, 9 and 10).

Evidently the Law of Small Numbers is at work. Six and ten are the only numbers which are not powers of primes. Is there some connexion with projective planes?

No, but the Law of Small Numbers is indeed at work, but the villains are 9 and 11.

Theorem. (Berlekamp, G.) There is a chain formed with the numbers 1 to n with each adjacent pair adding to a Fibonacci number, just if $n=9$, 11 , or F_{k} or $F_{k}-1$, where F_{k} is a Fibonacci number with $k \geq 4$. The chain is essentially unique.

Square necklaces for $n=32,33,34, \ldots, 245$ have been found, and it appears that as n increases, the number of different necklaces for a given value of n increases, too.

Square necklaces for $n=32,33,34, \ldots, 245$ have been found, and it appears that as n increases, the number of different necklaces for a given value of n increases, too.

But no-one has been able to prove that there are square necklaces for all $n \geq 32$.

Don't Try to Solve these Problems!

The notorious $3 x+1$ problem [12].

Don't Try to Solve these Problems!

The notorious $3 x+1$ problem [12].
If odd, treble and add one; if even, halve.

$$
\begin{gathered}
7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \\
\rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \cdots
\end{gathered}
$$

Is the following problem just as recalcitrant ??

Conway's Subprime Fibonacci Sequences

When John Conway last visited the first author, he passed the time on the plane by calculating what we now call subprime Fibonacci sequences.

Conway's Subprime Fibonacci Sequences

When John Conway last visited the first author, he passed the time on the plane by calculating what we now call subprime Fibonacci sequences.
There is some risk of their becoming as notorious as the $3 x+1$ (Collatz) problem [12], with which they seem to have something in common, and of which Erdős has said, "Mathematics is not yet ripe for such problems."

Conway's Subprime Fibonacci Sequences

When John Conway last visited the first author, he passed the time on the plane by calculating what we now call subprime Fibonacci sequences.
There is some risk of their becoming as notorious as the $3 x+1$ (Collatz) problem [12], with which they seem to have something in common, and of which Erdős has said, "Mathematics is not yet ripe for such problems."

An SFS is formed in the same way as the Fibonacci sequence, but before we accept a composite number we divide it by its smallest prime factor: $0,1,1,2,3,5$. Now not 8 , but $8 / 2=4.5$ and 4 make 9 , but we record $9 / 3=3.4$ and 3 make 7 , which is prime. 3 and 7 give $10 / 2=5.7$ and 5 give $12 / 2=6.5$ and 6 give 11.6 and 11 give 17.11 and 17 give $28 / 2=$ 14. And so on

Does the sequence increase indefinitely, or does it go into a cycle?

Does the sequence increase indefinitely, or does it go into a cycle?

0	1	1	2	3	5	4	3	7	5	6	11	17	14	31	15	23	19
21	20	41	61	51	56	10	163	135	149	142	97	239	168	37	41	39	40
79	17	48	13	$\mathbf{6 1}$	$\mathbf{3 7}$	$\mathbf{4 9}$	$\mathbf{4 3}$	$\mathbf{4 6}$	$\mathbf{8 9}$	$\mathbf{4 5}$	$\mathbf{6 7}$	$\mathbf{5 6}$	$\mathbf{4 1}$	$\mathbf{9 7}$	$\mathbf{6 9}$	$\mathbf{8 3}$	$\mathbf{7 6}$
$\mathbf{5 3}$	$\mathbf{4 3}$	$\mathbf{4 8}$	13	61	37	\ldots											

and we are in an 18 -cycle.

Does the sequence increase indefinitely, or does it go into a cycle?

```
0
21 20 41 61 51 56 107 163 135 149 142 97 239 168 37 41 39 40
79}1774813 61 37 49 43 46 89 45 67 56 41 97 69 83 76
53 43 48 13 61 37 \ldots.
and we are in an 18-cycle.
```

Of course, you may start with any pair of integers.

Does the sequence increase indefinitely, or does it go into a cycle?

0	1	1	2	3	5	4	3	7	5	6	11	17	14	31	15	23	19
21	20	41	61	51	56	107	163	135	149	142	97	239	168	37	41	39	40
79	17	48	$\mathbf{1 3}$	$\mathbf{6 1}$	$\mathbf{3 7}$	$\mathbf{4 9}$	$\mathbf{4 3}$	$\mathbf{4 6}$	$\mathbf{8 9}$	$\mathbf{4 5}$	$\mathbf{6 7}$	$\mathbf{5 6}$	$\mathbf{4 1}$	$\mathbf{9 7}$	$\mathbf{6 9}$	$\mathbf{8 3}$	$\mathbf{7 6}$
$\mathbf{5 3}$	$\mathbf{4 3}$	$\mathbf{4 8}$	13	61	37	\ldots											

and we are in an 18-cycle.
Of course, you may start with any pair of integers.
We [10] have also found a 19-cycle, a 136 -cycle, a 56 -cycle, an 11 -cycle and a 10 -cycle.

Does the sequence increase indefinitely, or does it go into a cycle?

0	1	1	2	3	5	4	3	7	5	6	11	17	14	31	15	23	19
21	20	41	61	51	56	107	163	135	149	142	97	239	168	37	41	39	40
79	17	48	$\mathbf{1 3}$	$\mathbf{6 1}$	$\mathbf{3 7}$	$\mathbf{4 9}$	$\mathbf{4 3}$	$\mathbf{4 6}$	$\mathbf{8 9}$	$\mathbf{4 5}$	$\mathbf{6 7}$	$\mathbf{5 6}$	$\mathbf{4 1}$	$\mathbf{9 7}$	$\mathbf{6 9}$	$\mathbf{8 3}$	$\mathbf{7 6}$
$\mathbf{5 3}$	$\mathbf{4 3}$	$\mathbf{4 8}$	13	61	37	\ldots											

and we are in an 18-cycle.
Of course, you may start with any pair of integers.
We [10] have also found a 19-cycle, a 136 -cycle, a 56 -cycle, an 11 -cycle and a 10 -cycle.

Is that the lot?

Does the sequence increase indefinitely, or does it go into a cycle?

0	1	1	2	3	5	4	3	7	5	6	11	17	14	31	15	23	19
21	20	41	61	51	56	107	163	135	149	142	97	239	168	37	41	39	40
79	17	48	$\mathbf{1 3}$	$\mathbf{6 1}$	$\mathbf{3 7}$	$\mathbf{4 9}$	$\mathbf{4 3}$	$\mathbf{4 6}$	$\mathbf{8 9}$	$\mathbf{4 5}$	$\mathbf{6 7}$	$\mathbf{5 6}$	$\mathbf{4 1}$	$\mathbf{9 7}$	$\mathbf{6 9}$	$\mathbf{8 3}$	$\mathbf{7 6}$
$\mathbf{5 3}$	$\mathbf{4 3}$	$\mathbf{4 8}$	13	61	37	\ldots											

and we are in an 18-cycle.
Of course, you may start with any pair of integers.
We [10] have also found a 19-cycle, a 136 -cycle, a 56 -cycle, an 11 -cycle and a 10 -cycle.

Is that the lot?
Do any sequences increase indefinitely?

Divisibility Sequences

The Lucas-Lehmer theory for second order recurring sequences is well known, but there are (at least) two unsolved problems.

Divisibility Sequences

The Lucas-Lehmer theory for second order recurring sequences is well known, but there are (at least) two unsolved problems.

Recall that if a sequence is formed by starting with $u_{0}=0$ and $u_{1}=1$ and continuing with $u_{n}=a u_{n-1}+b u_{n-2}$, then we have a divisibility sequence; i.e., if m divides n, then u_{m} divides u_{n}. In particular, if p is a prime, then p divides $u_{p-\left(\frac{\Delta}{p}\right)}$, where $\left(\frac{\Delta}{p}\right)$ is the Legendre symbol, and $\Delta=a^{2}+4 b$ is the discriminant.

Divisibility Sequences

The Lucas-Lehmer theory for second order recurring sequences is well known, but there are (at least) two unsolved problems.
Recall that if a sequence is formed by starting with $u_{0}=0$ and $u_{1}=1$ and continuing with $u_{n}=a u_{n-1}+b u_{n-2}$, then we have a divisibility sequence; i.e., if m divides n, then u_{m} divides u_{n}. In particular, if p is a prime, then p divides $u_{p-\left(\frac{\Delta}{p}\right)}$, where $\left(\frac{\Delta}{p}\right)$ is the Legendre symbol, and $\Delta=a^{2}+4 b$ is the discriminant.

For example, for the Fibonacci numbers, $\Delta=5$.
p divides u_{p-1} if $p \equiv \pm 1(\bmod 5)$,
p divides u_{p+1} if $p \equiv \pm 2(\bmod 5)$,
and 5 divides u_{5}.

Divisibility Sequences

The Lucas-Lehmer theory for second order recurring sequences is well known, but there are (at least) two unsolved problems.

Recall that if a sequence is formed by starting with $u_{0}=0$ and $u_{1}=1$ and continuing with $u_{n}=a u_{n-1}+b u_{n-2}$, then we have a divisibility sequence; i.e., if m divides n, then u_{m} divides u_{n}. In particular, if p is a prime, then p divides $u_{p-\left(\frac{\Delta}{p}\right)}$, where $\left(\frac{\Delta}{p}\right)$ is the Legendre symbol, and $\Delta=a^{2}+4 b$ is the discriminant.

For example, for the Fibonacci numbers, $\Delta=5$.
p divides u_{p-1} if $p \equiv \pm 1(\bmod 5)$,
p divides u_{p+1} if $p \equiv \pm 2(\bmod 5)$,
and 5 divides u_{5}.
The least m for which p divides u_{m} is the rank of apparition of p.

Divisibility Sequences

The Lucas-Lehmer theory for second order recurring sequences is well known, but there are (at least) two unsolved problems.

Recall that if a sequence is formed by starting with $u_{0}=0$ and $u_{1}=1$ and continuing with $u_{n}=a u_{n-1}+b u_{n-2}$, then we have a divisibility sequence; i.e., if m divides n, then u_{m} divides u_{n}. In particular, if p is a prime, then p divides $u_{p-\left(\frac{\Delta}{p}\right)}$, where $\left(\frac{\Delta}{p}\right)$ is the Legendre symbol, and $\Delta=a^{2}+4 b$ is the discriminant.

For example, for the Fibonacci numbers, $\Delta=5$.
p divides u_{p-1} if $p \equiv \pm 1(\bmod 5)$,
p divides u_{p+1} if $p \equiv \pm 2(\bmod 5)$,
and 5 divides u_{5}.
The least m for which p divides u_{m} is the rank of apparition of p.
So the rank of apparition is a divisor of $p-\left(\frac{\Delta}{p}\right)$

Divisibility Sequences

The Lucas-Lehmer theory for second order recurring sequences is well known, but there are (at least) two unsolved problems.

Recall that if a sequence is formed by starting with $u_{0}=0$ and $u_{1}=1$ and continuing with $u_{n}=a u_{n-1}+b u_{n-2}$, then we have a divisibility sequence; i.e., if m divides n, then u_{m} divides u_{n}. In particular, if p is a prime, then p divides $u_{p-\left(\frac{\Delta}{p}\right)}$, where $\left(\frac{\Delta}{p}\right)$ is the Legendre symbol, and $\Delta=a^{2}+4 b$ is the discriminant.

For example, for the Fibonacci numbers, $\Delta=5$.
p divides u_{p-1} if $p \equiv \pm 1(\bmod 5)$,
p divides u_{p+1} if $p \equiv \pm 2(\bmod 5)$,
and 5 divides u_{5}.
The least m for which p divides u_{m} is the rank of apparition of p.
So the rank of apparition is a divisor of $p-\left(\frac{\Delta}{p}\right)$

WHICH ONE ??

The Mersenne numbers, $2^{m}-1$ are the case $a=3, b=-1$.

The Mersenne numbers, $2^{m}-1$ are the case $a=3, b=-1$.

ARE THERE INFINITELY MANY MERSENNE PRIMES ??

The Mersenne numbers, $2^{m}-1$ are the case $a=3, b=-1$.

ARE THERE INFINITELY MANY MERSENNE PRIMES ??

The Fibonacci numbers are given by $a=b=1$

The Mersenne numbers, $2^{m}-1$ are the case $a=3, b=-1$.

ARE THERE INFINITELY MANY MERSENNE PRIMES ??

The Fibonacci numbers are given by $a=b=1$
ARE THERE INFINITELY MANY FIBONACCI PRIMES ??

The Mersenne numbers, $2^{m}-1$ are the case $a=3, b=-1$.

ARE THERE INFINITELY MANY MERSENNE PRIMES ??

The Fibonacci numbers are given by $a=b=1$

ARE THERE INFINITELY MANY FIBONACCI PRIMES ??

Are there infinitely many Jacobsthal $(a=1, b=2)$ primes?

The Mersenne numbers, $2^{m}-1$ are the case $a=3, b=-1$.

ARE THERE INFINITELY MANY MERSENNE PRIMES ??

The Fibonacci numbers are given by $a=b=1$

ARE THERE INFINITELY MANY FIBONACCI PRIMES ??

Are there infinitely many Jacobsthal $(a=1, b=2)$ primes?
And infinitely many similar questions!

The Mersenne numbers, $2^{m}-1$ are the case $a=3, b=-1$.

ARE THERE INFINITELY MANY MERSENNE PRIMES ??

The Fibonacci numbers are given by $a=b=1$

ARE THERE INFINITELY MANY FIBONACCI PRIMES ??

Are there infinitely many Jacobsthal $(a=1, b=2)$ primes ?
And infinitely many similar questions!
Hugh Williams is interested in the corresponding problems for fourth and higher order divisibility sequences.

Diophantine Equations

It is surprising that there are quadratic Diophantine equations for which we do not know if there are solutions

Is there an integer box?

Are there rectangular parallepipeds whose edges, face diagonals and body diagonal are all integers?

Is there an integer box?

Are there rectangular parallepipeds whose edges, face diagonals and body diagonal are all integers?

$$
b^{2}+c^{2}=x^{2}, \quad c^{2}+a^{2}=y^{2}, \quad a^{2}+b^{2}=z^{2}, \quad a^{2}+b^{2}+c^{2}=d^{2} .
$$

where x, y, z are the face diagonals and d is the body diagonal.

Is there an integer box?

Are there rectangular parallepipeds whose edges, face diagonals and body diagonal are all integers?

$$
b^{2}+c^{2}=x^{2}, \quad c^{2}+a^{2}=y^{2}, \quad a^{2}+b^{2}=z^{2}, \quad a^{2}+b^{2}+c^{2}=d^{2} .
$$

where x, y, z are the face diagonals and d is the body diagonal.
An infinity of solutions have been found in each of the cases where we drop the condition of rationality for one edge, or for one face diagonal, or for the body diagonal.

Heron triangles with three integer medians

Apollonius's theorem states that the sum of the squares of two edges of a triangle is equal to twice the square on half of the third edge plus twice the square on the median.

Heron triangles with three integer medians

Apollonius's theorem states that the sum of the squares of two edges of a triangle is equal to twice the square on half of the third edge plus twice the square on the median.

$$
b^{2}+c^{2}=2\left(\left(\frac{1}{2} a\right)^{2}+x^{2}\right), c^{2}+a^{2}=2\left(\left(\frac{1}{2} b\right)^{2}+y^{2}\right), a^{2}+b^{2}=2\left(\left(\frac{1}{2} c\right)^{2}+z^{2}\right)
$$

where x, y, z are the lengths of the medians.

Heron triangles with three integer medians

Apollonius's theorem states that the sum of the squares of two edges of a triangle is equal to twice the square on half of the third edge plus twice the square on the median.

$$
b^{2}+c^{2}=2\left(\left(\frac{1}{2} a\right)^{2}+x^{2}\right), c^{2}+a^{2}=2\left(\left(\frac{1}{2} b\right)^{2}+y^{2}\right), a^{2}+b^{2}=2\left(\left(\frac{1}{2} c\right)^{2}+z^{2}\right)
$$

where x, y, z are the lengths of the medians.
Are there triangles with integer edges, integer medians, and integer area?

Heron triangles with three integer medians

Apollonius's theorem states that the sum of the squares of two edges of a triangle is equal to twice the square on half of the third edge plus twice the square on the median.

$$
b^{2}+c^{2}=2\left(\left(\frac{1}{2} a\right)^{2}+x^{2}\right), c^{2}+a^{2}=2\left(\left(\frac{1}{2} b\right)^{2}+y^{2}\right), a^{2}+b^{2}=2\left(\left(\frac{1}{2} c\right)^{2}+z^{2}\right)
$$

where x, y, z are the lengths of the medians.
Are there triangles with integer edges, integer medians, and integer area?
We also want $16 \Delta^{2}=(a+b+c)(b+c-a)(c+a-b)(a+b-c)$ to have integer solutions.

Papers continue to appear purporting to prove that no triangle with integer edges can have all integer medians, ...

Papers continue to appear purporting to prove that no triangle with integer edges can have all integer medians, ...
but Euler gave a parametric solution:

$$
a=6 \lambda^{4}+20 \lambda^{2}-18, b, c=\lambda^{5} \pm \lambda^{4}-6 \lambda^{3} \pm 26 \lambda^{2}+9 \lambda \pm 9
$$

with medians $-2 \lambda^{5}+20 \lambda^{3}+54 \lambda, \pm \lambda^{6}+3 \lambda^{4} \pm 26 \lambda^{3}-18 \lambda^{2} \pm 9 \lambda+27$

Papers continue to appear purporting to prove that no triangle with integer edges can have all integer medians, ...
but Euler gave a parametric solution:

$$
a=6 \lambda^{4}+20 \lambda^{2}-18, b, c=\lambda^{5} \pm \lambda^{4}-6 \lambda^{3} \pm 26 \lambda^{2}+9 \lambda \pm 9
$$

with medians $-2 \lambda^{5}+20 \lambda^{3}+54 \lambda, \pm \lambda^{6}+3 \lambda^{4} \pm 26 \lambda^{3}-18 \lambda^{2} \pm 9 \lambda+27$
and Cole [7] has shown that, up to symmetry, there are just two such parametric solutions.

Papers continue to appear purporting to prove that no triangle with integer edges can have all integer medians, ...
but Euler gave a parametric solution:

$$
a=6 \lambda^{4}+20 \lambda^{2}-18, \quad b, c=\lambda^{5} \pm \lambda^{4}-6 \lambda^{3} \pm 26 \lambda^{2}+9 \lambda \pm 9
$$

with medians $-2 \lambda^{5}+20 \lambda^{3}+54 \lambda, \pm \lambda^{6}+3 \lambda^{4} \pm 26 \lambda^{3}-18 \lambda^{2} \pm 9 \lambda+27$
and Cole [7] has shown that, up to symmetry, there are just two such parametric solutions.

If we also require the area to be rational, then Buchholz \& Rathbun [4, 5] have shown that any rational point on the curve $(x y+2)(x-y+1)=3$ with $0<x, y<1$ and $2 x+y>1$ corresponds to a triangle with rational edges, rational area, and two rational medians.

Integer distances from the corners of a square

Integer distances from the corners of a square

Is there a point in the plane of a unit square which is at a rational distance from each of its four corners?

Integer distances from the corners of a square

Is there a point in the plane of a unit square which is at a rational distance from each of its four corners?

$$
x^{2}+y^{2}=a^{2}, \quad(s-x)^{2}+y^{2}=b^{2}, \quad x^{2}+(s-y)^{2}=c^{2}, \quad(s-x)^{2}+(s-y)^{2}=d^{2}
$$

Integer distances from the corners of a square

Is there a point in the plane of a unit square which is at a rational distance from each of its four corners?

$$
x^{2}+y^{2}=a^{2}, \quad(s-x)^{2}+y^{2}=b^{2}, \quad x^{2}+(s-y)^{2}=c^{2}, \quad(s-x)^{2}+(s-y)^{2}=d^{2}
$$

There are infinitely many points at rational distances from three of the four corners.

There are five configurations of four rational triangles covering the unit square: delta, nu, kappa, lambda, and chi. An infinity of solutions is known in each case except the last.

Figure 9: Rational(?) tilings of the square.

Aliquot Sequences

An aliquot sequence is formed by iteration of the function $s(n)$, the sum of the aliquot parts of n, i.e., the divisors of n apart from n itself.

Aliquot Sequences

An aliquot sequence is formed by iteration of the function $s(n)$, the sum of the aliquot parts of n, i.e., the divisors of n apart from n itself.

An aliquot sequence either terminates by hitting a prime (since $s(p)=1$) or hits a perfect number (e.g., $s(8128)=8128$) or an amicable pair (e.g., $s(1184)=1210, s(1210=1184)$ or a longer cycle. Catalan [6], corrected by Dickson [8], conjectured that all aliquot sequences behaved in one of these ways.

Aliquot Sequences

An aliquot sequence is formed by iteration of the function $s(n)$, the sum of the aliquot parts of n, i.e., the divisors of n apart from n itself.

An aliquot sequence either terminates by hitting a prime (since $s(p)=1$) or hits a perfect number (e.g., $s(8128)=8128$) or an amicable pair (e.g., $s(1184)=1210, s(1210=1184)$ or a longer cycle. Catalan [6], corrected by Dickson [8], conjectured that all aliquot sequences behaved in one of these ways.

But Guy \& Selfridge[11] conjectured that almost all sequences starting with an even number increase indefinitely.

Aliquot Sequences

An aliquot sequence is formed by iteration of the function $s(n)$, the sum of the aliquot parts of n, i.e., the divisors of n apart from n itself.

An aliquot sequence either terminates by hitting a prime (since $s(p)=1$) or hits a perfect number (e.g., $s(8128)=8128$) or an amicable pair (e.g., $s(1184)=1210, s(1210=1184)$ or a longer cycle. Catalan [6], corrected by Dickson [8], conjectured that all aliquot sequences behaved in one of these ways.

But Guy \& Selfridge[11] conjectured that almost all sequences starting with an even number increase indefinitely.

This was suggested by the fact that the average order of $s(n) / n$, taken over even values of n is $5 \pi^{2} / 24-1=1.0562$.

Aliquot Sequences

An aliquot sequence is formed by iteration of the function $s(n)$, the sum of the aliquot parts of n, i.e., the divisors of n apart from n itself.

An aliquot sequence either terminates by hitting a prime (since $s(p)=1$) or hits a perfect number (e.g., $s(8128)=8128$) or an amicable pair (e.g., $s(1184)=1210, s(1210=1184)$ or a longer cycle. Catalan [6], corrected by Dickson [8], conjectured that all aliquot sequences behaved in one of these ways.

But Guy \& Selfridge[11] conjectured that almost all sequences starting with an even number increase indefinitely.

This was suggested by the fact that the average order of $s(n) / n$, taken over even values of n is $5 \pi^{2} / 24-1=1.0562$.

HOWEVER, this is an arithmetic mean, and it's the geometric mean that's relevant.

Bosma \& Kane [1] have shown that this is no bigger than $0.969<1$.

HOWEVER, this is an arithmetic mean, and it's the geometric mean that's relevant.

Bosma \& Kane [1] have shown that this is no bigger than $0.969<1$.
But this mean should be calculated over those n which are in the range of s, and this is known not to include all even values of n.

HOWEVER, this is an arithmetic mean, and it's the geometric mean that's relevant.

Bosma \& Kane [1] have shown that this is no bigger than $0.969<1$.
But this mean should be calculated over those n which are in the range of s, and this is known not to include all even values of n.

Behavior of aliquot sequences is dominated by guides, which include the downdriver, 2, and updrivers, such as $2 * 3$ and $2^{2} * 7$. The longer the guide has been a downdriver, the less likely it is to persist. The longer it has been an updriver, the more likely it is to persist.

HOWEVER, this is an arithmetic mean, and it's the geometric mean that's relevant.

Bosma \& Kane [1] have shown that this is no bigger than $0.969<1$.
But this mean should be calculated over those n which are in the range of s, and this is known not to include all even values of n.

Behavior of aliquot sequences is dominated by guides, which include the downdriver, 2, and updrivers, such as $2 * 3$ and $2^{2} * 7$. The longer the guide has been a downdriver, the less likely it is to persist. The longer it has been an updriver, the more likely it is to persist.

Any hope of quantifying this?

HOWEVER, this is an arithmetic mean, and it's the geometric mean that's relevant.

Bosma \& Kane [1] have shown that this is no bigger than $0.969<1$.
But this mean should be calculated over those n which are in the range of s, and this is known not to include all even values of n.

Behavior of aliquot sequences is dominated by guides, which include the downdriver, 2 , and updrivers, such as $2 * 3$ and $2^{2} * 7$. The longer the guide has been a downdriver, the less likely it is to persist. The longer it has been an updriver, the more likely it is to persist.

Any hope of quantifying this?

An important paper by Pollack \& Pomerance [13] has recently been published. The fact that their formulas often contain three and four times iterated logarithms does not bode well for being able to find computer evidence.
© Wieb Bosma \＆Ben Kane，The aliquot constant，Quart．J．Math．， 63（2012），no．2，309－323；MR2925292．

回 Andrew Bremner \＆Richard K．Guy，The delta－lambda configurations in tiling the square，J．Number Theory，32（1989）263－280；MR 90g：11031．
凅 Andrew Bremner \＆Richard K．Guy，Nu－configurations in tiling the square，Math．Comput．，59（1992）195－202，S1－S20；MR 93a：11019．

嗇 Ralph Heiner Buchholz \＆Randall L．Rathbun，An infinite set of Heron triangles with two rational medians，Amer．Math．Monthly，104（1997） 107－115；MR 98a：51015．
Ralph Heiner Buchholz \＆Randall L．Rathbun，Heron triangles and elliptic curves，Bull．Austral．Math．Soc．，58（1998）411－421；MR 99b：11026．
睩 E．Catalan，Bull．Soc．Math．de France，16（1887－88）128－129．
(in George Raymond Cole, Triangles all of whose sides and medians are rational, PhD dissertation, Arizona State University, May, 1991.
R. L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Math., 44(1913) 264-296.

Richard K. Guy, Tiling the square with rational tilings, Number theory and applications (Banff, AB, 1988), 45-101, NATO ADv. Sci. Inst. Ser. C Math. Phys. Sci. 265, Kluwer Acad. Publ., Dordrecht, 1989.

R Richard Guy, Tanya Khovanova \& Julian Salazar, Conway's subprime Fibonacci sequences, Math. Mag., 87(2014) 323-337; MR 3324697.

Richard K. Guy \& J. L. Selfridge, What drives an aliquot sequence? Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. Math. Comput, 29(1975) 101-107; MR0384669.
Jeffery C. Lagarias, The Ultimate Challenge: The $3 x+1$ Problem, AMS 2010.

圊 Paul Pollack \& Carl Pomerance, Some problems of Erdős on the sum-of-divisors function, Trans. Amer. Math. Soc., Ser. B, 3(2016) 1-26; MR3481968.

固 Nobuyuki Yoshigahara, Puzzles 101: A Puzzlemaster's Challenge, AKPeters, Natick MA, 2004.

