Compact Representations: Applications and Recent Results

Michael J. Jacobson, Jr.
University of Calgary

Joint work with Laurent Imbert, Renate Scheidler, Alan Silvester, Hugh Williams
Alberta Number Theory Days 2016

The Schäffer Equation

Schäffer (1956) considered the following Diophantine equation:

$$
y^{q}=1^{k}+2^{k}+\cdots+x^{k}, \quad k \geq 1, q>1
$$

Theorem

Finitely many solutions, unless $(k, q) \in\{(1,2),(3,2),(3,4),(5,2)\}$

Conjecture

Except for $(x, y)=(24,70)$ when $k=q=2$, the only solution for (k, q) not in the above set is $x=y=1$.

A Computational Approach

Pintér, Walsh (around 2000): computational method for $q=2, k$ even

- every solution corresponds to a solution of

$$
b^{2} X^{4}-d Y^{2}=1
$$

for integers b and d from some sets depending on k

- find all solutions to each such quartic by:
- find minimal solution $\varepsilon=X_{1}+Y_{1} \sqrt{d}$ of $X^{2}-d Y^{2}=1$
- find smallest k such that $\varepsilon^{k}=X_{k}+Y_{k} \sqrt{d}$ has $b \mid X_{k}$
- check whether X_{k} / b is a square (test modulo small primes)
- verify that these solutions yield only trivial solutions of

$$
y^{2}=1^{k}+2^{k}+\cdots+x^{k}
$$

Computational Problems

Pintér (2000): all solutions for $k \in\{2,4,6,8,10,14\}$
Problem: $X_{1}+Y_{1} \sqrt{d}$ can be very large (order of $e^{\sqrt{d}}$ in general)

- for $k=12$, there are 63 different d values, largest is

$$
d=1886430=2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 691
$$

- for $k=70$, there are 511 different d values, largest has over 50 decimal digits

Question: can we compute $X_{k} \bmod p$ efficiently without explicitly computing X_{k} ?

Compact Representations

$\mathbb{Q}(\sqrt{\Delta})=\{x+y \sqrt{\Delta} \mid x, y \in \mathbb{Q}\}$ - real quadratic field, discriminant $\Delta>0$

- h_{Δ} - ideal class number
- ε_{Δ} - fundamental unit
- $R_{\Delta}=\log \varepsilon_{\Delta}$ — regulator

Lagarias (1979) and Cohen (1993):

- represent $\theta \in \mathbb{Q}(\sqrt{\Delta})\left(\right.$ eg. $\left.\varepsilon_{\Delta}\right)$ as a power-product

Formalized by Buchmann, Thiel, and Williams (1991)

- size polynomial in $O(\log \Delta)$ (instead of $O(\sqrt{\Delta}))$
- compute using arithmetic of reduced principal ideals, given $\log \theta$

Applications

Proof that computing h_{Δ} is in NP \cap coNP (assuming GRH)

- i.e., there is a short (size polynomial in $\log \Delta$) certificate for h_{Δ}

Use for efficient, explicit arithmetic with large elements of $\mathbb{Q}(\sqrt{\Delta})$ (norm, multiplication, coefficients mod p, \ldots).

- J., Pintér, Walsh (2003): no non-trivial solutions of Schäffer Equation with $q=2, k$ even and
- $2 \leq k \leq 58$ (unconditionally)
- $60 \leq k \leq 70$ (assuming the generalized Riemann hypothesis)

Result relied heavily on computations of powers of ε_{Δ} modulo various integers m

Compact Representation: Idea

"Binary exponentiation" to find principal ideal $\mathfrak{a}=(\theta)$
Write $\lfloor\log \theta\rfloor=b_{0} 2^{\prime}+b_{1} 2^{\prime-1}+\cdots+b_{l}$
Define $s_{0}=1, s_{j}=2 s_{j-1}+b_{j}=\sum_{i=0}^{j} b_{i} 2^{j-i}, s_{l}=\lfloor\log \theta\rfloor$
Iteratively compute $\mathfrak{a}_{j}=\left(\pi_{j}\right)$ such that $\log \pi_{j} \approx 2 s_{j-1}+b_{j}=s_{j}$:

- compute $\mathfrak{a}_{j-1}^{2}=\left(\pi_{j-1}^{2}\right)$, given $\mathfrak{a}_{j-1}=\left(\pi_{j-1}\right)$ with $\log \pi_{j-1} \approx s_{j-1}$
- reduce: $\operatorname{red}\left(\mathfrak{a}_{j-1}^{2}\right)=\left(\pi_{j-1}^{2} \gamma_{j}\right)$, for $\gamma_{j} \in \mathbb{Q}(\sqrt{\Delta})$
- adjust using "baby steps": $\mathfrak{a}_{j}=\rho^{k}\left(\operatorname{red}\left(\mathfrak{a}_{j-1}^{2}\right)\right)=\left(\pi_{j}\right)=\left(\pi_{j-1}^{2} \gamma_{j} \beta_{j}\right)$, $\beta_{j} \in \mathbb{Q}(\sqrt{\Delta})$, with $\log \pi_{j}=2 \log \pi_{j-1}+\log \gamma_{j}+\log \beta_{j} \approx 2 s_{j-1}+b_{j}$
- store $\lambda_{j}=\gamma_{j} \beta_{j}$

Compact Representation: Definition and Remarks

Compact representation of θ given by $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{l}\right)$ where

$$
\theta=\pi_{I}=\prod_{i=0}^{l} \lambda_{i}^{2^{1-i}}
$$

Notes:

- requires only arithmetic with reduced ideals (small coefficients)
- does not compute the π_{j}, only approximations of $\log \pi_{j}$
- computes a power-product representation of each π_{j} using $\pi_{j}=\pi_{j-1}^{2} \lambda_{j}$

Example: $\Delta=193$

$$
\begin{aligned}
& \varepsilon_{193}=1764132+126985 \sqrt{193} \\
& R_{193}=\log \varepsilon_{193} \approx 15.08
\end{aligned}
$$

Write $\left\lfloor R_{193}\right\rfloor=15=b_{0} 2^{3}+b_{1} 2^{2}+b_{2} 2+b_{3}$ with $b_{0}=b_{1}=b_{2}=b_{3}=1$

$$
\begin{aligned}
& j=0,\left(s_{0}=1\right) \\
& \mathfrak{a}_{0}=(1) \text { with } \lambda_{0} \\
& =1
\end{aligned}
$$

- $\mathfrak{a}_{0}=\left(\pi_{0}\right)$ with $\pi_{0}=\lambda_{0}=1$ and $\log \pi_{0}=0<s_{0}$

$$
\begin{aligned}
& j=1,\left(s_{1}=2 s_{0}+b_{1}=3\right) \\
& \mathfrak{a}_{1}=\rho\left(\operatorname{red}\left(\mathfrak{a}_{0}^{2}\right)\right)=6 \mathbb{Z}+\frac{13+\sqrt{193}}{2} \mathbb{Z} \text { with } \lambda_{1}=\frac{13+\sqrt{193}}{2}
\end{aligned}
$$

- $\mathfrak{a}_{1}=\left(\pi_{1}\right)$ with $\pi_{1}=\pi_{0}^{2} \lambda_{1}=\lambda_{0}^{2} \lambda_{1}$ and $\log \pi_{1} \approx 2.56<s_{1}$

Example: $\Delta=193$ (cont.)

$$
\begin{aligned}
& j=2,\left(s_{2}=2 s_{1}+b_{2}=7\right) \\
& \mathfrak{a}_{2}=\rho\left(\operatorname{red}\left(\mathfrak{a}_{1}^{2}\right)\right)=4 \mathbb{Z}+\frac{7+\sqrt{193}}{2} \mathbb{Z} \text { with } \lambda_{2}=\frac{179+13 \sqrt{193}}{72}
\end{aligned}
$$

- $\mathfrak{a}_{2}=\left(\pi_{2}\right)$ with $\pi_{2}=\pi_{1}^{2} \lambda_{2}=\lambda_{1}^{2} \lambda_{2}$ and $\log \pi_{2} \approx 6.81<s_{2}$
$j=3,\left(s_{3}=2 s_{2}+b_{3}=15\right)$
$\mathfrak{a}_{3}=\rho\left(\operatorname{red}\left(\mathfrak{a}_{2}^{2}\right)\right)=1 \mathbb{Z}+\frac{13+\sqrt{193}}{2} \mathbb{Z}$ with $\lambda_{3}=\frac{69+5 \sqrt{193}}{32}$
- $\mathfrak{a}_{3}=\left(\pi_{3}\right)$ with $\pi_{3}=\pi_{2}^{2} \lambda_{3}=\lambda_{1}^{4} \lambda_{2}^{2} \lambda_{3}$ and $\log \pi_{3} \approx 15.08$

Conclusion:

$$
\begin{aligned}
\varepsilon_{193} & =\lambda_{1}^{4} \lambda_{2}^{2} \lambda_{3} \\
& =\left(\frac{13+\sqrt{193}}{2}\right)^{4}\left(\frac{179+13 \sqrt{193}}{72}\right)^{2}\left(\frac{69+5 \sqrt{193}}{32}\right) \\
& =1764132+126985 \sqrt{193}
\end{aligned}
$$

Size of a Compact Representation

Example ($\Delta=193$): compact representation requires 39 bits, standard representation 40 bits

Example ($\Delta_{c}=410286423278424$): compact representation requires 1212 bits, standard representation would require 686106 bits

Asymptotically:

- number of terms: $O\left(\log _{2} \log \theta\right)$
- size of each term: $O(\log \Delta)$
- total: $O\left(\left(\log _{2} \log \theta\right) \log \Delta\right)$

Can we do even better?

Improvements (J., Silvester, Williams 2013)

Smaller terms: adjust recursion to accommodate "shortfall" from reduction

- aim for $2 s_{i}+b_{i+1}-h$, where reduction shortfall is $\approx h$
- use binary expansion of $\log \theta+C$ to make up for the h 's
- size of resulting compact representation: $O\left(\left(\log _{2} \log \theta\right) \log \Delta^{3 / 4}\right)$ Eg. compact representation of $\varepsilon_{\Delta_{c}}$ requires 974 bits

Fewer terms: use signed base b expansion of $\log \theta$

- size of resulting compact representation: $O\left(\left(\log _{b} \log \theta\right) \log \Delta^{\frac{b+1}{4}}\right)$
- minimized for b between 3 and 4

Eg. using $b=3$, size of compact representation of $\varepsilon_{\Delta_{c}}$ reduces to 843 bits.

Further Improvements: Better Scalar Recoding?

Seems hard to reduce size of terms further

- Use other exponentiation techniques to reduce number of terms?

Of particular interest: double-base number systems

- represent $\log \theta$ as sum/difference of terms of the form $2^{a} 3^{b}$
- number of terms is sublinear in $\log \log \theta$
- challenges: expression not "regular," size of terms varies

Other Settings (Imbert, J., Scheidler (201x))?

$C: y^{2}=f(x) \in \mathbb{F}_{q}[x], q$ odd, f monic, square-free

- $\operatorname{deg}(f)=2 g+1$ - imaginary hyperelliptic curve of genus g
- $\operatorname{deg}(f)=2 g+2$ - real hyperelliptic curve of genus g
$\mathbb{F}_{q}(C)$ - function field of C
- quadratic extension of rational function field $\mathbb{F}_{q}(x)$
- similar properties to quadratic fields (ideal class group, non-trivial units when real, etc...)
- C imaginary: Picard group of C is isomorphic to ideal class group of $\mathbb{F}_{q}(C)$

Results (Imbert, J. Scheidler (201x))

Scheidler (1994): compact representation of $\theta \in \mathbb{F}_{q}(C)$ real (binary method)

Preliminary work for imaginary case:

- compact representation of $\theta \in \mathbb{F}_{q}(C)$ for $(\theta)=\mathfrak{a}^{n}$
- trick to reduce size of terms doesn't apply (unique reduced ideal in each equivalence class)
- using larger base gives improvements, between 3 and 4 is optimal

Application: Bilinear Pairings

Tate-Lichtenbaum pairing (S divisor of $C\left(\mathbb{F}_{q}\right), T$ divisor of $C\left(\mathbb{F}_{q^{k}}\right)$):

$$
T_{n}(S, T)=f_{S}(T)^{\frac{q^{k}-1}{n}} \in \mu_{n} \subset \mathbb{F}_{q^{k}}
$$

where $n S=\left(f_{S}\right)$ (S has order n in the Picard group)
Bilinear map - used in many cryptographic protocols
Application of compact representations:

- Basic idea (Costello 2010): precompute f_{S} as (essentially) a compact representation whenever S is fixed (eg. a long-term private key)
- Use our ideas from compact representations to minimize storage costs and/or improve time to evaluate at T

Future Work: Other Settings and Applications

Real hyperelliptic function fields

- improvements to Scheidler's method?
- pairings computation in real hyperelliptic curves?
- applications for units and polynomial Pell equations?

Higher degree number and function fields:

- Done for arbitrary number fields (Thiel 1994) — implementation? improvements?
- Applications (eg. Thue and other norm equations)?

