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Global motivation

I k number field, A adele ring of k

I Γk absolute Galois group, Wk Weil group

I G split symplectic or special odd orthogonal group over k

Definition
Automorphic representations of G (A) are irreducible constituents of the
regular representation on L2(G (k)\G (A)).

L2(G (k)\G (A)) = L2
disc(G )⊕ L2

cont(G )

L2
disc(G ) = L2

cusp(G )⊕ L2
res(G )
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Global Langlands Correspondence

{
discrete automorphic

representations of G(A)

}
/∼
←→

{
discrete Arthur parameters

ψ:Lk×SL(2,C)→Ĝ

}
/Ĝ−conj

Lk is the hypothetical global Langlands group satisfying

1 // Kk
// Lk //// Wk

// 1

where Kk is compact.
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Arthur packet

I A2(G ): equivalence classes of discrete automorphic representations.

I Ψ2(G ): equivalence classes of discrete Arthur parameters.

Theorem (Arthur)
For each ψ ∈ Ψ2(G ), there exits a “multi-set” Πψ of equivalence classes
of irreducible admissible representations of G (A) such that

1.
Πψ = ⊗′vΠψv

2.
A2(G ) ⊆

⊔
ψ∈Ψ2(G)

Πψ

3. (Endoscopy theory): One can distinguish the automorphic
representations in Πψ.
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Arthur packet

I Πψ is called global Arthur packet

I Πψv is a finite “multi-set” of equivalence classes of irreducible
admissible representations of G (kv ), called local Arthur packet.

Example

1. G = SO(3) ∼= PGL(2): Πψ is a single automorphic representation.

2. G = Sp(2) ∼= SL(2): Πψ is the restriction of an automorphic
representation of GL2(A) to SL2(A).
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Global problem

How to distinguish the residue spectrum in Πψ?

Mœglin:

I global condition: zeros (poles) of certain L-functions “related” to ψ.

I local condition: “fine” parametrization of Πψv .
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Arthur parameter

Let F be a p-adic field, LF = WF × SL(2,C)

G Ĝ
Sp(2n) SO(2n + 1,C)

SO(2n + 1) Sp(2n,C)

Let Ĝ
std.−−→ GLN(C) (N = 2n or 2n+1) be the standard representation.

ψ : WF × SL(2,C)× SL(2,C)→ Ĝ
std.−−→ GL(N,C)

with bounded image on ψ|WF
.
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Jordan blocks

ψ = ⊕i (ρi ⊗ νai ⊗ νbi )

I ρi equivalence class of unitary irreducible representation of WF

I ai , bi ∈ N
I νm is Symm−1-representation of SL(2,C)

Define
Jord(ψ) = {(ρi , ai , bi )}

and
Jordρ(ψ) := {(ρ′, a′, b′) ∈ Jord(ψ) : ρ′ = ρ}.
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Parity

For self-dual ρ: orthogonal type or symplectic type

(ρ, a, b) is orthogonal ⇔

{
a + b is even, if ρ is orthogonal

a + b is odd, if ρ is symplectic

(ρ, a, b) is symplectic ⇔

{
a + b is odd, if ρ is orthogonal

a + b is even, if ρ is symplectic

ψp =
⊕

(ρ,a,b)∈Jord(ψ)

same parity as Ĝ

ρ⊗ νa ⊗ νb

From now on, we will assume ψ = ψp.
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Visualize Jordan blocks

For (ρ, a, b) ∈ Jord(ψ),

A = (a + b)/2− 1 B = |a− b|/2

and

ζ =

{
Sign(a− b), if a 6= b

arbitrary, otherwise.

So we can also denote (ρ, a, b) by (ρ,A,B, ζ).

•
0A B

ζ

Figure: ρ



Admissible order
A total order >ψ on Jordρ(ψ) is called admissible if

∀(ρ,A,B, ζ), (ρ,A′,B ′, ζ ′) ∈ Jordρ(ψ) satisfying

A > A′,B > B ′ and ζ = ζ ′

we have (ρ,A,B, ζ) >ψ (ρ,A′,B ′, ζ ′).

Example

A′ B′A B

++

A′ B′A B

+

+



Discrete diagonal restriction

Definition
We say ψ has discrete diagonal restriction if for each ρ the Jordan blocks
in Jordρ(ψ) are “disjoint”.

•
0A1 B1A2 B2A3 B3

+–+

In this case, Jordρ(ψ) has a natural order >ψ, namely

(ρ,A,B, ζ) >ψ (ρ,A′,B ′, ζ ′) if and only if A > A′.
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Mœglin’s parametrization I

Theorem (Mœglin)
Suppose ψ has discrete diagonal restriction, >ψ is the natural order,

Πψ =
⊕

{(l,η):
∏

(ρ,a,b)∈Jord(ψ) εl,η(ρ,a,b)=1}/∼

πM,>ψ (ψ, l , η).

where πM,>ψ (ψ, l , η) is irreducible.

I (l , η) are integral valued functions over Jord(ψ), such that

l(ρ,A,B, ζ) ∈ [0, [(A− B + 1)/2]] and η(ρ,A,B, ζ) ∈ {±1},

I εl,η(ρ,A,B, ζ) := η(ρ,A,B, ζ)A−B+1(−1)[(A−B+1)/2]+l(ρ,A,B,ζ)

I (l , η) ∼ (l ′, η′) if and only if l = l ′, and

(η/η′)(ρ,A,B, ζ) = 1

unless l(ρ,A,B, ζ) = (A− B + 1)/2.
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Dominating parameter
For ψ and admissible >ψ, we can index Jordρ(ψ) such that

(ρ,Ai ,Bi , ζi ) >ψ (ρ,Ai−1,Bi−1, ζi−1).

We say ψ� dominates ψ with respect to >ψ if Jordρ(ψ�) consists of

(ρ,Ai + Ti ,Bi + Ti , ζi ) for Ti > 0,

with the same admissible order >ψ under the natural identification.

Ai−1 Bi−1Ai Bi

++

Ai−1 + Ti−1 Bi−1 + Ti−1Ai + Ti Bi + Ti

++



Mœglin’s parametrization II

For ψ and admissible >ψ, we choose a dominating parameter ψ� with
discrete diagonal restriction. Then we define

πM,>ψ (ψ, l , η) := ◦ρ;(ρ,Ai ,Bi ,ζi )∈Jordρ(ψ)JacXiπM,>ψ (ψ�, l , η).

Proposition (Mœglin)

1. πM,>ψ (ψ, l , η) is either irreducible or zero.

2. If πM,>ψ (ψ, l , η) = πM,>ψ (ψ, l ′, η′) 6= 0, then (l , η) ∼ (l ′, η′).

3.
Πψ =

⊕
{(l,η):

∏
(ρ,a,b)∈Jord(ψ) εl,η(ρ,a,b)=1}/∼

πM,>ψ (ψ, l , η).

where πM,>ψ (ψ, l , η) is irreducible or zero.
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Local problem

What are the conditions on (l , η) for πM,>ψ (ψ, l , η) 6= 0 ?

Example

•
0A1 B1A2 B2A3 B3

+–+



Pull

An−1 Bn−1An Bn

–

+

+

1.

An−1 Bn−1An Bn

–
+

+



Pull

2

An−1 Bn−1An Bn

–
+

+

3

An−1 Bn−1 An Bn

–
+

+



Expand

Ai BiAn Bn

–

+

+

Ai BiAn + t = Bn − t

–

+

+



Change sign

•
0An + Bn

–

+

•
0An + Bn

–

–



Example

Let ψ = ρ⊗ ν51 ⊗ ν31 ⊕ ρ⊗ ν31 ⊗ ν45 ⊕ ρ⊗ ν13 ⊗ ν5. Then

[A3,B3] = [40, 10] [A2,B2] = [37, 7] [A1,B1] = [8, 4]

•
0A1 B1A2 B2A3 B3

+

–+



Example

0 6 l1 6 2, 0 6 l2 6 15, 0 6 l3 6 15, and (−1)l1+l2+l3η1η2η3 = 1.

η3 = η1 and η2 = η1 −5 6 l3 − l2 + 2l1 6 15
η3 = η1 and η2 6= η1 l3 + l2 + 2l1 > 25
η3 6= η1 and η2 = η1 l3 − l1 < 11 + l1 and l3 + l2 − 2l1 > 15
η3 6= η1 and η2 = η1 l3 − l1 > 11 + l1 and −36 6 −l3 − l2 + 2l1 6 −16
η3 6= η1 and η2 6= η1 l3 − l1 < 11 + l1 and −15 6 l3 − l2 − 2l1 6 5
η3 6= η1 and η2 6= η1 l3 − l1 > 11 + l1 and −l3 + l2 + 2l1 > −6

Each case gives rise to a polytope, and by counting the integral points in
them we get |Πψ| = 1651.
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