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Introduction

Notation

d is a fundamental discriminant (d ≡ 1 mod 4 and is square-free, or
d = 4m with m ≡ 2 or 3 mod 4 and m is square-free).

h(d) is the class number of the quadratic field Q(
√
d).

χd :=
(
d
·
)

is the Kronecker symbol.

L(s, χd) is the Dirichlet L-function associated to χd .

Conjectures (Gauss, 1801)

The number of imaginary quadratic fields with a given class number h
is finite.

There are infinitely many real quadratic fields with class number 1.
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Imaginary quadratic fields

Theorem (Heilbronn, 1934)

Gauss’s first conjecture is true. Namely, h(−d)→∞, as d →∞.

The proof is not effective.

Gauss class number problem for imaginary quadratic fields.

For a given h ≥ 1, determine all imaginary quadratic fields with class
number h.

Baker (1966), Heegner (1952) and Stark (1967)

There are exactly nine imaginary quadratic fields with class number 1,
namely those corresponding to discriminants:

−3,−4,−7,−8,−11,−19,−43,−67,−163.
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Baker (1971) and Stark (1971) solved Gauss’s class number problem
for h = 2.

Oesterlé (1985) solved Gauss’s class number problem for h = 3.

Goldfeld (1976), Gross-Zagier (1983)

For any given ε > 0, there exists an effectively computable constant cε > 0
such that

h(−d) ≥ cε(log d)1−ε.

Watkins (2004)

Determined the list of all imaginary quadratic fields with class number
h ≤ 100.
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Why is it easier for imaginary vs real quadratic fields?

Dirichlet’s class number formula (1839)

If −d is a fundamental discriminant, then

h(−d) =
ω

2π

√
d · L(1, χ−d),

where ω = 6 if d = 3, ω = 4 if d = 4 and ω = 2 if d > 4.

If d > 4 then

h(−d) =

√
d

π
· L(1, χ−d).

The analogous class number formula for real quadratic fields is more
complicated, due to the appearance of non-trivial units in this case.
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How small (or large) can L(1, χd) be?

Classical Bounds

L(1, χd)� log |d |.
If L(σ + it, χd) has no zeros in the region
1− c/ log(|d |(t + 2)) < σ < 1 then

L(1, χd)� 1

log |d |
.

Siegel’s Theorem (1931)

For every ε > 0, there exists a constant Cε such that

L(1, χd) ≥ Cε|d |−ε.

The proof is not effective.
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Conditional bounds for L(1, χd)

Theorem 1 (Littlewood, 1928)

Assume the Generalized Riemann Hypothesis GRH. Then

(ζ(2) + o(1))(2eγ log log |d |)−1 ≤ L(1, χd) ≤ (2eγ + o(1)) log log |d |,

where γ is the Euler-Mascheroni constant.

Theorem 2 (Littlewood, 1928)

Assume GRH.

There exist infinitely many negative (resp. positive) fundamental
discriminants d such that L(1, χd) ≥ (eγ + o(1)) log log |d |.
There exist infinitely many negative (resp. positive) fundamental
discriminants d such that L(1, χd) ≤ (ζ(2) + o(1))(eγ log log |d |)−1.
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Theorem (Chowla, 1949)

Theorem 2 of Littlewood holds unconditionally. More precisely:

There exist infinitely many negative (resp. positive) fundamental
discriminants d such that L(1, χd) ≥ (eγ + o(1)) log log |d |.
There exist infinitely many negative (resp. positive) fundamental
discriminants d such that L(1, χd) ≤ (ζ(2) + o(1))(eγ log log |d |)−1.

Conjecture (Montgomery and Vaughan, 1999)

Chowla’s omega results are best possible. More precisely, we have

(ζ(2) + o(1))(eγ log log |d |)−1 ≤ L(1, χd) ≤ (eγ + o(1)) log log |d |.
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Bounds for the class number of imaginary quadratic fields

Theorem (Littlewood, 1928)

Assume GRH. If −d < −4 is a fundamental discriminant, then(
ζ(2)

2πeγ
+ o(1)

) √
d

log log d
≤ h(−d) ≤

(
2eγ

π
+ o(1)

)√
d · log log d .

Theorem (Chowla, 1949)

There exist infinitely many imaginary quadratic fields Q(
√
−d) such

that h(−d) ≥
(
eγ

π + o(1)
)√

d · log log d .

There exist infinitely many imaginary quadratic fields Q(
√
−d) such

that h(−d) ≤
(
ζ(2)
πeγ + o(1)

) √
d

log log d .

Conjecture (Montgomery and Vaughan, 1999)

Chowla’s bounds are best possible.
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The distribution of class numbers of imaginary quadratic
fields

Dim(x) is the set of fundamental discriminants −d < 0 with d ≤ x .

Theorem (Granville and Soundararajan, 2003)

Let 3 ≤ τ ≤ log log x + O(1).

The number of imaginary quadratic fields Q(
√
−d) with d ≤ x such

that h(−d) ≥ eγ

π

√
d · τ is

|Dim(x)| · exp

(
−eτ−A

τ
(1 + o(1))

)
,

where A :=
∫ 1
0

tanh(t)
t dt +

∫∞
1

tanh(t)−1
t dt = 0.8187 · · ·.

The same estimate holds for the number of imaginary quadratic fields

Q(
√
−d) with d ≤ x such that h(−d) ≤ ζ(2)

πeγ

√
d · τ−1.
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Real Quadratic Fields

Let d > 0 be a fundamental discriminant.

Let εd denote the fundamental unit of the quadratic field Q(
√
d).

εd = (a + b
√
d)/2, where b > 0 and a is the smallest positive integer

such that (a, b) is a solution to the Pell equations m2 − dn2 = ±4.

Rd = log εd is the regulator of Q(
√
d).

Dirichlet’s class number formula for real quadratic fields (1839)

If d is a positive fundamental discriminant then

h(d) =

√
d

Rd
· L(1, χd).

Conjecture (Gauss, 1801)

There exist infinitely many positive discriminants d for which h(d) = 1.
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εd =
a + b

√
d

2
≥
√
d

2

=⇒ Rd ≥
(

1

2
+ o(1)

)
log d .

Theorem (Littlewood, 1928)

Assume GRH. If d is a positive fundamental discriminant, then

L(1, χd) ≤ (2eγ + o(1)) log log d .

By Dirichlet’s Class Number Formula

h(d) ≤
(
4eγ + o(1)

)√
d · log log d

log d
.

Theorem (Montgomery and Weinberger, 1977)

There exist infinitely many real quadratic fields Q(
√
d) such that

h(d)�
√
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Conjecture (Montgomery and Vaughan, 1999)

L(1, χd) ≤ (eγ + o(1)) log log d .

Conjecture

For all large positive fundamental discriminants d we have
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Theorem A (strong version) (L, 2015)

(a) There are at least x1/2−1/ log log x real quadratic fields Q(
√
d) with

discriminant d ≤ x , such that

h(d) ≥ (2eγ + o(1))
√
d · log log d

log d
. (1)

(b) Furthermore, there are at most x1/2+o(1) real quadratic fields Q(
√
d)

with discriminant d ≤ x , for which (1) holds.

Ingredients for the proof of part b)

We prove that the number of real quadratic fields with discriminant
d ≤ x such that εd ≤ d1+o(1) is � x1/2+o(1).

Using Heath-Brown’s quadratic large sieve and zero-density
estimates for Dirichlet L-functions, we prove that Littlewood’s GRH
bound L(1, χd) ≤ (2eγ + o(1)) log log d holds (unconditionally) for
all but at most x1/2+o(1) fundamental discriminants 0 < d < x .
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Chowla’s family of real quadratic fields

To prove part a) we use the following family of fundamental
discriminants, first studied by Chowla:

Dch := {d : d squarefree of the form d = 4m2 + 1 for m ≥ 1}.

Let Dch(x) := {d ∈ Dch : d ≤ x}. Then |Dch(x)| � x1/2.

If d = 4m2 + 1 is square-free then εd = 2m +
√
d =
√
d − 1 +

√
d .

By Dirichlet’s class number formula, if d ∈ Dch then

h(d) =

√
d

log(
√
d − 1 +

√
d)

L(1, χd).

Theorem (L, 2015)

There are at least x1/2−1/ log log x discriminants d ∈ Dch(x) such that

L(1, χd) ≥ (eγ + o(1)) log log d .
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Class number 1 problem for Chowla’s family

Dch := {d : d squarefree of the form d = 4m2 + 1 for m ≥ 1}.

If d ∈ Dch, then h(d)� d1/2−ε by Siegel’s Theorem.

For any h there are only finitely many real quadratic fields of
Chowla’s type with class number h.

Conjecture (Chowla, 1976)

The only real quadratic fields Q(
√

4m2 + 1) with class number 1
correspond to m = 1, 2, 3, 5, 7 and 13.

Theorem (Biró, 2003)

Chowla’s conjecture is true.
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The distribution of class numbers in Chowla’s family

Theorem (Littlewood, 1928)

Assume GRH. If d ∈ Dch then

(
e−γζ(2) + o(1)

) √
d

log d log log d
≤ h(d) ≤ (4eγ + o(1))

√
d

log d
log log d .

Conjecture (Montgomery and Vaughan, 1999)

If d ∈ Dch then

(
2e−γζ(2) + o(1)

) √
d

log d log log d
≤ h(d) ≤ (2eγ + o(1))

√
d

log d
log log d .

For τ ≥ 1, what is the proportion of discriminants d ∈ Dch for which

h(d) ≥ 2eγ
√
d

log d
·τ , or h(d) ≤

(
2e−γζ(2) + o(1)

) √d
log d

·τ−1?
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Theorem (Dahl and L, 2016)

Let 1 ≤ τ ≤ (1 + o(1)) log log x .

The number of discriminants d ∈ Dch(x) such that

h(d) ≥ 2eγ
√
d

log d
·τ ,

equals

|Dch(x)|·exp

(
−eτ−A

τ

(
1 + O

(
1

τ

)))
,

The same estimate holds for the number of discriminants d ∈ Dch(x)
such that

h(d) ≤ 2e−γζ(2)

√
d

log d
·τ−1.

The constant A is the same as in the result of Granville and
Soundararajan for the distribution of class numbers of imaginary
quadratic fields.
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A probabilistic random model

Strategy

Let D be a family of fundamental discriminants.

“Construct a random Euler product”

L(1,X) :=
∏
p

(
1− X(p)

p

)−1
,

where X(p) are independent random variables taking the values 1,−1
and 0 with the probabilities αp, βp and γp respectively.

For a prime p, the probabilities αp, βp and γp are chosen so that the
distribution of X(p) “mimics” that of χd(p) as d varies in D.

Compare the distribution of L(1, χd) as d varies in D with that of the
probabilistic model L(1,X).
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Granville and Soundararajan

If D = Dim, or D is the set of all fundamental discriminants, then
αp = βp = p/(2(p + 1)) and γp = 1/(p + 1).

Dahl and L

If D = Dch is the set of all square-free d of the form 4m2 + 1, then

γp =
pc(p)− c(p)

p2 − c(p)
, and αp − βp = −1

p

(
1− c(p)

p2

)−1
,

where c(p) := 1 +
(
−1
p

)
is the number of solutions of the congruence

4m2 + 1 ≡ 0 (mod pr ), for any r ≥ 1.

The slight “bias” in the distribution of X(p) towards the value −1
comes from the Jacobsthal sum identity

p∑
m=1

(
4m2 + 1

p

)
= −1.
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The number of fields with a given class number: Case I
imaginary quadratic

Fim(h) = |{d > 0,−d is fundamental discriminant, and h(−d) = h}|.

Values of Fim(h) for small h

Baker, Heegner, Stark: Fim(1) = 9.

Baker, Stark: Fim(2) = 18.

Oesterlé: Fim(3) = 16.

Conjecture (Soundararajan, 2007)

h

log h
� Fim(h)� h log h.
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Conjecture (Holmin, Jones, Kurlberg, McLeman, Petersen, 2015)

As h→∞ we have

Fim(h) ∼ C · c(h) · h

log h

where

C = 15
∏
p>2

∞∏
i=2

(
1− 1

pi

)
≈ 11.317 and c(h) =

∏
pn‖h

n∏
i=1

(
1− 1

pi

)−1
.

Theorem (Soundararajan, 2007)

For large h we have

Fim(h)� h2
(log log h)4

(log h)4
.
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The average of Fim(h)

∑
h≤H Fim(h) is the number of imaginary quadratic fields with class

number ≤ H.

Watkins (2004): There are 42272 imaginary quadratic fields with
class number ≤ 100.

Theorem (Soundararajan, 2007)∑
h≤H
Fim(h) =

3ζ(2)

ζ(3)
H2 + Oε

(
H2

(logH)1/2−ε

)
.

Theorem (L, 2015)∑
h≤H
Fim(h) =

3ζ(2)

ζ(3)
H2 + O

(
H2(log logH)3

logH

)
.
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The number of fields with a given class number: Case II
Chowla’s real quadratic fields

Fch(h) = |{d > 0, d ∈ Dch and h(d) = h}|.

Biro: Fch(1) = 6.

Recall: h(d) �
√
d

log d
· L(1, χd).

Heuristic for the asymptotic of
∑

h≤H Fch(h)

L(1, χd) is constant most of the time.

The main contribution to
∑

h≤H Fch(h) comes from discriminants

d � H2(logH)2.

There are � H logH of these in Chowla’s family.

Guess:
∑

h≤H Fch(h) � H logH.
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Theorem (Dahl and L, 2016)∑
h≤H
Fch(h) =

1

2G
H logH + O

(
H(log logH)3

)
,

where

G = L(2, χ−4) = 1− 1

32
+

1

52
− 1

72
+

1

92
+ · · · = 0.916...

is Catalan’s constant, and χ−4 is the non-principal character modulo 4.
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Thank you for your attention !
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