Large values of class numbers of real quadratic fields

Youness Lamzouri (York University)

Alberta Number Theory Days VIII, Banff
April 16, 2015

Introduction

Notation

- d is a fundamental discriminant $(d \equiv 1 \bmod 4$ and is square-free, or $d=4 m$ with $m \equiv 2$ or $3 \bmod 4$ and m is square-free).

Introduction

Notation

- d is a fundamental discriminant $(d \equiv 1 \bmod 4$ and is square-free, or $d=4 m$ with $m \equiv 2$ or $3 \bmod 4$ and m is square-free).
- $h(d)$ is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.

Introduction

Notation

- d is a fundamental discriminant $(d \equiv 1 \bmod 4$ and is square-free, or $d=4 m$ with $m \equiv 2$ or $3 \bmod 4$ and m is square-free).
- $h(d)$ is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\chi_{d}:=\left(\frac{d}{f}\right)$ is the Kronecker symbol.

Introduction

Notation

- d is a fundamental discriminant $(d \equiv 1 \bmod 4$ and is square-free, or $d=4 m$ with $m \equiv 2$ or $3 \bmod 4$ and m is square-free).
- $h(d)$ is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\chi_{d}:=\left(\frac{d}{f}\right)$ is the Kronecker symbol.
- $L\left(s, \chi_{d}\right)$ is the Dirichlet L-function associated to χ_{d}.

Introduction

Notation

- d is a fundamental discriminant $(d \equiv 1 \bmod 4$ and is square-free, or $d=4 m$ with $m \equiv 2$ or $3 \bmod 4$ and m is square-free).
- $h(d)$ is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\chi_{d}:=\left(\frac{d}{f}\right)$ is the Kronecker symbol.
- $L\left(s, \chi_{d}\right)$ is the Dirichlet L-function associated to χ_{d}.

Conjectures (Gauss, 1801)

- The number of imaginary quadratic fields with a given class number h is finite.

Introduction

Notation

- d is a fundamental discriminant $(d \equiv 1 \bmod 4$ and is square-free, or $d=4 m$ with $m \equiv 2$ or $3 \bmod 4$ and m is square-free).
- $h(d)$ is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\chi_{d}:=\left(\frac{d}{f}\right)$ is the Kronecker symbol.
- $L\left(s, \chi_{d}\right)$ is the Dirichlet L-function associated to χ_{d}.

Conjectures (Gauss, 1801)

- The number of imaginary quadratic fields with a given class number h is finite.
- There are infinitely many real quadratic fields with class number 1.

Imaginary quadratic fields

Theorem (Heilbronn, 1934)

- Gauss's first conjecture is true. Namely, $h(-d) \rightarrow \infty$, as $d \rightarrow \infty$.

Imaginary quadratic fields

Theorem (Heilbronn, 1934)

- Gauss's first conjecture is true. Namely, $h(-d) \rightarrow \infty$, as $d \rightarrow \infty$.
- The proof is not effective.

Imaginary quadratic fields

Theorem (Heilbronn, 1934)

- Gauss's first conjecture is true. Namely, $h(-d) \rightarrow \infty$, as $d \rightarrow \infty$.
- The proof is not effective.

Gauss class number problem for imaginary quadratic fields.
For a given $h \geq 1$, determine all imaginary quadratic fields with class number h.

Imaginary quadratic fields

Theorem (Heilbronn, 1934)

- Gauss's first conjecture is true. Namely, $h(-d) \rightarrow \infty$, as $d \rightarrow \infty$.
- The proof is not effective.

Gauss class number problem for imaginary quadratic fields.
For a given $h \geq 1$, determine all imaginary quadratic fields with class number h.

Baker (1966), Heegner (1952) and Stark (1967)

There are exactly nine imaginary quadratic fields with class number 1 , namely those corresponding to discriminants:

$$
-3,-4,-7,-8,-11,-19,-43,-67,-163 .
$$

- Baker (1971) and Stark (1971) solved Gauss's class number problem for $h=2$.
- Baker (1971) and Stark (1971) solved Gauss's class number problem for $h=2$.
- Oesterlé (1985) solved Gauss's class number problem for $h=3$.
- Baker (1971) and Stark (1971) solved Gauss's class number problem for $h=2$.
- Oesterlé (1985) solved Gauss's class number problem for $h=3$.

Goldfeld (1976), Gross-Zagier (1983)

For any given $\epsilon>0$, there exists an effectively computable constant $c_{\epsilon}>0$ such that

$$
h(-d) \geq c_{\epsilon}(\log d)^{1-\epsilon}
$$

- Baker (1971) and Stark (1971) solved Gauss's class number problem for $h=2$.
- Oesterlé (1985) solved Gauss's class number problem for $h=3$.

Goldfeld (1976), Gross-Zagier (1983)

For any given $\epsilon>0$, there exists an effectively computable constant $c_{\epsilon}>0$ such that

$$
h(-d) \geq c_{\epsilon}(\log d)^{1-\epsilon}
$$

Watkins (2004)

Determined the list of all imaginary quadratic fields with class number $h \leq 100$.

Why is it easier for imaginary vs real quadratic fields?

Dirichlet's class number formula (1839)

If $-d$ is a fundamental discriminant, then

$$
h(-d)=\frac{\omega}{2 \pi} \sqrt{d} \cdot L(1, \chi-d)
$$

where $\omega=6$ if $d=3, \omega=4$ if $d=4$ and $\omega=2$ if $d>4$.

Why is it easier for imaginary vs real quadratic fields?

Dirichlet's class number formula (1839)

If $-d$ is a fundamental discriminant, then

$$
h(-d)=\frac{\omega}{2 \pi} \sqrt{d} \cdot L(1, \chi-d)
$$

where $\omega=6$ if $d=3, \omega=4$ if $d=4$ and $\omega=2$ if $d>4$.

- If $d>4$ then

$$
h(-d)=\frac{\sqrt{d}}{\pi} \cdot L\left(1, \chi_{-d}\right)
$$

Why is it easier for imaginary vs real quadratic fields?

Dirichlet's class number formula (1839)

If $-d$ is a fundamental discriminant, then

$$
h(-d)=\frac{\omega}{2 \pi} \sqrt{d} \cdot L(1, \chi-d)
$$

where $\omega=6$ if $d=3, \omega=4$ if $d=4$ and $\omega=2$ if $d>4$.

- If $d>4$ then

$$
h(-d)=\frac{\sqrt{d}}{\pi} \cdot L\left(1, \chi_{-d}\right)
$$

- The analogous class number formula for real quadratic fields is more complicated, due to the appearance of non-trivial units in this case.

How small (or large) can $L\left(1, \chi_{d}\right)$ be?

Classical Bounds

- $L\left(1, \chi_{d}\right) \ll \log |d|$.
- If $L\left(\sigma+i t, \chi_{d}\right)$ has no zeros in the region

$$
1-c / \log (|d|(t+2))<\sigma<1 \text { then }
$$

$$
L\left(1, \chi_{d}\right) \gg \frac{1}{\log |d|} .
$$

How small (or large) can $L\left(1, \chi_{d}\right)$ be?

Classical Bounds

- $L\left(1, \chi_{d}\right) \ll \log |d|$.
- If $L\left(\sigma+i t, \chi_{d}\right)$ has no zeros in the region

$$
1-c / \log (|d|(t+2))<\sigma<1 \text { then }
$$

$$
L\left(1, \chi_{d}\right) \gg \frac{1}{\log |d|}
$$

Siegel's Theorem (1931)

- For every $\epsilon>0$, there exists a constant C_{ϵ} such that

$$
L\left(1, \chi_{d}\right) \geq C_{\epsilon}|d|^{-\epsilon}
$$

- The proof is not effective.

Conditional bounds for $L\left(1, \chi_{d}\right)$

Theorem 1 (Littlewood, 1928)

Assume the Generalized Riemann Hypothesis GRH. Then

$$
(\zeta(2)+o(1))\left(2 e^{\gamma} \log \log |d|\right)^{-1} \leq L\left(1, \chi_{d}\right) \leq\left(2 e^{\gamma}+o(1)\right) \log \log |d|,
$$

where γ is the Euler-Mascheroni constant.

Conditional bounds for $L\left(1, \chi_{d}\right)$

Theorem 1 (Littlewood, 1928)

Assume the Generalized Riemann Hypothesis GRH. Then

$$
(\zeta(2)+o(1))\left(2 e^{\gamma} \log \log |d|\right)^{-1} \leq L\left(1, \chi_{d}\right) \leq\left(2 e^{\gamma}+o(1)\right) \log \log |d|,
$$

where γ is the Euler-Mascheroni constant.

Theorem 2 (Littlewood, 1928)

Assume GRH.

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \geq\left(e^{\gamma}+o(1)\right) \log \log |d|$.

Conditional bounds for $L\left(1, \chi_{d}\right)$

Theorem 1 (Littlewood, 1928)

Assume the Generalized Riemann Hypothesis GRH. Then

$$
(\zeta(2)+o(1))\left(2 e^{\gamma} \log \log |d|\right)^{-1} \leq L\left(1, \chi_{d}\right) \leq\left(2 e^{\gamma}+o(1)\right) \log \log |d|
$$ where γ is the Euler-Mascheroni constant.

Theorem 2 (Littlewood, 1928)

Assume GRH.

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \geq\left(e^{\gamma}+o(1)\right) \log \log |d|$.
- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \leq(\zeta(2)+o(1))\left(e^{\gamma} \log \log |d|\right)^{-1}$.

Theorem (Chowla, 1949)
Theorem 2 of Littlewood holds unconditionally. More precisely:

Theorem (Chowla, 1949)

Theorem 2 of Littlewood holds unconditionally. More precisely:

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \geq\left(e^{\gamma}+o(1)\right) \log \log |d|$.

Theorem (Chowla, 1949)

Theorem 2 of Littlewood holds unconditionally. More precisely:

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \geq\left(e^{\gamma}+o(1)\right) \log \log |d|$.
- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \leq(\zeta(2)+o(1))\left(e^{\gamma} \log \log |d|\right)^{-1}$.

Theorem (Chowla, 1949)

Theorem 2 of Littlewood holds unconditionally. More precisely:

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \geq\left(e^{\gamma}+o(1)\right) \log \log |d|$.
- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \leq(\zeta(2)+o(1))\left(e^{\gamma} \log \log |d|\right)^{-1}$.

Conjecture (Montgomery and Vaughan, 1999)

Chowla's omega results are best possible.

Theorem (Chowla, 1949)

Theorem 2 of Littlewood holds unconditionally. More precisely:

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \geq\left(e^{\gamma}+o(1)\right) \log \log |d|$.
- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L\left(1, \chi_{d}\right) \leq(\zeta(2)+o(1))\left(e^{\gamma} \log \log |d|\right)^{-1}$.

Conjecture (Montgomery and Vaughan, 1999)

Chowla's omega results are best possible. More precisely, we have

$$
(\zeta(2)+o(1))\left(e^{\gamma} \log \log |d|\right)^{-1} \leq L\left(1, \chi_{d}\right) \leq\left(e^{\gamma}+o(1)\right) \log \log |d| .
$$

Bounds for the class number of imaginary quadratic fields

Theorem (Littlewood, 1928)
Assume GRH. If $-d<-4$ is a fundamental discriminant, then

$$
\left(\frac{\zeta(2)}{2 \pi e^{\gamma}}+o(1)\right) \frac{\sqrt{d}}{\log \log d} \leq h(-d) \leq\left(\frac{2 e^{\gamma}}{\pi}+o(1)\right) \sqrt{d} \cdot \log \log d .
$$

Theorem (Chowla, 1949)

- There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \geq\left(\frac{e^{\gamma}}{\pi}+o(1)\right) \sqrt{d} \cdot \log \log d$.

Bounds for the class number of imaginary quadratic fields

Theorem (Littlewood, 1928)

Assume GRH. If $-d<-4$ is a fundamental discriminant, then

$$
\left(\frac{\zeta(2)}{2 \pi e^{\gamma}}+o(1)\right) \frac{\sqrt{d}}{\log \log d} \leq h(-d) \leq\left(\frac{2 e^{\gamma}}{\pi}+o(1)\right) \sqrt{d} \cdot \log \log d
$$

Theorem (Chowla, 1949)

- There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \geq\left(\frac{e^{\gamma}}{\pi}+o(1)\right) \sqrt{d} \cdot \log \log d$.
- There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \leq\left(\frac{\zeta(2)}{\pi e^{\gamma}}+o(1)\right) \frac{\sqrt{d}}{\log \log d}$.

Bounds for the class number of imaginary quadratic fields

Theorem (Littlewood, 1928)

Assume GRH. If $-d<-4$ is a fundamental discriminant, then

$$
\left(\frac{\zeta(2)}{2 \pi e^{\gamma}}+o(1)\right) \frac{\sqrt{d}}{\log \log d} \leq h(-d) \leq\left(\frac{2 e^{\gamma}}{\pi}+o(1)\right) \sqrt{d} \cdot \log \log d
$$

Theorem (Chowla, 1949)

- There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \geq\left(\frac{e^{\gamma}}{\pi}+o(1)\right) \sqrt{d} \cdot \log \log d$.
- There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \leq\left(\frac{\zeta(2)}{\pi e^{\gamma}}+o(1)\right) \frac{\sqrt{d}}{\log \log d}$.

Conjecture (Montgomery and Vaughan, 1999)

Chowla's bounds are best possible.

The distribution of class numbers of imaginary quadratic fields

- $\mathcal{D}_{\text {im }}(x)$ is the set of fundamental discriminants $-d<0$ with $d \leq x$.

The distribution of class numbers of imaginary quadratic

 fields- $\mathcal{D}_{\mathrm{im}}(x)$ is the set of fundamental discriminants $-d<0$ with $d \leq x$.

Theorem (Granville and Soundararajan, 2003)

Let $3 \leq \tau \leq \log \log x+O(1)$.

- The number of imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ with $d \leq x$ such that $h(-d) \geq \frac{e^{\gamma}}{\pi} \sqrt{d} \cdot \tau$ is

$$
\left|\mathcal{D}_{\mathrm{im}}(x)\right| \cdot \exp \left(-\frac{e^{\tau-A}}{\tau}(1+o(1))\right)
$$

where $A:=\int_{0}^{1} \frac{\tanh (t)}{t} d t+\int_{1}^{\infty} \frac{\tanh (t)-1}{t} d t=0.8187 \cdots$.

The distribution of class numbers of imaginary quadratic

 fields- $\mathcal{D}_{\mathrm{im}}(x)$ is the set of fundamental discriminants $-d<0$ with $d \leq x$.

Theorem (Granville and Soundararajan, 2003)

Let $3 \leq \tau \leq \log \log x+O(1)$.

- The number of imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ with $d \leq x$ such that $h(-d) \geq \frac{e^{\gamma}}{\pi} \sqrt{d} \cdot \tau$ is

$$
\left|\mathcal{D}_{\mathrm{im}}(x)\right| \cdot \exp \left(-\frac{e^{\tau-A}}{\tau}(1+o(1))\right)
$$

where $A:=\int_{0}^{1} \frac{\tanh (t)}{t} d t+\int_{1}^{\infty} \frac{\tanh (t)-1}{t} d t=0.8187 \cdots$.

- The same estimate holds for the number of imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ with $d \leq x$ such that $h(-d) \leq \frac{\zeta(2)}{\pi e^{\gamma}} \sqrt{d} \cdot \tau^{-1}$.

Real Quadratic Fields

- Let $d>0$ be a fundamental discriminant.
- Let ε_{d} denote the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{d})$.

Real Quadratic Fields

- Let $d>0$ be a fundamental discriminant.
- Let ε_{d} denote the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\varepsilon_{d}=(a+b \sqrt{d}) / 2$, where $b>0$ and a is the smallest positive integer such that (a, b) is a solution to the Pell equations $m^{2}-d n^{2}= \pm 4$.

Real Quadratic Fields

- Let $d>0$ be a fundamental discriminant.
- Let ε_{d} denote the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\varepsilon_{d}=(a+b \sqrt{d}) / 2$, where $b>0$ and a is the smallest positive integer such that (a, b) is a solution to the Pell equations $m^{2}-d n^{2}= \pm 4$.
- $R_{d}=\log \varepsilon_{d}$ is the regulator of $\mathbb{Q}(\sqrt{d})$.

Real Quadratic Fields

- Let $d>0$ be a fundamental discriminant.
- Let ε_{d} denote the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\varepsilon_{d}=(a+b \sqrt{d}) / 2$, where $b>0$ and a is the smallest positive integer such that (a, b) is a solution to the Pell equations $m^{2}-d n^{2}= \pm 4$.
- $R_{d}=\log \varepsilon_{d}$ is the regulator of $\mathbb{Q}(\sqrt{d})$.

Dirichlet's class number formula for real quadratic fields (1839)

If d is a positive fundamental discriminant then

$$
h(d)=\frac{\sqrt{d}}{R_{d}} \cdot L\left(1, \chi_{d}\right)
$$

Real Quadratic Fields

- Let $d>0$ be a fundamental discriminant.
- Let ε_{d} denote the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\varepsilon_{d}=(a+b \sqrt{d}) / 2$, where $b>0$ and a is the smallest positive integer such that (a, b) is a solution to the Pell equations $m^{2}-d n^{2}= \pm 4$.
- $R_{d}=\log \varepsilon_{d}$ is the regulator of $\mathbb{Q}(\sqrt{d})$.

Dirichlet's class number formula for real quadratic fields (1839)

If d is a positive fundamental discriminant then

$$
h(d)=\frac{\sqrt{d}}{R_{d}} \cdot L\left(1, \chi_{d}\right)
$$

Conjecture (Gauss, 1801)

There exist infinitely many positive discriminants d for which $h(d)=1$.

$$
\varepsilon_{d}=\frac{a+b \sqrt{d}}{2} \geq \frac{\sqrt{d}}{2}
$$

$$
\varepsilon_{d}=\frac{a+b \sqrt{d}}{2} \geq \frac{\sqrt{d}}{2} \Longrightarrow R_{d} \geq\left(\frac{1}{2}+o(1)\right) \log d
$$

$$
\varepsilon_{d}=\frac{a+b \sqrt{d}}{2} \geq \frac{\sqrt{d}}{2} \Longrightarrow R_{d} \geq\left(\frac{1}{2}+o(1)\right) \log d
$$

Theorem (Littlewood, 1928)

Assume GRH. If d is a positive fundamental discriminant, then

- $L\left(1, \chi_{d}\right) \leq\left(2 e^{\gamma}+o(1)\right) \log \log d$.

$$
\varepsilon_{d}=\frac{a+b \sqrt{d}}{2} \geq \frac{\sqrt{d}}{2} \Longrightarrow R_{d} \geq\left(\frac{1}{2}+o(1)\right) \log d
$$

Theorem (Littlewood, 1928)

Assume GRH. If d is a positive fundamental discriminant, then

- $L\left(1, \chi_{d}\right) \leq\left(2 e^{\gamma}+o(1)\right) \log \log d$.
- By Dirichlet's Class Number Formula

$$
h(d) \leq\left(4 e^{\gamma}+o(1)\right) \sqrt{d} \cdot \frac{\log \log d}{\log d}
$$

$$
\varepsilon_{d}=\frac{a+b \sqrt{d}}{2} \geq \frac{\sqrt{d}}{2} \Longrightarrow R_{d} \geq\left(\frac{1}{2}+o(1)\right) \log d .
$$

Theorem (Littlewood, 1928)

Assume GRH. If d is a positive fundamental discriminant, then

- $L\left(1, \chi_{d}\right) \leq\left(2 e^{\gamma}+o(1)\right) \log \log d$.
- By Dirichlet's Class Number Formula

$$
h(d) \leq\left(4 e^{\gamma}+o(1)\right) \sqrt{d} \cdot \frac{\log \log d}{\log d}
$$

Theorem (Montgomery and Weinberger, 1977)

There exist infinitely many real quadratic fields $\mathbb{Q}(\sqrt{d})$ such that

$$
h(d) \gg \sqrt{d} \cdot \frac{\log \log d}{\log d} .
$$

Conjecture (Montgomery and Vaughan, 1999)

$$
L\left(1, \chi_{d}\right) \leq\left(e^{\gamma}+o(1)\right) \log \log d
$$

Conjecture (Montgomery and Vaughan, 1999)

$$
L\left(1, \chi_{d}\right) \leq\left(e^{\gamma}+o(1)\right) \log \log d .
$$

Conjecture

For all large positive fundamental discriminants d we have

$$
h(d) \leq\left(2 e^{\gamma}+o(1)\right) \sqrt{d} \cdot \frac{\log \log d}{\log d} .
$$

Conjecture (Montgomery and Vaughan, 1999)

$$
L\left(1, \chi_{d}\right) \leq\left(e^{\gamma}+o(1)\right) \log \log d
$$

Conjecture

For all large positive fundamental discriminants d we have

$$
h(d) \leq\left(2 e^{\gamma}+o(1)\right) \sqrt{d} \cdot \frac{\log \log d}{\log d} .
$$

Theorem A (weak version) (L, 2015)

There exist infinitely many real quadratic fields $\mathbb{Q}(\sqrt{d})$ such that

$$
h(d) \geq\left(2 e^{\gamma}+o(1)\right) \sqrt{d} \cdot \frac{\log \log d}{\log d} .
$$

Theorem A (strong version) (L, 2015)

(a) There are at least $x^{1 / 2-1 / \log \log x}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, such that

$$
\begin{equation*}
h(d) \geq\left(2 e^{\gamma}+o(1)\right) \sqrt{d} \cdot \frac{\log \log d}{\log d} . \tag{1}
\end{equation*}
$$

Theorem A (strong version) (L, 2015)

(a) There are at least $x^{1 / 2-1 / \log \log x}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, such that

$$
\begin{equation*}
h(d) \geq\left(2 e^{\gamma}+o(1)\right) \sqrt{d} \cdot \frac{\log \log d}{\log d} . \tag{1}
\end{equation*}
$$

(b) Furthermore, there are at most $x^{1 / 2+o(1)}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, for which (1) holds.

Theorem A (strong version) (L, 2015)

(a) There are at least $x^{1 / 2-1 / \log \log x}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, such that

$$
\begin{equation*}
h(d) \geq\left(2 e^{\gamma}+o(1)\right) \sqrt{d} \cdot \frac{\log \log d}{\log d} . \tag{1}
\end{equation*}
$$

(b) Furthermore, there are at most $x^{1 / 2+o(1)}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, for which (1) holds.

Ingredients for the proof of part b)

- We prove that the number of real quadratic fields with discriminant $d \leq x$ such that $\varepsilon_{d} \leq d^{1+o(1)}$ is $\ll x^{1 / 2+o(1)}$.

Theorem A (strong version) (L, 2015)

(a) There are at least $x^{1 / 2-1 / \log \log x}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, such that

$$
\begin{equation*}
h(d) \geq\left(2 e^{\gamma}+o(1)\right) \sqrt{d} \cdot \frac{\log \log d}{\log d} . \tag{1}
\end{equation*}
$$

(b) Furthermore, there are at most $x^{1 / 2+o(1)}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, for which (1) holds.

Ingredients for the proof of part b)

- We prove that the number of real quadratic fields with discriminant $d \leq x$ such that $\varepsilon_{d} \leq d^{1+o(1)}$ is $\ll x^{1 / 2+o(1)}$.
- Using Heath-Brown's quadratic large sieve and zero-density estimates for Dirichlet L-functions, we prove that Littlewood's GRH bound $L\left(1, \chi_{d}\right) \leq\left(2 e^{\gamma}+o(1)\right) \log \log d$ holds (unconditionally) for all but at most $x^{1 / 2+o(1)}$ fundamental discriminants $0<d<x$.

Chowla's family of real quadratic fields

- To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:

$$
\mathcal{D}_{\mathrm{ch}}:=\left\{d: d \text { squarefree of the form } d=4 m^{2}+1 \text { for } m \geq 1\right\} .
$$

Chowla's family of real quadratic fields

- To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:
$\mathcal{D}_{\mathrm{ch}}:=\left\{d: d\right.$ squarefree of the form $d=4 m^{2}+1$ for $\left.m \geq 1\right\}$.
- Let $\mathcal{D}_{\mathrm{ch}}(x):=\left\{d \in \mathcal{D}_{\mathrm{ch}}: d \leq x\right\}$. Then $\left|\mathcal{D}_{\mathrm{ch}}(x)\right| \asymp x^{1 / 2}$.

Chowla's family of real quadratic fields

- To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:
$\mathcal{D}_{\mathrm{ch}}:=\left\{d: d\right.$ squarefree of the form $d=4 m^{2}+1$ for $\left.m \geq 1\right\}$.
- Let $\mathcal{D}_{\mathrm{ch}}(x):=\left\{d \in \mathcal{D}_{\mathrm{ch}}: d \leq x\right\}$. Then $\left|\mathcal{D}_{\mathrm{ch}}(x)\right| \asymp x^{1 / 2}$.
- If $d=4 m^{2}+1$ is square-free then $\epsilon_{d}=2 m+\sqrt{d}=\sqrt{d-1}+\sqrt{d}$.

Chowla's family of real quadratic fields

- To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:
$\mathcal{D}_{\mathrm{ch}}:=\left\{d: d\right.$ squarefree of the form $d=4 m^{2}+1$ for $\left.m \geq 1\right\}$.
- Let $\mathcal{D}_{\mathrm{ch}}(x):=\left\{d \in \mathcal{D}_{\mathrm{ch}}: d \leq x\right\}$. Then $\left|\mathcal{D}_{\mathrm{ch}}(x)\right| \asymp x^{1 / 2}$.
- If $d=4 m^{2}+1$ is square-free then $\epsilon_{d}=2 m+\sqrt{d}=\sqrt{d-1}+\sqrt{d}$.
- By Dirichlet's class number formula, if $d \in \mathcal{D}_{\text {ch }}$ then

$$
h(d)=\frac{\sqrt{d}}{\log (\sqrt{d-1}+\sqrt{d})} L\left(1, \chi_{d}\right) .
$$

Chowla's family of real quadratic fields

- To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:
$\mathcal{D}_{\mathrm{ch}}:=\left\{d: d\right.$ squarefree of the form $d=4 m^{2}+1$ for $\left.m \geq 1\right\}$.
- Let $\mathcal{D}_{\mathrm{ch}}(x):=\left\{d \in \mathcal{D}_{\mathrm{ch}}: d \leq x\right\}$. Then $\left|\mathcal{D}_{\mathrm{ch}}(x)\right| \asymp x^{1 / 2}$.
- If $d=4 m^{2}+1$ is square-free then $\epsilon_{d}=2 m+\sqrt{d}=\sqrt{d-1}+\sqrt{d}$.
- By Dirichlet's class number formula, if $d \in \mathcal{D}_{\text {ch }}$ then

$$
h(d)=\frac{\sqrt{d}}{\log (\sqrt{d-1}+\sqrt{d})} L\left(1, \chi_{d}\right) .
$$

Theorem (L, 2015)

There are at least $x^{1 / 2-1 / \log \log x}$ discriminants $d \in \mathcal{D}_{\text {ch }}(x)$ such that

$$
L\left(1, \chi_{d}\right) \geq\left(e^{\gamma}+o(1)\right) \log \log d
$$

Class number 1 problem for Chowla's family

$\mathcal{D}_{\mathrm{ch}}:=\left\{d: d\right.$ squarefree of the form $d=4 m^{2}+1$ for $\left.m \geq 1\right\}$.

- If $d \in \mathcal{D}_{\text {ch }}$, then $h(d) \gg d^{1 / 2-\epsilon}$ by Siegel's Theorem.

Class number 1 problem for Chowla's family

$\mathcal{D}_{\mathrm{ch}}:=\left\{d: d\right.$ squarefree of the form $d=4 m^{2}+1$ for $\left.m \geq 1\right\}$.

- If $d \in \mathcal{D}_{\text {ch }}$, then $h(d) \gg d^{1 / 2-\epsilon}$ by Siegel's Theorem.
- For any h there are only finitely many real quadratic fields of Chowla's type with class number h.

Class number 1 problem for Chowla's family

$$
\mathcal{D}_{\mathrm{ch}}:=\left\{d: d \text { squarefree of the form } d=4 m^{2}+1 \text { for } m \geq 1\right\} .
$$

- If $d \in \mathcal{D}_{\text {ch }}$, then $h(d) \gg d^{1 / 2-\epsilon}$ by Siegel's Theorem.
- For any h there are only finitely many real quadratic fields of Chowla's type with class number h.

Conjecture (Chowla, 1976)

The only real quadratic fields $\mathbb{Q}\left(\sqrt{4 m^{2}+1}\right)$ with class number 1 correspond to $m=1,2,3,5,7$ and 13 .

Class number 1 problem for Chowla's family

$\mathcal{D}_{\mathrm{ch}}:=\left\{d: d\right.$ squarefree of the form $d=4 m^{2}+1$ for $\left.m \geq 1\right\}$.

- If $d \in \mathcal{D}_{\text {ch }}$, then $h(d) \gg d^{1 / 2-\epsilon}$ by Siegel's Theorem.
- For any h there are only finitely many real quadratic fields of Chowla's type with class number h.

Conjecture (Chowla, 1976)

The only real quadratic fields $\mathbb{Q}\left(\sqrt{4 m^{2}+1}\right)$ with class number 1 correspond to $m=1,2,3,5,7$ and 13 .

Theorem (Biró, 2003)

Chowla's conjecture is true.

The distribution of class numbers in Chowla's family

Theorem (Littlewood, 1928)
Assume GRH. If $d \in \mathcal{D}_{\text {ch }}$ then

$$
\left(e^{-\gamma} \zeta(2)+o(1)\right) \frac{\sqrt{d}}{\log d \log \log d} \leq h(d) \leq\left(4 e^{\gamma}+o(1)\right) \frac{\sqrt{d}}{\log d} \log \log d .
$$

The distribution of class numbers in Chowla's family

Theorem (Littlewood, 1928)

Assume GRH. If $d \in \mathcal{D}_{\mathrm{ch}}$ then

$$
\left(e^{-\gamma} \zeta(2)+o(1)\right) \frac{\sqrt{d}}{\log d \log \log d} \leq h(d) \leq\left(4 e^{\gamma}+o(1)\right) \frac{\sqrt{d}}{\log d} \log \log d .
$$

Conjecture (Montgomery and Vaughan, 1999)

If $d \in \mathcal{D}_{\mathrm{ch}}$ then

$$
\left(2 e^{-\gamma} \zeta(2)+o(1)\right) \frac{\sqrt{d}}{\log d \log \log d} \leq h(d) \leq\left(2 e^{\gamma}+o(1)\right) \frac{\sqrt{d}}{\log d} \log \log d .
$$

The distribution of class numbers in Chowla's family

Theorem (Littlewood, 1928)

Assume GRH. If $d \in \mathcal{D}_{\text {ch }}$ then

$$
\left(e^{-\gamma} \zeta(2)+o(1)\right) \frac{\sqrt{d}}{\log d \log \log d} \leq h(d) \leq\left(4 e^{\gamma}+o(1)\right) \frac{\sqrt{d}}{\log d} \log \log d
$$

Conjecture (Montgomery and Vaughan, 1999)

If $d \in \mathcal{D}_{\mathrm{ch}}$ then

$$
\left(2 e^{-\gamma} \zeta(2)+o(1)\right) \frac{\sqrt{d}}{\log d \log \log d} \leq h(d) \leq\left(2 e^{\gamma}+o(1)\right) \frac{\sqrt{d}}{\log d} \log \log d
$$

- For $\tau \geq 1$, what is the proportion of discriminants $d \in \mathcal{D}_{\mathrm{ch}}$ for which

$$
h(d) \geq 2 e^{\gamma} \frac{\sqrt{d}}{\log d} \cdot \tau, \text { or } h(d) \leq\left(2 e^{-\gamma} \zeta(2)+o(1)\right) \frac{\sqrt{d}}{\log d} \cdot \tau^{-1} ?
$$

Theorem (Dahl and L, 2016)

Let $1 \leq \tau \leq(1+o(1)) \log \log x$.

- The number of discriminants $d \in \mathcal{D}_{\mathrm{ch}}(x)$ such that

$$
h(d) \geq 2 e^{\gamma} \frac{\sqrt{d}}{\log d} \cdot \tau
$$

equals

$$
\left|\mathcal{D}_{\mathrm{ch}}(x)\right| \cdot \exp \left(-\frac{e^{\tau-A}}{\tau}\left(1+O\left(\frac{1}{\tau}\right)\right)\right)
$$

Theorem (Dahl and L, 2016)

Let $1 \leq \tau \leq(1+o(1)) \log \log x$.

- The number of discriminants $d \in \mathcal{D}_{\mathrm{ch}}(x)$ such that

$$
h(d) \geq 2 e^{\gamma} \frac{\sqrt{d}}{\log d} \cdot \tau
$$

equals

$$
\left|\mathcal{D}_{\mathrm{ch}}(x)\right| \cdot \exp \left(-\frac{e^{\tau-A}}{\tau}\left(1+O\left(\frac{1}{\tau}\right)\right)\right)
$$

- The same estimate holds for the number of discriminants $d \in \mathcal{D}_{\mathrm{ch}}(x)$ such that

$$
h(d) \leq 2 e^{-\gamma} \zeta(2) \frac{\sqrt{d}}{\log d} \cdot \tau^{-1} .
$$

Theorem (Dahl and L, 2016)

Let $1 \leq \tau \leq(1+o(1)) \log \log x$.

- The number of discriminants $d \in \mathcal{D}_{\mathrm{ch}}(x)$ such that

$$
h(d) \geq 2 e^{\gamma} \frac{\sqrt{d}}{\log d} \cdot \tau
$$

equals

$$
\left|\mathcal{D}_{\mathrm{ch}}(x)\right| \cdot \exp \left(-\frac{e^{\tau-A}}{\tau}\left(1+O\left(\frac{1}{\tau}\right)\right)\right)
$$

- The same estimate holds for the number of discriminants $d \in \mathcal{D}_{\mathrm{ch}}(x)$ such that

$$
h(d) \leq 2 e^{-\gamma} \zeta(2) \frac{\sqrt{d}}{\log d} \cdot \tau^{-1}
$$

- The constant A is the same as in the result of Granville and Soundararajan for the distribution of class numbers of imaginary quadratic fields.

A probabilistic random model

Strategy

- Let \mathcal{D} be a family of fundamental discriminants.
- "Construct a random Euler product"

$$
L(1, \mathbb{X}):=\prod_{p}\left(1-\frac{\mathbb{X}(p)}{p}\right)^{-1}
$$

where $\mathbb{X}(p)$ are independent random variables taking the values $1,-1$ and 0 with the probabilities α_{p}, β_{p} and γ_{p} respectively.

A probabilistic random model

Strategy

- Let \mathcal{D} be a family of fundamental discriminants.
- "Construct a random Euler product"

$$
L(1, \mathbb{X}):=\prod_{p}\left(1-\frac{\mathbb{X}(p)}{p}\right)^{-1}
$$

where $\mathbb{X}(p)$ are independent random variables taking the values $1,-1$ and 0 with the probabilities α_{p}, β_{p} and γ_{p} respectively.

- For a prime p, the probabilities α_{p}, β_{p} and γ_{p} are chosen so that the distribution of $\mathbb{X}(p)$ "mimics" that of $\chi_{d}(p)$ as d varies in \mathcal{D}.

A probabilistic random model

Strategy

- Let \mathcal{D} be a family of fundamental discriminants.
- "Construct a random Euler product"

$$
L(1, \mathbb{X}):=\prod_{p}\left(1-\frac{\mathbb{X}(p)}{p}\right)^{-1}
$$

where $\mathbb{X}(p)$ are independent random variables taking the values $1,-1$ and 0 with the probabilities α_{p}, β_{p} and γ_{p} respectively.

- For a prime p, the probabilities α_{p}, β_{p} and γ_{p} are chosen so that the distribution of $\mathbb{X}(p)$ "mimics" that of $\chi_{d}(p)$ as d varies in \mathcal{D}.
- Compare the distribution of $L\left(1, \chi_{d}\right)$ as d varies in \mathcal{D} with that of the probabilistic model $L(1, \mathbb{X})$.

Granville and Soundararajan

If $\mathcal{D}=\mathcal{D}_{\text {im }}$, or \mathcal{D} is the set of all fundamental discriminants, then $\alpha_{p}=\beta_{p}=p /(2(p+1))$ and $\gamma_{p}=1 /(p+1)$.

Granville and Soundararajan

If $\mathcal{D}=\mathcal{D}_{\text {im }}$, or \mathcal{D} is the set of all fundamental discriminants, then $\alpha_{p}=\beta_{p}=p /(2(p+1))$ and $\gamma_{p}=1 /(p+1)$.

Dahl and L

- If $\mathcal{D}=\mathcal{D}_{\mathrm{ch}}$ is the set of all square-free d of the form $4 m^{2}+1$, then

$$
\gamma_{p}=\frac{p c(p)-c(p)}{p^{2}-c(p)}, \text { and } \alpha_{p}-\beta_{p}=-\frac{1}{p}\left(1-\frac{c(p)}{p^{2}}\right)^{-1},
$$

where $c(p):=1+\left(\frac{-1}{p}\right)$ is the number of solutions of the congruence $4 m^{2}+1 \equiv 0\left(\bmod p^{r}\right)$, for any $r \geq 1$.

Granville and Soundararajan

If $\mathcal{D}=\mathcal{D}_{\text {im }}$, or \mathcal{D} is the set of all fundamental discriminants, then $\alpha_{p}=\beta_{p}=p /(2(p+1))$ and $\gamma_{p}=1 /(p+1)$.

Dahl and L

- If $\mathcal{D}=\mathcal{D}_{\mathrm{ch}}$ is the set of all square-free d of the form $4 m^{2}+1$, then

$$
\gamma_{p}=\frac{p c(p)-c(p)}{p^{2}-c(p)}, \text { and } \alpha_{p}-\beta_{p}=-\frac{1}{p}\left(1-\frac{c(p)}{p^{2}}\right)^{-1}
$$

where $c(p):=1+\left(\frac{-1}{p}\right)$ is the number of solutions of the congruence $4 m^{2}+1 \equiv 0\left(\bmod p^{r}\right)$, for any $r \geq 1$.

- The slight "bias" in the distribution of $\mathbb{X}(p)$ towards the value -1 comes from the Jacobsthal sum identity

$$
\sum_{m=1}^{p}\left(\frac{4 m^{2}+1}{p}\right)=-1
$$

The number of fields with a given class number: Case I imaginary quadratic

$\mathcal{F}_{\text {im }}(h)=\mid\{d>0,-d$ is fundamental discriminant, and $h(-d)=h\} \mid$.

The number of fields with a given class number: Case I imaginary quadratic

$\mathcal{F}_{\text {im }}(h)=\mid\{d>0,-d$ is fundamental discriminant, and $h(-d)=h\} \mid$.

Values of $\mathcal{F}_{\text {im }}(h)$ for small h

- Baker, Heegner, Stark: $\mathcal{F}_{\text {im }}(1)=9$.

The number of fields with a given class number: Case I imaginary quadratic

$\mathcal{F}_{\text {im }}(h)=\mid\{d>0,-d$ is fundamental discriminant, and $h(-d)=h\} \mid$.

Values of $\mathcal{F}_{\text {im }}(h)$ for small h

- Baker, Heegner, Stark: $\mathcal{F}_{\text {im }}(1)=9$.
- Baker, Stark: $\mathcal{F}_{\text {im }}(2)=18$.

The number of fields with a given class number: Case I imaginary quadratic

$\mathcal{F}_{\text {im }}(h)=\mid\{d>0,-d$ is fundamental discriminant, and $h(-d)=h\} \mid$.

Values of $\mathcal{F}_{\text {im }}(h)$ for small h

- Baker, Heegner, Stark: $\mathcal{F}_{\text {im }}(1)=9$.
- Baker, Stark: $\mathcal{F}_{\text {im }}(2)=18$.
- Oesterlé: $\mathcal{F}_{\mathrm{im}}(3)=16$.

The number of fields with a given class number: Case I imaginary quadratic

$\mathcal{F}_{\text {im }}(h)=\mid\{d>0,-d$ is fundamental discriminant, and $h(-d)=h\} \mid$.

Values of $\mathcal{F}_{\text {im }}(h)$ for small h

- Baker, Heegner, Stark: $\mathcal{F}_{\text {im }}(1)=9$.
- Baker, Stark: $\mathcal{F}_{\text {im }}(2)=18$.
- Oesterlé: $\mathcal{F}_{\mathrm{im}}(3)=16$.

Conjecture (Soundararajan, 2007)

$$
\frac{h}{\log h} \ll \mathcal{F}_{\text {im }}(h) \ll h \log h .
$$

Conjecture (Holmin, Jones, Kurlberg, McLeman, Petersen, 2015)

As $h \rightarrow \infty$ we have

$$
\mathcal{F}_{\mathrm{im}}(h) \sim \mathcal{C} \cdot c(h) \cdot \frac{h}{\log h}
$$

where

$$
\mathcal{C}=15 \prod_{p>2} \prod_{i=2}^{\infty}\left(1-\frac{1}{p^{i}}\right) \approx 11.317 \text { and } c(h)=\prod_{p^{n} \| h} \prod_{i=1}^{n}\left(1-\frac{1}{p^{i}}\right)^{-1}
$$

Conjecture (Holmin, Jones, Kurlberg, McLeman, Petersen, 2015)

As $h \rightarrow \infty$ we have

$$
\mathcal{F}_{\mathrm{im}}(h) \sim \mathcal{C} \cdot c(h) \cdot \frac{h}{\log h}
$$

where

$$
\mathcal{C}=15 \prod_{p>2} \prod_{i=2}^{\infty}\left(1-\frac{1}{p^{i}}\right) \approx 11.317 \text { and } c(h)=\prod_{p^{n} \| h} \prod_{i=1}^{n}\left(1-\frac{1}{p^{i}}\right)^{-1}
$$

Theorem (Soundararajan, 2007)

For large h we have

$$
\mathcal{F}_{\mathrm{im}}(h) \ll h^{2} \frac{(\log \log h)^{4}}{(\log h)^{4}}
$$

The average of $\mathcal{F}_{\text {im }}(h)$

- $\sum_{h \leq H} \mathcal{F}_{\mathrm{im}}(h)$ is the number of imaginary quadratic fields with class number $\leq H$.

The average of $\mathcal{F}_{\text {im }}(h)$

- $\sum_{h \leq H} \mathcal{F}_{\mathrm{im}}(h)$ is the number of imaginary quadratic fields with class number $\leq H$.
- Watkins (2004): There are 42272 imaginary quadratic fields with class number ≤ 100.

The average of $\mathcal{F}_{\text {im }}(h)$

- $\sum_{h \leq H} \mathcal{F}_{\mathrm{im}}(h)$ is the number of imaginary quadratic fields with class number $\leq H$.
- Watkins (2004): There are 42272 imaginary quadratic fields with class number ≤ 100.

Theorem (Soundararajan, 2007)

$$
\sum_{h \leq H} \mathcal{F}_{\text {im }}(h)=\frac{3 \zeta(2)}{\zeta(3)} H^{2}+O_{\epsilon}\left(\frac{H^{2}}{(\log H)^{1 / 2-\epsilon}}\right) .
$$

The average of $\mathcal{F}_{\mathrm{im}}(h)$

- $\sum_{h \leq H} \mathcal{F}_{\mathrm{im}}(h)$ is the number of imaginary quadratic fields with class number $\leq H$.
- Watkins (2004): There are 42272 imaginary quadratic fields with class number ≤ 100.

Theorem (Soundararajan, 2007)

$$
\sum_{h \leq H} \mathcal{F}_{\text {im }}(h)=\frac{3 \zeta(2)}{\zeta(3)} H^{2}+O_{\epsilon}\left(\frac{H^{2}}{(\log H)^{1 / 2-\epsilon}}\right) .
$$

Theorem (L, 2015)

$$
\sum_{h \leq H} \mathcal{F}_{\mathrm{im}}(h)=\frac{3 \zeta(2)}{\zeta(3)} H^{2}+O\left(\frac{H^{2}(\log \log H)^{3}}{\log H}\right)
$$

The number of fields with a given class number: Case II Chowla's real quadratic fields

- $\mathcal{F}_{\mathrm{ch}}(h)=\mid\left\{d>0, d \in \mathcal{D}_{\mathrm{ch}}\right.$ and $\left.h(d)=h\right\} \mid$.

The number of fields with a given class number: Case II Chowla's real quadratic fields

- $\mathcal{F}_{\mathrm{ch}}(h)=\mid\left\{d>0, d \in \mathcal{D}_{\mathrm{ch}}\right.$ and $\left.h(d)=h\right\} \mid$.
- Biro: $\mathcal{F}_{\mathrm{ch}}(1)=6$.

The number of fields with a given class number: Case II Chowla's real quadratic fields

- $\mathcal{F}_{\mathrm{ch}}(h)=\mid\left\{d>0, d \in \mathcal{D}_{\mathrm{ch}}\right.$ and $\left.h(d)=h\right\} \mid$.
- Biro: $\mathcal{F}_{\mathrm{ch}}(1)=6$.

Recall: $h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L\left(1, \chi_{d}\right)$.

The number of fields with a given class number: Case II Chowla's real quadratic fields

- $\mathcal{F}_{\mathrm{ch}}(h)=\mid\left\{d>0, d \in \mathcal{D}_{\mathrm{ch}}\right.$ and $\left.h(d)=h\right\} \mid$.
- Biro: $\mathcal{F}_{\mathrm{ch}}(1)=6$.

Recall: $h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L\left(1, \chi_{d}\right)$.
Heuristic for the asymptotic of $\sum_{h \leq H} \mathcal{F}_{\mathrm{ch}}(h)$

The number of fields with a given class number: Case II Chowla's real quadratic fields

- $\mathcal{F}_{\mathrm{ch}}(h)=\mid\left\{d>0, d \in \mathcal{D}_{\mathrm{ch}}\right.$ and $\left.h(d)=h\right\} \mid$.
- Biro: $\mathcal{F}_{\mathrm{ch}}(1)=6$.

Recall: $h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L\left(1, \chi_{d}\right)$.
Heuristic for the asymptotic of $\sum_{h \leq H} \mathcal{F}_{c h}(h)$

- $L\left(1, \chi_{d}\right)$ is constant most of the time.

The number of fields with a given class number: Case II Chowla's real quadratic fields

- $\mathcal{F}_{\mathrm{ch}}(h)=\mid\left\{d>0, d \in \mathcal{D}_{\mathrm{ch}}\right.$ and $\left.h(d)=h\right\} \mid$.
- Biro: $\mathcal{F}_{\mathrm{ch}}(1)=6$.

Recall: $h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L\left(1, \chi_{d}\right)$.
Heuristic for the asymptotic of $\sum_{h \leq H} \mathcal{F}_{c h}(h)$

- $L\left(1, \chi_{d}\right)$ is constant most of the time.
- The main contribution to $\sum_{h \leq H} \mathcal{F}_{\mathrm{ch}}(h)$ comes from discriminants $d \ll H^{2}(\log H)^{2}$.

The number of fields with a given class number: Case II

 Chowla's real quadratic fields- $\mathcal{F}_{\mathrm{ch}}(h)=\mid\left\{d>0, d \in \mathcal{D}_{\mathrm{ch}}\right.$ and $\left.h(d)=h\right\} \mid$.
- Biro: $\mathcal{F}_{\text {ch }}(1)=6$.

Recall: $h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L\left(1, \chi_{d}\right)$.
Heuristic for the asymptotic of $\sum_{h \leq H} \mathcal{F}_{\mathrm{ch}}(h)$

- $L\left(1, \chi_{d}\right)$ is constant most of the time.
- The main contribution to $\sum_{h \leq H} \mathcal{F}_{\mathrm{ch}}(h)$ comes from discriminants $d \ll H^{2}(\log H)^{2}$.
- There are $\asymp H \log H$ of these in Chowla's family.

The number of fields with a given class number: Case II

 Chowla's real quadratic fields- $\mathcal{F}_{\mathrm{ch}}(h)=\mid\left\{d>0, d \in \mathcal{D}_{\mathrm{ch}}\right.$ and $\left.h(d)=h\right\} \mid$.
- Biro: $\mathcal{F}_{\text {ch }}(1)=6$.

Recall: $h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L\left(1, \chi_{d}\right)$.
Heuristic for the asymptotic of $\sum_{h \leq H} \mathcal{F}_{\mathrm{ch}}(h)$

- $L\left(1, \chi_{d}\right)$ is constant most of the time.
- The main contribution to $\sum_{h \leq H} \mathcal{F}_{c h}(h)$ comes from discriminants $d \ll H^{2}(\log H)^{2}$.
- There are $\asymp H \log H$ of these in Chowla's family.
- Guess: $\sum_{h \leq H} \mathcal{F}_{\text {ch }}(h) \asymp H \log H$.

Theorem (Dahl and L, 2016)

$$
\sum_{h \leq H} \mathcal{F}_{\mathrm{ch}}(h)=\frac{1}{2 G} H \log H+O\left(H(\log \log H)^{3}\right),
$$

where

$$
G=L(2, \chi-4)=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\frac{1}{9^{2}}+\cdots=0.916 \ldots
$$

is Catalan's constant, and χ_{-4} is the non-principal character modulo 4.

Thank you for your attention!

