SOME NEW CONJECTURES OF ROGERS-RAMANUJAN TYPE

Shashank Kanade

Joint work with Matthew C. Russell
PIMS Post-doctoral fellow
University of Alberta

ROGERS-RAMANUJAN IDENTITIES

BACKGROUND

Discovered by:

BACKGROUND

Discovered by:
L. J. Rogers (1894)

BACKGROUND

Discovered by:

L. J. Rogers (1894)
S. Ramanujan (1917)

BACKGROUND

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1917)
I. Schur (1917)

BACKGROUND

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1917)
I. Schur (1917)
Relevant to:

BACKGROUND

Discovered by:

L. J. Rogers (1894)
S. Ramanujan (1917)
I. Schur (1917)

Relevant to:
Number theory,

BACKGROUND

Discovered by:

L. J. Rogers (1894)
S. Ramanujan (1917)
I. Schur (1917)

Relevant to:
Number theory,
Representation theory of affine Lie algebras

BACKGROUND

Discovered by:

L. J. Rogers (1894)
S. Ramanujan (1917)
I. Schur (1917)

Relevant to:
Number theory,
Representation theory of affine Lie algebras
Representation theory of Virasoro Lie algebras

BACKGROUND

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1917)
I. Schur (1917)

Relevant to:

Number theory,
Representation theory of affine Lie algebras
Representation theory of Virasoro Lie algebras
Representation theory of vertex operator algebras

BACKGROUND

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1917)
I. Schur (1917)

Relevant to:

Number theory,
Representation theory of affine Lie algebras
Representation theory of Virasoro Lie algebras
Representation theory of vertex operator algebras
Statistical mechanics

BACKGROUND

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1917)
I. Schur (1917)

Relevant to:

Number theory,
Representation theory of affine Lie algebras
Representation theory of Virasoro Lie algebras
Representation theory of vertex operator algebras
Statistical mechanics
Conformal field theory

BACKGROUND

Discovered by:
L. J. Rogers (1894)
S. Ramanujan (1917)
I. Schur (1917)

Relevant to:

Number theory,
Representation theory of affine Lie algebras
Representation theory of Virasoro Lie algebras
Representation theory of vertex operator algebras
Statistical mechanics
Conformal field theory
Knot theory ...

ROGERS-RAMANUJAN IDENTITIES

RR 1
 Partitions of n whose adjacent parts differ by at least 2

ROGERS-RAMANUJAN IDENTITIES

RR 1
Partitions of n whose adjacent parts differ by at least 2 are equinumerous with

ROGERS-RAMANUJAN IDENTITIES

RR 1

Partitions of n whose adjacent parts differ by at least 2 are equinumerous with partitions of n with each part $\equiv 1,4(\bmod 5)$

ROGERS-RAMANUJAN IDENTITIES

RR 1

Partitions of n whose adjacent parts differ by at least 2
are equinumerous with
partitions of n with each part $\equiv 1,4(\bmod 5)$

RR 2

Partitions of n whose adjacent parts differ by at least 2 and

ROGERS-RAMANUJAN IDENTITIES

RR 1

Partitions of n whose adjacent parts differ by at least 2
are equinumerous with
partitions of n with each part $\equiv 1,4(\bmod 5)$

RR 2

Partitions of n whose adjacent parts differ by at least 2 and whose smallest part is at least 2

ROGERS-RAMANUJAN IDENTITIES

RR 1

Partitions of n whose adjacent parts differ by at least 2
are equinumerous with
partitions of n with each part $\equiv 1,4(\bmod 5)$

RR 2

Partitions of n whose adjacent parts differ by at least 2 and whose smallest part is at least 2
are equinumerous with
partitions of n with each part $\equiv 2,3(\bmod 5)$

ROGERS-RAMANUJAN IDENTITIES - EXAMPLE

Rogers-Ramanujan 1

$$
\begin{array}{rlrl}
9 & =9 & 9 & =9 \\
& =8+1 & & =6+1+1+1 \\
& =7+2 & & =4+4+1 \\
& =6+3 & & =4+1+1+1+1+1 \\
& =5+3+1 & & =1+1+1+1+1+1+1+1+1
\end{array}
$$

ROGERS-RAMANUJAN IDENTITIES - EXAMPLE

Rogers-Ramanujan 1

$$
\begin{aligned}
9 & =9 \\
& =8+1 \\
& =7+2 \\
& =6+3 \\
& =5+3+1
\end{aligned}
$$

$$
9=9
$$

$$
=6+1+1+1
$$

$$
=4+4+1
$$

$$
=4+1+1+1+1+1
$$

$$
=1+1+1+1+1+1+1+1+1
$$

Rogers-Ramanujan 2

$$
\begin{aligned}
9 & =9 \\
& =7+2 \\
& =6+3
\end{aligned}
$$

$$
\begin{aligned}
9 & =7+2 \\
& =3+3+3 \\
& =3+2+2+2
\end{aligned}
$$

SOME NUMBER THEORETIC PROPERTIES

ROGERS-RAMANUJAN CONTINUED FRACTION

$$
r(\tau)=\frac{q^{1 / 5}}{1+\frac{q}{1+\frac{q^{2}}{1+\frac{q^{3}}{1+\cdots}}}} \quad\left(q=e^{2 \pi i \tau}\right)
$$

Converges for $\tau \in \mathbb{H}(|q|<1)$.

ROGERS-RAMANUJAN CONTINUED FRACTION

$$
r(\tau)=\frac{q^{1 / 5}}{1+\frac{q}{1+\frac{q^{2}}{1+\frac{q^{3}}{1+\cdots}}}} \quad\left(q=e^{2 \pi i \tau}\right)
$$

Converges for $\tau \in \mathbb{H}(|q|<1)$.
Converges at $q=$ roots of unity

ROGERS-RAMANUJAN CONTINUED FRACTION

$$
r(\tau)=\frac{q^{1 / 5}}{1+\frac{q}{1+\frac{q^{2}}{1+\frac{q^{3}}{1+\cdots}}}}
$$

Converges for $\tau \in \mathbb{H}(|q|<1)$.
Converges at $q=$ roots of unity except if q is a mth primitive rooth with $5 \mid m$.

ROGERS-RAMANUJAN CONTINUED FRACTION

$$
r(\tau)=\frac{q^{1 / 5}}{1+\frac{q}{1+\frac{q^{2}}{1+\frac{q^{3}}{1+\cdots}}}} \quad\left(q=e^{2 \pi i \tau}\right)
$$

Converges for $\tau \in \mathbb{H}(|q|<1)$.
Converges at $q=$ roots of unity except if q is a mth primitive rooth with $5 \mid m$.
Up to $q^{1 / 5}$, ratio of the two RR generating functions.

ROGERS-RAMANUJAN CONTINUED FRACTION

$$
r(\tau)=\frac{q^{1 / 5}}{1+\frac{q}{1+\frac{q^{2}}{1+\frac{q^{3}}{1+\cdots}}}} \quad\left(q=e^{2 \pi i \tau}\right)
$$

Converges for $\tau \in \mathbb{H}(|q|<1)$.
Converges at $q=$ roots of unity except if q is a mth primitive rooth with $5 \mid m$.
Up to $q^{1 / 5}$, ratio of the two RR generating functions.
$r(\tau=0)=\phi^{-1}$ (related to modular tensor categories)

EVALUATIONS

Blow up the icosahedron to unit sphere.

EVALUATIONS

Blow up the icosahedron to unit sphere.
Now stereographically project.

EVALUATIONS

Blow up the icosahedron to unit sphere.
Now stereographically project.
$S L_{2}(\mathbb{Z}) \cdot i$
\longmapsto Edge points
$S L_{2}(\mathbb{Z}) \cdot \rho$
\longmapsto Face points
$S L_{2}(\mathbb{Z}) \cdot 0$
\longmapsto Vertex points $\neq 0, \infty$

NEW CONJECTURES

NOTATION

$$
n=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\cdots+\lambda_{j} \quad \lambda_{i} \geq \lambda_{i+1} \text { (non-increasing order). }
$$

NOTATION

$n=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\cdots+\lambda_{j} \quad \lambda_{i} \geq \lambda_{i+1}$ (non-increasing order).

Difference at least 3 at distance 2 :

NOTATION

$n=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\cdots+\lambda_{j} \quad \lambda_{i} \geq \lambda_{i+1}$ (non-increasing order).

Difference at least 3 at distance 2 :
$\lambda_{i}-\lambda_{i+2} \geq 3$.

NOTATION

$n=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\cdots+\lambda_{j} \quad \lambda_{i} \geq \lambda_{i+1}$ (non-increasing order).

Difference at least 3 at distance 2 :
$\lambda_{i}-\lambda_{i+2} \geq 3$.
That is, if you jump over 2 plus signs, the parts fall by at least 3.

NOTATION

$n=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\cdots+\lambda_{j} \quad \lambda_{i} \geq \lambda_{i+1}$ (non-increasing order).

Difference at least 3 at distance 2 :
$\lambda_{i}-\lambda_{i+2} \geq 3$.
That is, if you jump over 2 plus signs, the parts fall by at least 3.
(Rogers-Ramanujan has Difference at least 2 at distance 1.)

SYMMETRIC CONJECTURES

Condition ${ }^{-}$

SYMMETRIC CONJECTURES

Condition ©
Difference at least 3 at distance 2 and

SYMMETRIC CONJECTURES

Condition ©

Difference at least 3 at distance 2 and

two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .

SYMMETRIC CONJECTURES

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition \odot

SYMMETRIC CONJECTURES

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition \odot are equinumerous with

SYMMETRIC CONJECTURES

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition \odot are equinumerous with partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$

SYMMETRIC CONJECTURES

Condition ${ }^{()}$
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition \odot
are equinumerous with
partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition \odot

SYMMETRIC CONJECTURES

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition © are equinumerous with partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition © with smallest part at least 2 are equinumerous with

SYMMETRIC CONJECTURES

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition \odot are equinumerous with partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition \odot with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$

SYMMETRIC CONJECTURES

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition \odot are equinumerous with partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition \odot with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$
I_{3} Partitions of n satisfying Condition \odot

SYMMETRIC CONJECTURES

Condition ©
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition © are equinumerous with partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition \odot with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$
I_{3} Partitions of n satisfying Condition \odot with smallest part at least 3 are equinumerous with

SYMMETRIC CONJECTURES

Condition ${ }^{()}$
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition \odot are equinumerous with partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition \odot with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$
I_{3} Partitions of n satisfying Condition \odot with smallest part at least 3 are equinumerous with partitions of n with each part $\equiv \pm 3, \pm 4(\bmod 9)$

SYMMETRIC CONJECTURES

Condition ${ }^{()}$
Difference at least 3 at distance 2 and
two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is divisible by 3 .
I_{1} Partitions of n satisfying Condition \odot are equinumerous with partitions of n with each part $\equiv \pm 1, \pm 3(\bmod 9)$
I_{2} Partitions of n satisfying Condition \odot with smallest part at least 2 are equinumerous with partitions of n with each part $\equiv \pm 2, \pm 3(\bmod 9)$
I_{3} Partitions of n satisfying Condition \odot with smallest part at least 3 are equinumerous with partitions of n with each part $\equiv \pm 3, \pm 4(\bmod 9)$

ASYMMETRIC CONJECTURES

I_{4} Partitions of n satisfying difference at least 3 at distance 2 and

ASYMMETRIC CONJECTURES

I_{4} Partitions of n satisfying difference at least 3 at distance 2 and two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is $\equiv 2(\bmod 3)$ and

ASYMMETRIC CONJECTURES

I_{4} Partitions of n satisfying difference at least 3 at distance 2 and two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is $\equiv 2(\bmod 3)$ and smallest part at least 2

ASYMMETRIC CONJECTURES

I_{4} Partitions of n satisfying difference at least 3 at distance 2 and two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is $\equiv 2(\bmod 3)$ and
smallest part at least 2
are equinumerous with

ASYMMETRIC CONJECTURES

I_{4} Partitions of n satisfying difference at least 3 at distance 2 and two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is
$\equiv 2(\bmod 3)$ and
smallest part at least 2
are equinumerous with
partitions of n with each part $\equiv 2,3,5,8(\bmod 9)$

ASYMMETRIC CONJECTURES

I_{4} Partitions of n satisfying difference at least 3 at distance 2 and two consecutive parts differ by 0 or $1 \Rightarrow$ their sum is
$\equiv 2(\bmod 3)$ and
smallest part at least 2
are equinumerous with
partitions of n with each part $\equiv 2,3,5,8(\bmod 9)$

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}$

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}^{t}$

Difference at least 3 at distance 3 and

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {F }}^{\text {t }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition ${ }_{1}$

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition ${\underset{S}{1}}_{1}$
are equinumerous with

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition S_{1}
are equinumerous with
partitions of n with each part $\equiv 1,3,4,6,7,10,11$
(mod 12).

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.
I_{5} Partitions of n satisfying Condition O-S $_{1}$
are equinumerous with
partitions of n with each part $\equiv 1,3,4,6,7,10,11$
(mod 12).
I_{6} Partitions of n satisfying Condition © $_{2}$

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.

$$
\begin{aligned}
& \mathrm{I}_{5} \text { Partitions of } n \text { satisfying Condition } \text { © }_{1} \\
& \text { are equinumerous with } \\
& \text { partitions of } n \text { with each part } \equiv 1,3,4,6,7,10,11 \\
& \text { (mod 12). } \\
& \mathrm{I}_{6} \text { Partitions of } n \text { satisfying Condition } \mathrm{CO}_{2} \\
& \text { are equinumerous with }
\end{aligned}
$$

ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.

```
I
    are equinumerous with
    partitions of n with each part \equiv1,3, 4, 6,7,10,11
    (mod 12).
I
are equinumerous with
partitions of n with each part }\equiv2,3,5,6,7,8,1
(mod 12).
```


ASYMMETRIC CONJECTURES

Condition ${ }_{\text {© }}$
Difference at least 3 at distance 3 and
if parts at distance two differ by at most 1, then their sum (together with the intermediate part) is $\equiv t(\bmod 3)$, and
smallest part at least t and at most one occurance of t in the partition.

```
I
    are equinumerous with
    partitions of n with each part \equiv1,3, 4, 6,7,10,11
    (mod 12).
I
are equinumerous with
partitions of n with each part }\equiv2,3,5,6,7,8,1
(mod 12).
```

國 G. E. Andrews, The theory of partitions, Cambridge University Press, Cambridge, 1998.
W. Duke, Continued fractions and modular functions. Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 2, 137-162.
R. Kanade and M. C. Russell, Identity Finder and some new identities of Rogers-Ramanujan type, Exp. Math. 24 (2015), no. 4, 419-423.

THANKS!

