Large values of class numbers of real quadratic fields

Youness Lamzouri (York University)

Alberta Number Theory Days VIII, Banff April 16, 2015

Youness Lamzouri (York)

Large values of class numbers

April 16, 2015 1 / 26

Introduction

Notation

• d is a fundamental discriminant ($d \equiv 1 \mod 4$ and is square-free, or d = 4m with $m \equiv 2$ or 3 mod 4 and m is square-free).

Notation

• d is a fundamental discriminant ($d \equiv 1 \mod 4$ and is square-free, or d = 4m with $m \equiv 2$ or 3 mod 4 and m is square-free).

• h(d) is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.

Introduction

Notation

- d is a fundamental discriminant ($d \equiv 1 \mod 4$ and is square-free, or d = 4m with $m \equiv 2$ or 3 mod 4 and m is square-free).
- h(d) is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\chi_d := \left(\frac{d}{\cdot}\right)$ is the Kronecker symbol.

Introduction

Notation

- d is a fundamental discriminant ($d \equiv 1 \mod 4$ and is square-free, or d = 4m with $m \equiv 2$ or 3 mod 4 and m is square-free).
- h(d) is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\chi_d := \left(\frac{d}{\cdot}\right)$ is the Kronecker symbol.
- $L(s, \chi_d)$ is the Dirichlet *L*-function associated to χ_d .

Notation

- d is a fundamental discriminant ($d \equiv 1 \mod 4$ and is square-free, or d = 4m with $m \equiv 2$ or 3 mod 4 and m is square-free).
- h(d) is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\chi_d := \left(\frac{d}{\cdot}\right)$ is the Kronecker symbol.
- $L(s, \chi_d)$ is the Dirichlet *L*-function associated to χ_d .

Conjectures (Gauss, 1801)

• The number of imaginary quadratic fields with a given class number *h* is **finite**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Notation

- d is a fundamental discriminant ($d \equiv 1 \mod 4$ and is square-free, or d = 4m with $m \equiv 2$ or 3 mod 4 and m is square-free).
- h(d) is the class number of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\chi_d := \left(\frac{d}{\cdot}\right)$ is the Kronecker symbol.
- $L(s, \chi_d)$ is the Dirichlet *L*-function associated to χ_d .

Conjectures (Gauss, 1801)

- The number of imaginary quadratic fields with a given class number *h* is **finite**.
- There are infinitely many real quadratic fields with class number 1.

< ロ > < 同 > < 三 > < 三

• Gauss's first conjecture is true. Namely, $h(-d) \rightarrow \infty$, as $d \rightarrow \infty$.

- Gauss's first conjecture is true. Namely, $h(-d) \rightarrow \infty$, as $d \rightarrow \infty$.
- The proof is not effective.

- Gauss's first conjecture is true. Namely, $h(-d) \rightarrow \infty$, as $d \rightarrow \infty$.
- The proof is not effective.

Gauss class number problem for imaginary quadratic fields.

For a given $h \ge 1$, determine all imaginary quadratic fields with class number h.

- Gauss's first conjecture is true. Namely, $h(-d) \rightarrow \infty$, as $d \rightarrow \infty$.
- The proof is not effective.

Gauss class number problem for imaginary quadratic fields.

For a given $h \ge 1$, determine all imaginary quadratic fields with class number h.

Baker (1966), Heegner (1952) and Stark (1967)

There are exactly nine imaginary quadratic fields with class number 1, namely those corresponding to discriminants:

$$-3, -4, -7, -8, -11, -19, -43, -67, -163.$$

 Baker (1971) and Stark (1971) solved Gauss's class number problem for h = 2.

- Baker (1971) and Stark (1971) solved Gauss's class number problem for h = 2.
- Oesterlé (1985) solved Gauss's class number problem for h = 3.

- Baker (1971) and Stark (1971) solved Gauss's class number problem for h = 2.
- Oesterlé (1985) solved Gauss's class number problem for h = 3.

Goldfeld (1976), Gross-Zagier (1983)

For any given $\epsilon>0,$ there exists an effectively computable constant $c_\epsilon>0$ such that

 $h(-d) \ge c_{\epsilon} (\log d)^{1-\epsilon}.$

- Baker (1971) and Stark (1971) solved Gauss's class number problem for h = 2.
- Oesterlé (1985) solved Gauss's class number problem for h = 3.

Goldfeld (1976), Gross-Zagier (1983) For any given $\epsilon > 0$, there exists an effectively computable constant $c_{\epsilon} > 0$ such that $h(-d) \ge c_{\epsilon} (\log d)^{1-\epsilon}.$

Watkins (2004)

Determined the list of all imaginary quadratic fields with class number $h \leq 100$.

Why is it easier for imaginary vs real quadratic fields?

Dirichlet's class number formula (1839)

If -d is a fundamental discriminant, then

$$h(-d) = \frac{\omega}{2\pi} \sqrt{d} \cdot L(1, \chi_{-d}),$$

where $\omega = 6$ if d = 3, $\omega = 4$ if d = 4 and $\omega = 2$ if d > 4.

Why is it easier for imaginary vs real quadratic fields?

Dirichlet's class number formula (1839)

If -d is a fundamental discriminant, then

$$h(-d) = \frac{\omega}{2\pi} \sqrt{d} \cdot L(1, \chi_{-d}),$$

where $\omega = 6$ if d = 3, $\omega = 4$ if d = 4 and $\omega = 2$ if d > 4.

then
$$h(-d) = rac{\sqrt{d}}{\pi} \cdot L(1,\chi_{-d}).$$

• If d > 4

Why is it easier for imaginary vs real quadratic fields?

Dirichlet's class number formula (1839)

If -d is a fundamental discriminant, then

$$h(-d) = \frac{\omega}{2\pi} \sqrt{d} \cdot L(1, \chi_{-d}),$$

where $\omega = 6$ if d = 3, $\omega = 4$ if d = 4 and $\omega = 2$ if d > 4.

If
$$d>4$$
 then $h(-d)=rac{\sqrt{d}}{\pi}\cdot L(1,\chi_{-d})$

• The analogous class number formula for real quadratic fields is more complicated, due to the appearance of **non-trivial units** in this case.

۵

How small (or large) can $L(1, \chi_d)$ be?

Classical Bounds

- $L(1,\chi_d) \ll \log |d|$.
- If $L(\sigma + it, \chi_d)$ has no zeros in the region $1 c/\log(|d|(t+2)) < \sigma < 1$ then

$$L(1,\chi_d)\gg \frac{1}{\log|d|}.$$

How small (or large) can $L(1, \chi_d)$ be?

Classical Bounds

•
$$L(1, \chi_d) \ll \log |d|$$
.

• If $L(\sigma + it, \chi_d)$ has no zeros in the region $1 - c/\log(|d|(t+2)) < \sigma < 1$ then

$$L(1,\chi_d)\gg \frac{1}{\log|d|}.$$

Siegel's Theorem (1931)

• For every $\epsilon > 0$, there exists a constant C_{ϵ} such that

 $L(1, \chi_d) \geq C_{\epsilon} |d|^{-\epsilon}.$

• The proof is not effective.

Theorem 1 (Littlewood, 1928)

Assume the Generalized Riemann Hypothesis GRH. Then

 $(\zeta(2) + o(1))(2e^{\gamma} \log \log |d|)^{-1} \le L(1, \chi_d) \le (2e^{\gamma} + o(1)) \log \log |d|,$

where γ is the Euler-Mascheroni constant.

Theorem 1 (Littlewood, 1928)

Assume the Generalized Riemann Hypothesis GRH. Then

 $(\zeta(2) + o(1))(2e^{\gamma} \log \log |d|)^{-1} \le L(1, \chi_d) \le (2e^{\gamma} + o(1)) \log \log |d|,$

where γ is the Euler-Mascheroni constant.

Theorem 2 (Littlewood, 1928)

Assume GRH.

• There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L(1, \chi_d) \ge (e^{\gamma} + o(1)) \log \log |d|$.

Theorem 1 (Littlewood, 1928)

Assume the Generalized Riemann Hypothesis GRH. Then

 $(\zeta(2) + o(1))(2e^{\gamma} \log \log |d|)^{-1} \le L(1, \chi_d) \le (2e^{\gamma} + o(1)) \log \log |d|,$

where γ is the Euler-Mascheroni constant.

Theorem 2 (Littlewood, 1928)

Assume GRH.

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L(1, \chi_d) \ge (e^{\gamma} + o(1)) \log \log |d|$.
- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L(1, \chi_d) \leq (\zeta(2) + o(1))(e^{\gamma} \log \log |d|)^{-1}$.

(日) (同) (三) (三)

Theorem 2 of Littlewood holds unconditionally. More precisely:

Theorem 2 of Littlewood holds unconditionally. More precisely:

• There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L(1, \chi_d) \ge (e^{\gamma} + o(1)) \log \log |d|$.

Theorem 2 of Littlewood holds unconditionally. More precisely:

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L(1, \chi_d) \ge (e^{\gamma} + o(1)) \log \log |d|$.
- There exist infinitely many negative (resp. positive) fundamental discriminants d such that L(1, χ_d) ≤ (ζ(2) + o(1))(e^γ log log |d|)⁻¹.

Theorem 2 of Littlewood holds unconditionally. More precisely:

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L(1, \chi_d) \ge (e^{\gamma} + o(1)) \log \log |d|$.
- There exist infinitely many negative (resp. positive) fundamental discriminants d such that L(1, χ_d) ≤ (ζ(2) + o(1))(e^γ log log |d|)⁻¹.

Conjecture (Montgomery and Vaughan, 1999)

Chowla's omega results are best possible.

Theorem 2 of Littlewood holds unconditionally. More precisely:

- There exist infinitely many negative (resp. positive) fundamental discriminants d such that $L(1, \chi_d) \ge (e^{\gamma} + o(1)) \log \log |d|$.
- There exist infinitely many negative (resp. positive) fundamental discriminants d such that L(1, χ_d) ≤ (ζ(2) + o(1))(e^γ log log |d|)⁻¹.

Conjecture (Montgomery and Vaughan, 1999)

Chowla's omega results are best possible. More precisely, we have

 $(\zeta(2)+o(1))(\boldsymbol{e}^{\boldsymbol{\gamma}}\log\log|\boldsymbol{d}|)^{-1}\leq L(1,\chi_{\boldsymbol{d}})\leq (\boldsymbol{e}^{\boldsymbol{\gamma}}+o(1))\log\log|\boldsymbol{d}|.$

Bounds for the class number of imaginary quadratic fields

Theorem (Littlewood, 1928)

Assume GRH. If -d < -4 is a fundamental discriminant, then

$$\left(rac{\zeta(2)}{2\pi e^\gamma}+o(1)
ight)rac{\sqrt{d}}{\log\log d}\leq h(-d)\leq \left(rac{2e^\gamma}{\pi}+o(1)
ight)\sqrt{d}\cdot\log\log d.$$

Theorem (Chowla, 1949)

• There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \ge \left(\frac{e^{\gamma}}{\pi} + o(1)\right) \sqrt{d} \cdot \log \log d$.

Theorem (Littlewood, 1928)

Assume GRH. If -d < -4 is a fundamental discriminant, then

$$\left(rac{\zeta(2)}{2\pi e^\gamma}+o(1)
ight)rac{\sqrt{d}}{\log\log d}\leq h(-d)\leq \left(rac{2e^\gamma}{\pi}+o(1)
ight)\sqrt{d}\cdot\log\log d.$$

Theorem (Chowla, 1949)

- There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \ge \left(\frac{e^{\gamma}}{\pi} + o(1)\right) \sqrt{d} \cdot \log \log d$.
- There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \leq \left(\frac{\zeta(2)}{\pi e^{\gamma}} + o(1)\right) \frac{\sqrt{d}}{\log \log d}$.

Theorem (Littlewood, 1928)

Assume GRH. If -d < -4 is a fundamental discriminant, then

$$\left(rac{\zeta(2)}{2\pi e^\gamma}+o(1)
ight)rac{\sqrt{d}}{\log\log d}\leq h(-d)\leq \left(rac{2e^\gamma}{\pi}+o(1)
ight)\sqrt{d}\cdot\log\log d.$$

Theorem (Chowla, 1949)

- There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \ge \left(\frac{e^{\gamma}}{\pi} + o(1)\right) \sqrt{d} \cdot \log \log d$.
- There exist infinitely many imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ such that $h(-d) \leq \left(\frac{\zeta(2)}{\pi e^{\gamma}} + o(1)\right) \frac{\sqrt{d}}{\log \log d}$.

Conjecture (Montgomery and Vaughan, 1999)

Chowla's bounds are best possible.

Youness Lamzouri (York)

The distribution of class numbers of imaginary quadratic fields

• $\mathcal{D}_{im}(x)$ is the set of fundamental discriminants -d < 0 with $d \le x$.

The distribution of class numbers of imaginary quadratic fields

• $\mathcal{D}_{im}(x)$ is the set of fundamental discriminants -d < 0 with $d \le x$.

Theorem (Granville and Soundararajan, 2003)

- Let $3 \le \tau \le \log \log x + O(1)$.
 - The number of imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ with $d \le x$ such that $h(-d) \ge \frac{e^{\gamma}}{\pi} \sqrt{d} \cdot \tau$ is

$$|\mathcal{D}_{\mathsf{im}}(x)| \cdot \exp\left(-rac{e^{ au-A}}{ au}(1+o(1))
ight),$$

where $A := \int_0^1 \frac{\tanh(t)}{t} dt + \int_1^\infty \frac{\tanh(t) - 1}{t} dt = 0.8187 \cdots$.

The distribution of class numbers of imaginary quadratic fields

• $\mathcal{D}_{im}(x)$ is the set of fundamental discriminants -d < 0 with $d \le x$.

Theorem (Granville and Soundararajan, 2003)

- Let $3 \le \tau \le \log \log x + O(1)$.
 - The number of imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ with $d \le x$ such that $h(-d) \ge \frac{e^{\gamma}}{\pi} \sqrt{d} \cdot \tau$ is

$$|\mathcal{D}_{\mathsf{im}}(x)| \cdot \exp{\left(-rac{e^{ au-A}}{ au}(1+o(1))
ight)},$$

where $A := \int_0^1 \frac{\tanh(t)}{t} dt + \int_1^\infty \frac{\tanh(t) - 1}{t} dt = 0.8187 \cdots$.

• The same estimate holds for the number of imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$ with $d \leq x$ such that $h(-d) \leq \frac{\zeta(2)}{\pi e^{\gamma}} \sqrt{d} \cdot \tau^{-1}$.

Real Quadratic Fields

- Let d > 0 be a fundamental discriminant.
- Let ε_d denote the **fundamental unit** of the quadratic field $\mathbb{Q}(\sqrt{d})$.

Real Quadratic Fields

- Let d > 0 be a fundamental discriminant.
- Let ε_d denote the **fundamental unit** of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\varepsilon_d = (a + b\sqrt{d})/2$, where b > 0 and a is the smallest positive integer such that (a, b) is a solution to the Pell equations $m^2 dn^2 = \pm 4$.
Real Quadratic Fields

- Let d > 0 be a fundamental discriminant.
- Let ε_d denote the **fundamental unit** of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\varepsilon_d = (a + b\sqrt{d})/2$, where b > 0 and a is the smallest positive integer such that (a, b) is a solution to the Pell equations $m^2 dn^2 = \pm 4$.
- $R_d = \log \varepsilon_d$ is the **regulator** of $\mathbb{Q}(\sqrt{d})$.

Real Quadratic Fields

- Let d > 0 be a fundamental discriminant.
- Let ε_d denote the **fundamental unit** of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\varepsilon_d = (a + b\sqrt{d})/2$, where b > 0 and a is the smallest positive integer such that (a, b) is a solution to the Pell equations $m^2 dn^2 = \pm 4$.
- $R_d = \log \varepsilon_d$ is the **regulator** of $\mathbb{Q}(\sqrt{d})$.

Dirichlet's class number formula for real quadratic fields (1839)

If d is a positive fundamental discriminant then

$$h(d) = \frac{\sqrt{d}}{R_d} \cdot L(1, \chi_d).$$

Real Quadratic Fields

- Let d > 0 be a fundamental discriminant.
- Let ε_d denote the **fundamental unit** of the quadratic field $\mathbb{Q}(\sqrt{d})$.
- $\varepsilon_d = (a + b\sqrt{d})/2$, where b > 0 and a is the smallest positive integer such that (a, b) is a solution to the Pell equations $m^2 dn^2 = \pm 4$.
- $R_d = \log \varepsilon_d$ is the **regulator** of $\mathbb{Q}(\sqrt{d})$.

Dirichlet's class number formula for real quadratic fields (1839)

If d is a positive fundamental discriminant then

$$h(d) = \frac{\sqrt{d}}{R_d} \cdot L(1, \chi_d).$$

Conjecture (Gauss, 1801)

There exist infinitely many positive discriminants d for which h(d) = 1.

Youness Lamzouri (York)

April 16, 2015 11 /

26

$$\varepsilon_d = rac{a+b\sqrt{d}}{2} \ge rac{\sqrt{d}}{2}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - 釣ぬ(で)

$$\varepsilon_d = rac{a+b\sqrt{d}}{2} \geq rac{\sqrt{d}}{2} \Longrightarrow R_d \geq \left(rac{1}{2}+o(1)
ight)\log d.$$

Youness Lamzouri (York)

Large values of class numbers

April 16, 2015 12 / 26

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - 釣ぬ(で)

$$arepsilon_d = rac{a+b\sqrt{d}}{2} \geq rac{\sqrt{d}}{2} \Longrightarrow R_d \geq \left(rac{1}{2} + o(1)
ight) \log d.$$

Theorem (Littlewood, 1928)

Assume GRH. If d is a positive fundamental discriminant, then

• $L(1,\chi_d) \leq (2e^{\gamma} + o(1)) \log \log d$.

3

$$arepsilon_d = rac{a+b\sqrt{d}}{2} \geq rac{\sqrt{d}}{2} \Longrightarrow R_d \geq \left(rac{1}{2}+o(1)
ight)\log d.$$

Theorem (Littlewood, 1928)

Assume GRH. If d is a positive fundamental discriminant, then

- $L(1,\chi_d) \leq (2e^{\gamma} + o(1)) \log \log d$.
- By Dirichlet's Class Number Formula

$$h(d) \leq ig(4e^\gamma + o(1)ig)\sqrt{d} \cdot rac{\log\log d}{\log d}.$$

$$arepsilon_d = rac{a+b\sqrt{d}}{2} \geq rac{\sqrt{d}}{2} \Longrightarrow R_d \geq \left(rac{1}{2} + o(1)
ight) \log d.$$

Theorem (Littlewood, 1928)

Assume GRH. If d is a positive fundamental discriminant, then

- $L(1, \chi_d) \le (2e^{\gamma} + o(1)) \log \log d$.
- By Dirichlet's Class Number Formula

$$h(d) \leq (4e^{\gamma} + o(1))\sqrt{d} \cdot rac{\log\log d}{\log d}.$$

Theorem (Montgomery and Weinberger, 1977)

There exist infinitely many real quadratic fields $\mathbb{Q}(\sqrt{d})$ such that

$$h(d) \gg \sqrt{d} \cdot \frac{\log \log d}{\log d}.$$

Youness Lamzouri (York)

Conjecture (Montgomery and Vaughan, 1999)

 $L(1,\chi_d) \leq (e^{\gamma} + o(1)) \log \log d.$

Conjecture (Montgomery and Vaughan, 1999)

 $L(1,\chi_d) \leq (e^{\gamma} + o(1)) \log \log d.$

Conjecture

For all large positive fundamental discriminants d we have

$$h(d) \leq (2e^{\gamma} + o(1))\sqrt{d} \cdot rac{\log\log d}{\log d}$$

Conjecture (Montgomery and Vaughan, 1999)

$$L(1,\chi_d) \leq (e^{\gamma} + o(1)) \log \log d.$$

Conjecture

For all large positive fundamental discriminants d we have

$$h(d) \leq \big(2e^{\gamma} + o(1)\big)\sqrt{d} \cdot rac{\log\log d}{\log d}$$

Theorem A (weak version) (L, 2015)

There exist infinitely many real quadratic fields $\mathbb{Q}(\sqrt{d})$ such that

$$h(d) \geq ig(2e^\gamma + o(1)ig)\sqrt{d} \cdot rac{\log\log d}{\log d}$$

(a) There are at least $x^{1/2-1/\log \log x}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, such that

$$h(d) \geq (2e^{\gamma} + o(1))\sqrt{d} \cdot rac{\log\log d}{\log d}.$$
 (1)

(a) There are at least $x^{1/2-1/\log \log x}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, such that

$$h(d) \ge (2e^{\gamma} + o(1))\sqrt{d} \cdot rac{\log\log d}{\log d}.$$
 (1)

(b) Furthermore, there are **at most** $x^{1/2+o(1)}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, for which (1) holds.

(a) There are at least $x^{1/2-1/\log \log x}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, such that

$$h(d) \ge (2e^{\gamma} + o(1))\sqrt{d} \cdot rac{\log\log d}{\log d}.$$
 (1)

(b) Furthermore, there are **at most** $x^{1/2+o(1)}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, for which (1) holds.

Ingredients for the proof of part b)

• We prove that the number of real quadratic fields with discriminant $d \le x$ such that $\varepsilon_d \le d^{1+o(1)}$ is $\ll x^{1/2+o(1)}$.

(a) There are at least $x^{1/2-1/\log \log x}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, such that

$$h(d) \ge (2e^{\gamma} + o(1))\sqrt{d} \cdot rac{\log\log d}{\log d}.$$
 (1)

(b) Furthermore, there are **at most** $x^{1/2+o(1)}$ real quadratic fields $\mathbb{Q}(\sqrt{d})$ with discriminant $d \leq x$, for which (1) holds.

Ingredients for the proof of part b)

- We prove that the number of real quadratic fields with discriminant $d \le x$ such that $\varepsilon_d \le d^{1+o(1)}$ is $\ll x^{1/2+o(1)}$.
- Using Heath-Brown's quadratic large sieve and zero-density estimates for Dirichlet *L*-functions, we prove that Littlewood's GRH bound $L(1, \chi_d) \leq (2e^{\gamma} + o(1)) \log \log d$ holds (unconditionally) for all but at most $x^{1/2+o(1)}$ fundamental discriminants 0 < d < x.

• To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:

 $\mathcal{D}_{ch} := \{ d : d \text{ squarefree of the form } d = 4m^2 + 1 \text{ for } m \ge 1 \}.$

• To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:

 $\mathcal{D}_{\mathsf{ch}} := \{ d : d \text{ squarefree of the form } d = 4m^2 + 1 \text{ for } m \ge 1 \}.$

• Let $\mathcal{D}_{ch}(x) := \{ d \in \mathcal{D}_{ch} : d \le x \}$. Then $|\mathcal{D}_{ch}(x)| \asymp x^{1/2}$.

• To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:

 $\mathcal{D}_{\mathsf{ch}} := \{ d : d \text{ squarefree of the form } d = 4m^2 + 1 \text{ for } m \ge 1 \}.$

- Let $\mathcal{D}_{ch}(x) := \{ d \in \mathcal{D}_{ch} : d \leq x \}$. Then $|\mathcal{D}_{ch}(x)| \asymp x^{1/2}$.
- If $d = 4m^2 + 1$ is square-free then $\epsilon_d = 2m + \sqrt{d} = \sqrt{d-1} + \sqrt{d}$.

• To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:

 $\mathcal{D}_{ch} := \{ d : d \text{ squarefree of the form } d = 4m^2 + 1 \text{ for } m \ge 1 \}.$

- Let $\mathcal{D}_{ch}(x) := \{ d \in \mathcal{D}_{ch} : d \le x \}$. Then $|\mathcal{D}_{ch}(x)| \asymp x^{1/2}$.
- If $d = 4m^2 + 1$ is square-free then $\epsilon_d = 2m + \sqrt{d} = \sqrt{d-1} + \sqrt{d}$.
- By Dirichlet's class number formula, if $d \in \mathcal{D}_{\mathsf{ch}}$ then

$$h(d) = \frac{\sqrt{d}}{\log(\sqrt{d-1} + \sqrt{d})} L(1, \chi_d).$$

• To prove part a) we use the following family of fundamental discriminants, first studied by Chowla:

 $\mathcal{D}_{ch} := \{ d : d \text{ squarefree of the form } d = 4m^2 + 1 \text{ for } m \ge 1 \}.$

- Let $\mathcal{D}_{ch}(x) := \{ d \in \mathcal{D}_{ch} : d \le x \}$. Then $|\mathcal{D}_{ch}(x)| \asymp x^{1/2}$.
- If $d = 4m^2 + 1$ is square-free then $\epsilon_d = 2m + \sqrt{d} = \sqrt{d-1} + \sqrt{d}$.
- By Dirichlet's class number formula, if $d \in \mathcal{D}_{\mathsf{ch}}$ then

$$h(d) = \frac{\sqrt{d}}{\log(\sqrt{d-1} + \sqrt{d})} L(1, \chi_d).$$

Theorem (L, 2015)

There are at least $x^{1/2-1/\log \log x}$ discriminants $d \in \mathcal{D}_{ch}(x)$ such that

$$L(1,\chi_d) \geq (e^{\gamma} + o(1)) \log \log d.$$

Youness Lamzouri (York)

Large values of class numbers

April 16, 2015 15 / 26

 $\mathcal{D}_{ch} := \{ d : d \text{ squarefree of the form } d = 4m^2 + 1 \text{ for } m \ge 1 \}.$

• If $d \in \mathcal{D}_{ch}$, then $h(d) \gg d^{1/2-\epsilon}$ by Siegel's Theorem.

 $\mathcal{D}_{ch} := \{ d : d \text{ squarefree of the form } d = 4m^2 + 1 \text{ for } m \ge 1 \}.$

- If $d \in \mathcal{D}_{ch}$, then $h(d) \gg d^{1/2-\epsilon}$ by Siegel's Theorem.
- For any *h* there are only **finitely** many real quadratic fields of Chowla's type with class number *h*.

 $\mathcal{D}_{ch} := \{ d : d \text{ squarefree of the form } d = 4m^2 + 1 \text{ for } m \ge 1 \}.$

- If $d \in \mathcal{D}_{ch}$, then $h(d) \gg d^{1/2-\epsilon}$ by Siegel's Theorem.
- For any *h* there are only **finitely** many real quadratic fields of Chowla's type with class number *h*.

Conjecture (Chowla, 1976)

The only real quadratic fields $\mathbb{Q}(\sqrt{4m^2+1})$ with class number 1 correspond to m = 1, 2, 3, 5, 7 and 13.

 $\mathcal{D}_{ch} := \{ d : d \text{ squarefree of the form } d = 4m^2 + 1 \text{ for } m \ge 1 \}.$

- If $d \in \mathcal{D}_{ch}$, then $h(d) \gg d^{1/2-\epsilon}$ by Siegel's Theorem.
- For any *h* there are only **finitely** many real quadratic fields of Chowla's type with class number *h*.

Conjecture (Chowla, 1976)

The only real quadratic fields $\mathbb{Q}(\sqrt{4m^2+1})$ with class number 1 correspond to m = 1, 2, 3, 5, 7 and 13.

Theorem (Biró, 2003)

Chowla's conjecture is true.

The distribution of class numbers in Chowla's family

Theorem (Littlewood, 1928)

Assume GRH. If $d \in \mathcal{D}_{\mathsf{ch}}$ then

$$\left(e^{-\gamma}\zeta(2)+o(1)\right)\frac{\sqrt{d}}{\log d \log \log d} \leq h(d) \leq \left(4e^{\gamma}+o(1)\right)\frac{\sqrt{d}}{\log d} \log \log d.$$

The distribution of class numbers in Chowla's family

Theorem (Littlewood, 1928)

Assume GRH. If $d \in \mathcal{D}_{ch}$ then

$$\left(e^{-\gamma}\zeta(2)+o(1)\right)\frac{\sqrt{d}}{\log d \log \log d} \leq h(d) \leq \left(4e^{\gamma}+o(1)\right)\frac{\sqrt{d}}{\log d} \log \log d.$$

Conjecture (Montgomery and Vaughan, 1999)

If $d \in \mathcal{D}_{\mathsf{ch}}$ then

$$\left(2e^{-\gamma}\zeta(2)+o(1)\right)\frac{\sqrt{d}}{\log d\log\log d}\leq h(d)\leq (2e^{\gamma}+o(1))\frac{\sqrt{d}}{\log d}\log\log d.$$

The distribution of class numbers in Chowla's family

Theorem (Littlewood, 1928)

Assume GRH. If $d \in \mathcal{D}_{\mathsf{ch}}$ then

$$\left(e^{-\gamma}\zeta(2)+o(1)\right)\frac{\sqrt{d}}{\log d\log\log d}\leq h(d)\leq (4e^{\gamma}+o(1))\frac{\sqrt{d}}{\log d}\log\log d.$$

Conjecture (Montgomery and Vaughan, 1999)

If $d \in \mathcal{D}_{\mathsf{ch}}$ then

$$\left(2e^{-\gamma}\zeta(2)+o(1)\right)\frac{\sqrt{d}}{\log d\log\log d}\leq h(d)\leq (2e^{\gamma}+o(1))\frac{\sqrt{d}}{\log d}\log\log d.$$

• For $au \geq 1$, what is the proportion of discriminants $d \in \mathcal{D}_{\mathsf{ch}}$ for which

$$h(d) \geq 2e^{\gamma} rac{\sqrt{d}}{\log d} \cdot au, ext{ or } h(d) \leq \left(2e^{-\gamma}\zeta(2) + o(1)
ight) rac{\sqrt{d}}{\log d} \cdot au^{-1}?$$

Theorem (Dahl and L, 2016)

Let $1 \le \tau \le (1 + o(1)) \log \log x$.

• The number of discriminants $d \in \mathcal{D}_{ch}(x)$ such that

$$h(d) \geq 2e^{\gamma} \frac{\sqrt{d}}{\log d} \cdot au,$$

equals

$$|\mathcal{D}_{\mathsf{ch}}(\mathsf{x})| \cdot \exp\left(-rac{e^{ au-A}}{ au}\left(1+O\left(rac{1}{ au}
ight)
ight)
ight),$$

18 / 26

Theorem (Dahl and L, 2016)

Let $1 \le \tau \le (1 + o(1)) \log \log x$.

• The number of discriminants $d \in \mathcal{D}_{ch}(x)$ such that

$$h(d) \geq 2e^{\gamma} rac{\sqrt{d}}{\log d} \cdot au,$$

equals

$$|\mathcal{D}_{\mathsf{ch}}(\mathsf{x})| \cdot \exp\left(-rac{e^{ au-A}}{ au}\left(1+O\left(rac{1}{ au}
ight)
ight)
ight),$$

The same estimate holds for the number of discriminants d ∈ D_{ch}(x) such that

$$h(d) \leq 2e^{-\gamma}\zeta(2)rac{\sqrt{d}}{\log d}\cdot au^{-1}$$

Theorem (Dahl and L, 2016)

Let $1 \le \tau \le (1 + o(1)) \log \log x$.

• The number of discriminants $d \in \mathcal{D}_{\mathsf{ch}}(x)$ such that

$$h(d) \geq 2e^{\gamma} rac{\sqrt{d}}{\log d} \cdot au,$$

$$|\mathcal{D}_{\mathsf{ch}}(\mathsf{x})| \cdot \exp\left(-rac{e^{ au-A}}{ au}\left(1+O\left(rac{1}{ au}
ight)
ight)
ight),$$

The same estimate holds for the number of discriminants d ∈ D_{ch}(x) such that

$$h(d) \leq 2e^{-\gamma}\zeta(2)rac{\sqrt{d}}{\log d}\cdot au^{-1}.$$

• The constant *A* is the **same** as in the result of Granville and Soundararajan for the distribution of class numbers of imaginary quadratic fields.

Youness Lamzouri (York)

Strategy

- Let \mathcal{D} be a family of fundamental discriminants.
- "Construct a random Euler product"

$$L(1,\mathbb{X}) := \prod_{p} \left(1 - \frac{\mathbb{X}(p)}{p}\right)^{-1},$$

where $\mathbb{X}(p)$ are independent random variables taking the values 1, -1 and 0 with the probabilities α_p, β_p and γ_p respectively.

Strategy

- Let \mathcal{D} be a family of fundamental discriminants.
- "Construct a random Euler product"

$$L(1,\mathbb{X}) := \prod_{p} \left(1 - \frac{\mathbb{X}(p)}{p}\right)^{-1},$$

where $\mathbb{X}(p)$ are independent random variables taking the values 1, -1 and 0 with the probabilities α_p, β_p and γ_p respectively.

For a prime p, the probabilities α_p, β_p and γ_p are chosen so that the distribution of X(p) "mimics" that of χ_d(p) as d varies in D.

Strategy

- Let $\ensuremath{\mathcal{D}}$ be a family of fundamental discriminants.
- "Construct a random Euler product"

$$L(1,\mathbb{X}) := \prod_{p} \left(1 - \frac{\mathbb{X}(p)}{p}\right)^{-1},$$

where $\mathbb{X}(p)$ are independent random variables taking the values 1, -1 and 0 with the probabilities α_p, β_p and γ_p respectively.

- For a prime p, the probabilities α_p, β_p and γ_p are chosen so that the distribution of X(p) "mimics" that of χ_d(p) as d varies in D.
- Compare the distribution of L(1, χ_d) as d varies in D with that of the probabilistic model L(1, X).

Granville and Soundararajan

If $\mathcal{D} = \mathcal{D}_{im}$, or \mathcal{D} is the set of all fundamental discriminants, then $\alpha_p = \beta_p = p/(2(p+1))$ and $\gamma_p = 1/(p+1)$.

Granville and Soundararajan

If $\mathcal{D} = \mathcal{D}_{im}$, or \mathcal{D} is the set of all fundamental discriminants, then $\alpha_p = \beta_p = p/(2(p+1))$ and $\gamma_p = 1/(p+1)$.

Dahl and L

• If $\mathcal{D} = \mathcal{D}_{ch}$ is the set of all square-free d of the form $4m^2 + 1$, then

$$\gamma_p = rac{pc(p) - c(p)}{p^2 - c(p)}, ext{ and } \alpha_p - \beta_p = -rac{1}{p} \left(1 - rac{c(p)}{p^2}
ight)^{-1}$$

where $c(p) := 1 + \left(\frac{-1}{p}\right)$ is the number of solutions of the congruence $4m^2 + 1 \equiv 0 \pmod{p^r}$, for any $r \ge 1$.

Granville and Soundararajan

If $\mathcal{D} = \mathcal{D}_{im}$, or \mathcal{D} is the set of all fundamental discriminants, then $\alpha_p = \beta_p = p/(2(p+1))$ and $\gamma_p = 1/(p+1)$.

Dahl and L

• If $\mathcal{D} = \mathcal{D}_{ch}$ is the set of all square-free d of the form $4m^2 + 1$, then

$$\gamma_p = rac{pc(p) - c(p)}{p^2 - c(p)}, ext{ and } \alpha_p - \beta_p = -rac{1}{p} \left(1 - rac{c(p)}{p^2}
ight)^{-1}.$$

where $c(p) := 1 + \left(\frac{-1}{p}\right)$ is the number of solutions of the congruence $4m^2 + 1 \equiv 0 \pmod{p^r}$, for any $r \ge 1$.

The slight "bias" in the distribution of 𝔅(p) towards the value −1 comes from the Jacobsthal sum identity

$$\sum_{n=1}^{p} \left(\frac{4m^2 + 1}{p} \right) = -1.$$
$\mathcal{F}_{im}(h) = |\{d > 0, -d \text{ is fundamental discriminant, and } h(-d) = h\}|.$

 $\mathcal{F}_{im}(h) = |\{d > 0, -d \text{ is fundamental discriminant, and } h(-d) = h\}|.$

Values of $\mathcal{F}_{im}(h)$ for small h

• Baker, Heegner, Stark: $\mathcal{F}_{im}(1) = 9$.

 $\mathcal{F}_{im}(h) = |\{d > 0, -d \text{ is fundamental discriminant, and } h(-d) = h\}|.$

Values of $\mathcal{F}_{im}(h)$ for small h

- Baker, Heegner, Stark: $\mathcal{F}_{im}(1) = 9$.
- Baker, Stark: $\mathcal{F}_{im}(2) = 18$.

 $\mathcal{F}_{im}(h) = |\{d > 0, -d \text{ is fundamental discriminant, and } h(-d) = h\}|.$

Values of $\mathcal{F}_{im}(h)$ for small h

- Baker, Heegner, Stark: $\mathcal{F}_{im}(1) = 9$.
- Baker, Stark: $\mathcal{F}_{im}(2) = 18$.
- Oesterlé: $\mathcal{F}_{im}(3) = 16$.

 $\mathcal{F}_{im}(h) = |\{d > 0, -d \text{ is fundamental discriminant, and } h(-d) = h\}|.$

Values of $\mathcal{F}_{im}(h)$ for small h

- Baker, Heegner, Stark: $\mathcal{F}_{im}(1) = 9$.
- Baker, Stark: $\mathcal{F}_{im}(2) = 18$.
- Oesterlé: $\mathcal{F}_{im}(3) = 16$.

Conjecture (Soundararajan, 2007)

$$\frac{h}{\log h} \ll \mathcal{F}_{\rm im}(h) \ll h \log h.$$

Youness Lamzouri (York)

April 16, 2015 21 / 26

3

(日) (同) (三) (三)

Conjecture (Holmin, Jones, Kurlberg, McLeman, Petersen, 2015)

As $h \to \infty$ we have

$$\mathcal{F}_{\mathsf{im}}(h) \sim \mathcal{C} \cdot c(h) \cdot \frac{h}{\log h}$$

where

$$C = 15 \prod_{p>2} \prod_{i=2}^{\infty} \left(1 - \frac{1}{p^i} \right) \approx 11.317 \text{ and } c(h) = \prod_{p^n || h} \prod_{i=1}^n \left(1 - \frac{1}{p^i} \right)^{-1}.$$

Conjecture (Holmin, Jones, Kurlberg, McLeman, Petersen, 2015)

As $h \to \infty$ we have

$$\mathcal{F}_{\mathsf{im}}(h) \sim \mathcal{C} \cdot c(h) \cdot \frac{h}{\log h}$$

where

$$\mathcal{C} = 15 \prod_{p>2} \prod_{i=2}^{\infty} \left(1 - \frac{1}{p^i} \right) \approx 11.317 \text{ and } c(h) = \prod_{p^n \parallel h} \prod_{i=1}^n \left(1 - \frac{1}{p^i} \right)^{-1}.$$

Theorem (Soundararajan, 2007)

For large h we have

$$\mathcal{F}_{\mathsf{im}}(h) \ll h^2 rac{(\log\log h)^4}{(\log h)^4}.$$

3

• $\sum_{h \leq H} \mathcal{F}_{im}(h)$ is the number of imaginary quadratic fields with class number $\leq H$.

- ∑_{h≤H} F_{im}(h) is the number of imaginary quadratic fields with class number ≤ H.
- Watkins (2004): There are 42272 imaginary quadratic fields with class number ≤ 100.

- $\sum_{h \leq H} \mathcal{F}_{im}(h)$ is the number of imaginary quadratic fields with class number $\leq H$.
- Watkins (2004): There are 42272 imaginary quadratic fields with class number ≤ 100 .

Theorem (Soundararajan, 2007)

$$\sum_{h \leq H} \mathcal{F}_{im}(h) = \frac{3\zeta(2)}{\zeta(3)}H^2 + O_{\epsilon}\left(\frac{H^2}{(\log H)^{1/2 - \epsilon}}\right)$$

- $\sum_{h \leq H} \mathcal{F}_{im}(h)$ is the number of imaginary quadratic fields with class number $\leq H$.
- Watkins (2004): There are 42272 imaginary quadratic fields with class number ≤ 100 .

Theorem (Soundararajan, 2007)

$$\sum_{h \leq H} \mathcal{F}_{\mathsf{im}}(h) = \frac{3\zeta(2)}{\zeta(3)} H^2 + O_{\epsilon}\left(\frac{H^2}{(\log H)^{1/2 - \epsilon}}\right)$$

Theorem (L, 2015)

$$\sum_{h \leq H} \mathcal{F}_{im}(h) = \frac{3\zeta(2)}{\zeta(3)}H^2 + O\left(\frac{H^2(\log\log H)^3}{\log H}\right)$$

Image: A math a math

э

•
$$\mathcal{F}_{ch}(h) = |\{d > 0, d \in \mathcal{D}_{ch} \text{ and } h(d) = h\}|.$$

•
$$\mathcal{F}_{ch}(h) = |\{d > 0, d \in \mathcal{D}_{ch} \text{ and } h(d) = h\}|.$$

• Biro: $\mathcal{F}_{ch}(1) = 6$.

•
$$\mathcal{F}_{ch}(h) = |\{d > 0, d \in \mathcal{D}_{ch} \text{ and } h(d) = h\}|.$$

• Biro: $\mathcal{F}_{ch}(1) = 6$.

Recall: $h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L(1, \chi_d).$

- $\mathcal{F}_{ch}(h) = |\{d > 0, d \in \mathcal{D}_{ch} \text{ and } h(d) = h\}|.$
- Biro: $\mathcal{F}_{ch}(1) = 6$.

Recall:
$$h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L(1, \chi_d).$$

- $\mathcal{F}_{ch}(h) = |\{d > 0, d \in \mathcal{D}_{ch} \text{ and } h(d) = h\}|.$
- Biro: $\mathcal{F}_{ch}(1) = 6$.

$$\mathsf{Recall:} \ h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L(1,\chi_d).$$

Heuristic for the asymptotic of $\sum_{h \leq H} \mathcal{F}_{ch}(h)$

• $L(1, \chi_d)$ is constant most of the time.

- $\mathcal{F}_{ch}(h) = |\{d > 0, d \in \mathcal{D}_{ch} \text{ and } h(d) = h\}|.$
- Biro: $\mathcal{F}_{ch}(1) = 6$.

Recall:
$$h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L(1, \chi_d).$$

- $L(1, \chi_d)$ is constant most of the time.
- The main contribution to $\sum_{h \le H} \mathcal{F}_{ch}(h)$ comes from discriminants $d \ll H^2(\log H)^2$.

- $\mathcal{F}_{ch}(h) = |\{d > 0, d \in \mathcal{D}_{ch} \text{ and } h(d) = h\}|.$
- Biro: $\mathcal{F}_{ch}(1) = 6$.

Recall:
$$h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L(1, \chi_d).$$

- $L(1, \chi_d)$ is constant most of the time.
- The main contribution to $\sum_{h \le H} \mathcal{F}_{ch}(h)$ comes from discriminants $d \ll H^2(\log H)^2$.
- There are $\approx H \log H$ of these in Chowla's family.

- $\mathcal{F}_{ch}(h) = |\{d > 0, d \in \mathcal{D}_{ch} \text{ and } h(d) = h\}|.$
- Biro: $\mathcal{F}_{ch}(1) = 6$.

Recall:
$$h(d) \asymp \frac{\sqrt{d}}{\log d} \cdot L(1, \chi_d).$$

- $L(1, \chi_d)$ is constant most of the time.
- The main contribution to $\sum_{h \le H} \mathcal{F}_{ch}(h)$ comes from discriminants $d \ll H^2(\log H)^2$.
- There are $\approx H \log H$ of these in Chowla's family.
- Guess: $\sum_{h \leq H} \mathcal{F}_{ch}(h) \asymp H \log H$.

Theorem (Dahl and L, 2016)

$$\sum_{h \leq H} \mathcal{F}_{ch}(h) = \frac{1}{2G} H \log H + O\left(H(\log \log H)^3\right),$$

where

$$G = L(2, \chi_{-4}) = 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} + \dots = 0.916...$$

is Catalan's constant, and χ_{-4} is the non-principal character modulo 4.

Youness Lamzouri (York)

Large values of class numbers

April 16, 2015 25 / 26

æ

Thank you for your attention !

э