Infrastructure versus Jacobian in Real Hyperelliptic Curves

Monireh Rezai Rad

Supervised by: Renate Scheidler and Michael Jacobson

Department of Mathematics and Statistics

University of Calgary

Alberta Number Theory Days 2016

April 17, 2016

Outline

1

Motivation and Background

- Hyperelliptic Curves
- Jacobian
- Infrastructure on Real models

Arithmetic on Real Hyperelliptic Curves

- Jacobian Arithmetic
- Infrastructure Arithmetic
- Infrastructure Arithmetic
- Infrastructure Arithmetic
- Infrastructure Arithmetic

The Relationship Between the Infrastructure and the Jacobian

- 4 An Alternative Definition for Infrastructure
 - Balanced divisors versus Infrastructure

Why real hyperelliptic curves?

- Real hyperelliptic curves are more general than imaginary ones,
- they support a second baby step operation which is much faster than giant step,
- support two structures: Jacobian and infrastructure.

Question: Which one is more efficient?

A hyperelliptic curve of genus g over a finite field \mathbb{F}_q is a non-singular, irreducible equation of the form

$$C: y^2 + h(x)y = f(x)$$

where $h, f \in \mathbb{F}_q[x]$ satisfy certain conditions.

For example, h(x) = 0 if $char(\mathbb{F}_q) \neq 2$.

Hyperelliptic curves come in two models:

- Imaginary Model
 - f monic and deg(f) = 2g + 1,
 - $deg(h) \leq g$ if q even.

Hyperelliptic curves come in two models:

- Imaginary Model
 - f monic and deg(f) = 2g + 1,
 - $deg(h) \leq g$ if q even.
- Real Model
 - If q odd: f monic and deg(f) = 2g + 2,
 - If q even: h monic and deg(h) = g + 1,
 - f monic and $deg(f) \leq 2g + 1$, or
 - deg(f) = 2g + 2, and $sgn(f) = e^2 + e, (e \in F_q^*)$.

Hyperelliptic curves come in two models:

- Imaginary Model
 - f monic and deg(f) = 2g + 1,
 - $deg(h) \leq g$ if q even.
- Real Model
 - If q odd: f monic and deg(f) = 2g + 2,
 - If q even: h monic and deg(h) = g + 1,
 - f monic and $deg(f) \le 2g + 1$, or • deg(f) = 2g + 2 and $sgg(f) = e^2 + e(e)$
 - deg(f) = 2g + 2, and $sgn(f) = e^2 + e$, $(e \in F_q^*)$.

The imaginary model has one point ∞ at infinity. The real model has two points at infinity, ∞^+ and $\infty^-.$

They provide the same level of security as traditional groups like \mathbb{F}_q with a much smaller group size.

Requirements on groups for discrete log based cryptography

- Large group order.
- Compact representation of group elements.
- Fast group operation.
- Hard Diffie-Hellman/discrete logarithm problem.

A **divisor** D is a formal sum of points in C

$$D=\sum_{P\in C}n_PP$$
 , $n_P\in\mathbb{Z}$

where all $n_P = 0$, except for finitely many.

The divisor class group $Cl^0(C)$ or the **Jacobian** is defined to be the quotient group of degree zero divisors modulo the principal divisors.

The divisor class group $Cl^0(C)$ or the **Jacobian** is defined to be the quotient group of degree zero divisors modulo the principal divisors.

Hasse-Weil Theorem

The Jacobian of a hyperelliptic curve C of genus g over a finite field \mathbb{F}_q is a finite group and

 $|Cl^0(C)| \approx q^g.$

The divisor class group $Cl^0(C)$ or the **Jacobian** is defined to be the quotient group of degree zero divisors modulo the principal divisors.

Hasse-Weil Theorem

The Jacobian of a hyperelliptic curve C of genus g over a finite field \mathbb{F}_q is a finite group and

 $|Cl^0(C)| \approx q^g.$

Bingo! We have a finite group of a large order.

A **reduced** divisor *D* is an affine effective divisor with some certain properties which $deg(D) \le g$

A **reduced** divisor *D* is an affine effective divisor with some certain properties which $\deg(D) \leq g$

Mumford Representation

Each reduced divisor can be represented by two polynomials [u, v] where $u, v \in \mathbb{F}[x]$ and deg $(u) \leq g$, namely the **Mumford** representation.

A **reduced** divisor *D* is an affine effective divisor with some certain properties which $\deg(D) \leq g$

Mumford Representation

Each reduced divisor can be represented by two polynomials [u, v] where $u, v \in \mathbb{F}[x]$ and deg $(u) \leq g$, namely the **Mumford** representation.

Yes! A compact representation

Is this Representation unique?

For a divisor class $[D] \in Cl^0(C)$,

• If C is imaginary then

$$D \equiv D' - deg(D')\infty$$

where D' = [u, v] is a reduced divisor.

Is this Representation unique?

For a divisor class $[D] \in Cl^0(C)$,

• If C is imaginary then

$$D \equiv D' - deg(D')\infty$$

where D' = [u, v] is a reduced divisor.

If C is real then

$$D \equiv D' + n\infty^+ + m\infty^- - D_\infty$$

where D' = [u, v] is reduced, $0 \le n \le g - \deg(u)$, and

$$D_{\infty} = \lceil \frac{g}{2} \rceil \infty^{+} + \lfloor \frac{g}{2} \rfloor \infty^{-}.$$

Is this Representation unique?

For a divisor class $[D] \in Cl^0(C)$,

• If C is imaginary then

$$D \equiv D' - deg(D')\infty$$

where D' = [u, v] is a reduced divisor.

• If C is real then $D \equiv D' + n\infty^{+} + m\infty^{-} - D_{\infty}.$ (1) where D' = [u, v] is reduced, $0 \le n \le g - \deg(u)$, and $D_{\infty} = \left(\lceil \frac{g}{2} \rceil \infty^{+} + \lfloor \frac{g}{2} \rfloor \infty^{-} \right)$

(1) is called **the balanced** representative for [D] and is denoted by ([u, v], n).

Example

For any real hyperelliptic curve of genus g, we have the following balanced representations:

- a) The balanced representative of the principal divisor class is $([1,0], \lceil g/2 \rceil).$
- b) The balanced representative of $[\infty^+ \infty^-]$ is $([1,0], \lceil g/2 \rceil + 1)$.
- c) The balanced representative of $[\infty^- \infty^+]$ is $([1,0], \lceil g/2 \rceil 1)$.

Infrastructure

A reduce ideal of the coordinate ring $\mathbb{F}_q[C]$ is represented by two polynomials [u, v] satisfying some certain conditions such as deg $(u) \leq g$. Moreover the polynomial u is monic, unique, and v is unique modulo u.

Infrastructure

The infrastructure of C is defined to be the set \mathcal{R} of all reduced principal ideals of Fq[C]. Moreover,

 $|\mathcal{R}|\approx |Cl^0(C)|.$

Infrastructure and Distance

For every ideal $\mathfrak{a} = (\alpha) \in \mathcal{R}$, the **distance** of \mathfrak{a} is defined to be

 $\delta(\mathfrak{a}) = \deg(\alpha).$

The distance imposes an ordering on \mathcal{R} :

$$\mathcal{R} = \{\mathfrak{a}_1, \mathfrak{a}_2, ..., \mathfrak{a}_r\}, \quad \mathbf{0} = \delta_1 < \delta_2 < \cdots < \delta_r < R ,$$

where $\mathfrak{a}_1 = (1)$ and $\delta_i = \delta(\mathfrak{a}_i)$. We have $\delta_1 = 0$, $\delta_2 = g + 1$. Also,

$$\delta_{i+1} = \delta_i + g + 1 - \deg(u_i) \tag{2}$$

For any two balanced divisors D_1 and D_2 on C, the balanced representative of the class of $D_1 + D_2$ is denoted by $D_1 \oplus D_2$.

Algorithm 1 Divisor Class Addition

Input: Two balanced divisors $D_1 = (D'_1, n_1)$ and $D_2 = (D'_2, n_2)$.

Output: A balanced divisor $D_3 = (D'_3, n_3) = D_1 \oplus D_2$.

- 1: Addition $D' = \text{Comp}(D'_1, D'_2)$ (Cantor Algorithm)
- 2: Reduction $D'' = \operatorname{red}(D')$
- 3: Balancing D'' and put in D_3 and update n_3
- 4: return (D_3, n_3)

Infrastructure Arithmetic

The infrastructure supports two main operations.

Baby step

computes a_{i+1} from a_i

Infrastructure Arithmetic

The infrastructure supports two main operations.

Baby step	
computes a_{i+1} from a_i	

Giant step denoted by \otimes

 $(\mathfrak{a},\mathfrak{b})
ightarrow \mathfrak{a} \otimes \mathfrak{b}$, with

$$\delta(\mathfrak{a}\otimes\mathfrak{b})=\delta(\mathfrak{a})+\delta(\mathfrak{b})-d$$
 with $0\leq d\leq 2g$.

Infrastructure Arithmetic

The infrastructure supports two main operations.

Baby step computes \mathfrak{a}_{i+1} from \mathfrak{a}_i Giant step denoted by \otimes $(\mathfrak{a}, \mathfrak{b}) \to \mathfrak{a} \otimes \mathfrak{b}$, with $\delta(\mathfrak{a} \otimes \mathfrak{b}) = \delta(\mathfrak{a}) + \delta(\mathfrak{b}) - d$ with $0 \le d \le 2g$.

The giant step is the cantor algorithm by some *adjustment* baby steps.

 $\mathcal R$ is "almost" an abelian group under \otimes , failing associativity only barely.

Great! An efficient arithmetic

How the Jacobian and the Infrastructure Related?

$$\phi: \mathcal{R} o Cl^0(\mathcal{C}), \quad \phi(\mathfrak{a}) = [\operatorname{div}(\mathfrak{a}) + (g - \operatorname{deg}(\mathfrak{a}))\infty^- - D_\infty].$$

$$\phi: \mathcal{R} \to Cl^0(\mathcal{C}), \quad \phi(\mathfrak{a}) = [\operatorname{div}(\mathfrak{a}) + (g - \operatorname{deg}(\mathfrak{a}))\infty^- - D_\infty].$$

Theorem

The image of \mathcal{R} under ϕ is equal to $G \cap B$, where $G = \langle [\infty^+ - \infty^-] \rangle$ and B is the set of all classes in $Cl^0(C)$ whose balanced representative is of the form ([u, v], 0).

Question: What is outside of the image?

Definition

The elements in $Cl^0(C)$ which is not in image of ϕ are called holes. In fact a hole does not correspond to any infrastructure element.

Question: What is outside of the image?

Definition

The elements in $Cl^0(C)$ which is not in image of ϕ are called holes. In fact a hole does not correspond to any infrastructure element.

The holes in the infrastructure correspond to balanced divisors with $n \neq 0$ which needs balancing step (extra cost) in their arithmetic. So we are interested to avoid holes.

Question: How common a hole?

- The probability a divisor class is represented by a hole divisor is $\frac{1}{q}$ for sufficiently large q.
- With probability $1 \frac{1}{q}$ there is no hole between two successive infrastructure a_i and a_{i+1} for $i \ge 2$.

Question: How common a hole?

- The probability a divisor class is represented by a hole divisor is ¹/_q for sufficiently large q.
- With probability $1 \frac{1}{q}$ there is no hole between two successive infrastructure a_i and a_{i+1} for $i \ge 2$.

Heuristics

For sufficiently large q, the following properties hold with probability $1 - O(q^{-1})$: (H1) $\delta(\mathfrak{a}_{i+1}) - \delta(\mathfrak{a}_i) = 1$ for $1 \le i \le r$. (H2) $\delta(\mathfrak{a} \otimes \mathfrak{b}) = \delta(\mathfrak{a}) + \delta(\mathfrak{b}) - \lceil g/2 \rceil$ for all $\mathfrak{a}, \mathfrak{b} \in \mathcal{R} \setminus \{0\}$. With probability $1 - O(q^{-1})$:

For an infrastructure element a = [u, v] and it divisor class correspond deg(u) = g.

With probability $1 - O(q^{-1})$:

- For an infrastructure element a = [u, v] and its correspond divisor class deg(u) = g.
- $\phi(\mathfrak{a}_{i+1}) = \phi(\mathfrak{a}_i) + [\infty^+ \infty^-]$, i.e the baby step on *R* heuristically corresponds to the balancing step in *Cl*⁰(*C*).

With probability $1 - O(q^{-1})$:

- For an infrastructure element a = [u, v] and its correspond divisor class deg(u) = g.
- $\phi(\mathfrak{a}_{i+1}) = \phi(\mathfrak{a}_i) + [\infty^+ \infty^-]$, i.e the baby step on \mathcal{R} heuristically corresponds to the balancing step in $Cl^0(C)$.
- So For two balanced divisors D₁ and D₂, [g/2] reduction steps and no balancing steps are needed to compute the balanced divisor D₁ ⊕ D₂.

Question:

Can we make the infrastructure competitive to the Jacobian?

Question:

Can we make the infrastructure competitive to the Jacobian?

Answer: YES

We define a new distance as $\gamma(\mathfrak{a}) = \delta(\mathfrak{a}) - \lceil g/2 \rceil$.

Question:

Can we make the infrastructure competitive to the Jacobian?

Answer: YES

We define a new distance as
$$\gamma(\mathfrak{a}) = \delta(\mathfrak{a}) - \lceil g/2 \rceil$$
.

With the new distance ${\cal R}$ is a group under the assumption of heuristics (H1) and (H2) since

$$\gamma(\mathfrak{a}_i \otimes \mathfrak{a}_{i+1}) = \gamma(\mathfrak{a}_i) + \gamma(\mathfrak{a}_{i+1}).$$

1- The classic infrastructure needs adjustment baby steps after each multiplication while the Jacobian and the infrastructure with the new distance do not.

2- The scalar multiplication in the classic infrastructure needs initial adjustment steps while the Jacobian and the infrastructure with the new distance do not.

1- The classic infrastructure needs adjustment baby steps after each multiplication while the Jacobian and the infrastructure with the new distance do not.

2- The scalar multiplication in the classic infrastructure needs initial adjustment steps while the Jacobian and the infrastructure with the new distance do not.

Result

- The classic infrastructure is less efficient than the the Jacobian.
- The infrastructure with the new distance is identical to the Jacobian.

Operation counts for scalar multiplication in $G = \langle [\infty^+ - \infty^-] \rangle$ and \mathcal{R} .

	Doubles	Adds	Baby Steps	
Imaginary	1	I/3	-	
Real, Inf	21	I/3 + 1	$I/3 + \lceil g/2 \rceil$	
Real, Jac	$2l - \lceil \log_2(c) \rceil$	1/3	$c + (l - \lceil \log_2(c) \rceil)/3$	

Table: Operation counts for scalar multiplication

Where $c = \lfloor g/2 \rfloor + 1$.

Table: Scalar multiplication and key exchange timings over \mathbb{F}_p (in milliseconds) when g = 3.

Security Level	Total Diffie-Hellman				
(in bits)	Imag	Real Jac	Real Infra		
80	6.907	8.345	8.408		
112	11.898	14.643	14.7045		
128	13.8725	16.962	17.025		
192	25.7395	30.9435	31.0795		
256	41.8	50.1305	50.3215		

Thank you for your attention!