On the combinatorial structure of Arthur packets: p-adic symplectic and orthogonal groups

Bin Xu

University of Calgary

April 16, 2016

Global motivation

- k number field, \mathbb{A} adele ring of k
- Γ_{k} absolute Galois group, W_{k} Weil group
- G split symplectic or special odd orthogonal group over k

Global motivation

- k number field, \mathbb{A} adele ring of k
- Γ_{k} absolute Galois group, W_{k} Weil group
- G split symplectic or special odd orthogonal group over k

Definition

Automorphic representations of $G(\mathbb{A})$ are irreducible constituents of the regular representation on $L^{2}(G(k) \backslash G(\mathbb{A}))$.

$$
\begin{aligned}
L^{2}(G(k) \backslash G(\mathbb{A})) & =L_{\text {disc }}^{2}(G) \oplus L_{\text {cont }}^{2}(G) \\
L_{\text {disc }}^{2}(G) & =L_{\text {cusp }}^{2}(G) \oplus L_{\text {res }}^{2}(G)
\end{aligned}
$$

Global Langlands Correspondence

$\left\{\begin{array}{c}\text { discrete automorphic } \\ \text { representations of } G(\mathbb{A})\end{array}\right\}_{/ \sim} \longleftrightarrow\left\{\begin{array}{c}\text { discrete Arthur parameters } \\ \psi: L_{k} \times S L(2, \mathbb{C}) \rightarrow \widehat{G}\end{array}\right\}_{/ \widehat{G}-\text { conj }}$

Global Langlands Correspondence

$$
\left\{\begin{array}{c}
\text { discrete automorphic } \\
\text { representations of } G(\mathbb{A})
\end{array}\right\}_{/ \sim} \longleftrightarrow\left\{\begin{array}{c}
\text { discrete Arthur parameters } \\
\psi: L_{k} \times S L(2, \mathbb{C}) \rightarrow \widehat{G}
\end{array}\right\}_{/ \widehat{G}-\text { conj }}
$$

L_{k} is the hypothetical global Langlands group satisfying

$$
1 \longrightarrow K_{k} \longrightarrow L_{k} \longrightarrow W_{k} \longrightarrow 1
$$

where K_{k} is compact.

Arthur packet

- $\mathcal{A}_{2}(G)$: equivalence classes of discrete automorphic representations.
- $\Psi_{2}(G)$: equivalence classes of discrete Arthur parameters.

Arthur packet

- $\mathcal{A}_{2}(G)$: equivalence classes of discrete automorphic representations.
- $\Psi_{2}(G)$: equivalence classes of discrete Arthur parameters.

Theorem (Arthur)

For each $\psi \in \Psi_{2}(G)$, there exits a "multi-set" Π_{ψ} of equivalence classes of irreducible admissible representations of $G(\mathbb{A})$ such that
1.

$$
\Pi_{\psi}=\otimes_{v}^{\prime} \Pi_{\psi_{v}}
$$

2.

$$
\mathcal{A}_{2}(G) \subseteq \bigsqcup_{\psi \in \Psi_{2}(G)} \Pi_{\psi}
$$

3. (Endoscopy theory): One can distinguish the automorphic representations in Π_{ψ}.

Arthur packet

- Π_{ψ} is called global Arthur packet
- $\Pi_{\psi_{v}}$ is a finite "multi-set" of equivalence classes of irreducible admissible representations of $G\left(k_{v}\right)$, called local Arthur packet.

Arthur packet

- Π_{ψ} is called global Arthur packet
- $\Pi_{\psi_{v}}$ is a finite "multi-set" of equivalence classes of irreducible admissible representations of $G\left(k_{v}\right)$, called local Arthur packet.

Example

1. $G=S O(3) \cong P G L(2): \Pi_{\psi}$ is a single automorphic representation.
2. $G=S p(2) \cong S L(2): \Pi_{\psi}$ is the restriction of an automorphic representation of $G L_{2}(\mathbb{A})$ to $S L_{2}(\mathbb{A})$.

Global problem

How to distinguish the residue spectrum in Π_{ψ} ?

Global problem

How to distinguish the residue spectrum in Π_{ψ} ?
Mœglin:

- global condition: zeros (poles) of certain L-functions "related" to ψ.
- local condition: "fine" parametrization of $\Pi_{\psi_{v}}$.

Arthur parameter

Let F be a p-adic field, $L_{F}=W_{F} \times S L(2, \mathbb{C})$

G	\widehat{G}
$S p(2 n)$	$\operatorname{SO}(2 n+1, \mathbb{C})$
$S O(2 n+1)$	$\operatorname{Sp}(2 n, \mathbb{C})$

Arthur parameter

Let F be a p-adic field, $L_{F}=W_{F} \times S L(2, \mathbb{C})$

G	\widehat{G}
$S p(2 n)$	$\operatorname{SO}(2 n+1, \mathbb{C})$
$S O(2 n+1)$	$\operatorname{Sp}(2 n, \mathbb{C})$

Let $\widehat{G} \xrightarrow{\text { std. }} G L_{N}(\mathbb{C})(N=2 n$ or $2 n+1)$ be the standard representation.

$$
\psi: W_{F} \times S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) \rightarrow \widehat{G} \xrightarrow{s t d .} G L(N, \mathbb{C})
$$

with bounded image on $\psi \mid w_{F}$.

Jordan blocks

$$
\psi=\oplus_{i}\left(\rho_{i} \otimes \nu_{a_{i}} \otimes \nu_{b_{i}}\right)
$$

- ρ_{i} equivalence class of unitary irreducible representation of W_{F}
- $a_{i}, b_{i} \in \mathbb{N}$
- ν_{m} is Sym $^{m-1}$-representation of $\operatorname{SL}(2, \mathbb{C})$

Jordan blocks

$$
\psi=\oplus_{i}\left(\rho_{i} \otimes \nu_{a_{i}} \otimes \nu_{b_{i}}\right)
$$

- ρ_{i} equivalence class of unitary irreducible representation of W_{F}
- $a_{i}, b_{i} \in \mathbb{N}$
- ν_{m} is $S_{y m}^{m-1}$-representation of $\operatorname{SL}(2, \mathbb{C})$

Define

$$
\operatorname{Jord}(\psi)=\left\{\left(\rho_{i}, a_{i}, b_{i}\right)\right\}
$$

and

$$
\operatorname{Jord}_{\rho}(\psi):=\left\{\left(\rho^{\prime}, a^{\prime}, b^{\prime}\right) \in \operatorname{Jord}(\psi): \rho^{\prime}=\rho\right\}
$$

Parity

For self-dual ρ : orthogonal type or symplectic type

$$
\begin{aligned}
& (\rho, a, b) \text { is orthogonal } \Leftrightarrow\left\{\begin{array}{l}
a+b \text { is even, if } \rho \text { is orthogonal } \\
a+b \text { is odd, if } \rho \text { is symplectic }
\end{array}\right. \\
& (\rho, a, b) \text { is symplectic } \Leftrightarrow\left\{\begin{array}{l}
a+b \text { is odd, if } \rho \text { is orthogonal } \\
a+b \text { is even, if } \rho \text { is symplectic }
\end{array}\right.
\end{aligned}
$$

Parity

For self-dual ρ : orthogonal type or symplectic type

$$
\begin{gathered}
(\rho, a, b) \text { is orthogonal } \Leftrightarrow\left\{\begin{array}{l}
a+b \text { is even, if } \rho \text { is orthogonal } \\
a+b \text { is odd, if } \rho \text { is symplectic }
\end{array}\right. \\
(\rho, a, b) \text { is symplectic } \Leftrightarrow\left\{\begin{array}{l}
a+b \text { is odd, if } \rho \text { is orthogonal } \\
a+b \text { is even, if } \rho \text { is symplectic }
\end{array}\right. \\
\psi_{p}=\bigoplus_{\substack{(\rho, a, b) \in \operatorname{Jord}(\psi) \\
\text { same parity as } \widehat{G}}} \rho \otimes \nu_{a} \otimes \nu_{b}
\end{gathered}
$$

From now on, we will assume $\psi=\psi_{p}$.

Visualize Jordan blocks

For $(\rho, a, b) \in \operatorname{Jord}(\psi)$,

$$
A=(a+b) / 2-1 \quad B=|a-b| / 2
$$

and

$$
\zeta=\left\{\begin{array}{c}
\operatorname{Sign}(a-b), \text { if } a \neq b \\
\text { arbitrary, otherwise } .
\end{array}\right.
$$

So we can also denote ($\rho, \boldsymbol{a}, \boldsymbol{b}$) by (ρ, A, B, ζ).

Figure: ρ

Admissible order

A total order $>_{\psi}$ on $\operatorname{Jord}_{\rho}(\psi)$ is called admissible if
$\forall(\rho, A, B, \zeta),\left(\rho, A^{\prime}, B^{\prime}, \zeta^{\prime}\right) \in \operatorname{Jord}_{\rho}(\psi)$ satisfying

$$
A>A^{\prime}, B>B^{\prime} \text { and } \zeta=\zeta^{\prime}
$$

we have $(\rho, A, B, \zeta)>_{\psi}\left(\rho, A^{\prime}, B^{\prime}, \zeta^{\prime}\right)$.

Example

Discrete diagonal restriction

Definition

We say ψ has discrete diagonal restriction if for each ρ the Jordan blocks in $\operatorname{Jord}_{\rho}(\psi)$ are "disjoint".

Discrete diagonal restriction

Definition

We say ψ has discrete diagonal restriction if for each ρ the Jordan blocks in $\operatorname{Jord}_{\rho}(\psi)$ are "disjoint".

In this case, $\operatorname{Jord}_{\rho}(\psi)$ has a natural order $>_{\psi}$, namely

$$
(\rho, A, B, \zeta)>_{\psi}\left(\rho, A^{\prime}, B^{\prime}, \zeta^{\prime}\right) \text { if and only if } A>A^{\prime} .
$$

Mœglin's parametrization I

Theorem (Mœglin)
Suppose ψ has discrete diagonal restriction, $>_{\psi}$ is the natural order,

$$
\Pi_{\psi}=\bigoplus_{\left\{(\underline{I}, \underline{\eta}): \Pi_{(\rho, a, b) \in \operatorname{Jord}(\psi)}\left(\underline{\left.\varepsilon_{l, \underline{\eta}}(\rho, a, b)=1\right\} / \sim}\right.\right.} \pi_{M,>\psi}(\psi, \underline{I}, \underline{\eta}) .
$$

where $\pi_{M,>_{\psi}}(\psi, \underline{\Omega}, \underline{\eta})$ is irreducible.

Mœglin's parametrization I

Theorem (Mœglin)
Suppose ψ has discrete diagonal restriction, $>_{\psi}$ is the natural order,

$$
\Pi_{\psi}=\bigoplus_{\left\{(\underline{l}, \underline{\eta}): \Pi_{(\rho, a, b) \in \operatorname{Jord}(\psi)} \varepsilon_{\underline{l}, \underline{\underline{~}}}(\rho, a, b)=1\right\} / \sim} \pi_{M,>\psi}(\psi, \underline{l}, \underline{\eta}) .
$$

where $\pi_{M,>\psi}(\psi, \underline{I}, \underline{\eta})$ is irreducible.

- $(\underline{I}, \underline{\eta})$ are integral valued functions over $\operatorname{Jord}(\psi)$, such that

$$
\underline{I}(\rho, A, B, \zeta) \in[0,[(A-B+1) / 2]] \text { and } \underline{\eta}(\rho, A, B, \zeta) \in\{ \pm 1\},
$$

- $\varepsilon_{\underline{l}, \underline{\eta}}(\rho, A, B, \zeta):=\underline{\eta}(\rho, A, B, \zeta)^{A-B+1}(-1)^{[(A-B+1) / 2]+\underline{I}(\rho, A, B, \zeta)}$
- $(\underline{I}, \underline{\eta}) \sim\left(\underline{I}^{\prime}, \underline{\eta}^{\prime}\right)$ if and only if $\underline{I}=\underline{I}^{\prime}$, and

$$
\left(\underline{\eta} / \underline{\eta}^{\prime}\right)(\rho, A, B, \zeta)=1
$$

unless $!(\rho, A, B, \zeta)=(A-B+1) / 2$.

Dominating parameter

For ψ and admissible $>_{\psi}$, we can index $\operatorname{Jord}_{\rho}(\psi)$ such that

$$
\left(\rho, A_{i}, B_{i}, \zeta_{i}\right)>_{\psi}\left(\rho, A_{i-1}, B_{i-1}, \zeta_{i-1}\right)
$$

We say ψ_{\gg} dominates ψ with respect to $>_{\psi}$ if $\operatorname{Jord}_{\rho}\left(\psi_{\gg}\right)$ consists of

$$
\left(\rho, A_{i}+T_{i}, B_{i}+T_{i}, \zeta_{i}\right) \text { for } T_{i} \geqslant 0
$$

with the same admissible order $>_{\psi}$ under the natural identification.

Mœglin's parametrization II

For ψ and admissible $>_{\psi}$, we choose a dominating parameter ψ_{\gg} with discrete diagonal restriction. Then we define

$$
\pi_{M,>\psi}(\psi, \underline{L}, \underline{\eta}):=0_{\rho ;\left(\rho, A_{i}, B_{i}, \zeta_{i}\right) \in \operatorname{Jord}_{\rho}(\psi)} \operatorname{Jac}_{X_{i}} \pi_{M,>\psi}\left(\psi_{\gg}, \underline{I}, \underline{\eta}\right) .
$$

Mœglin's parametrization II

For ψ and admissible $>_{\psi}$, we choose a dominating parameter ψ_{\gg} with discrete diagonal restriction. Then we define

$$
\pi_{M,>\psi}(\psi, \underline{I}, \underline{\eta}):=0_{\rho ;\left(\rho, A_{i}, B_{i}, \zeta_{i}\right) \in \operatorname{Jord}_{\rho}(\psi)} \operatorname{Jac}_{X_{i}} \pi_{M,>\psi}\left(\psi_{\gg}, \underline{I}, \underline{\eta}\right) .
$$

Proposition (Mœglin)

1. $\pi_{M,>_{\psi}}(\psi, \underline{I}, \underline{\eta})$ is either irreducible or zero.
2. If $\pi_{M,>_{\psi}}(\psi, \underline{I}, \underline{\eta})=\pi_{M,>_{\psi}}\left(\psi, \underline{I}^{\prime}, \underline{\eta}^{\prime}\right) \neq 0$, then $(\underline{I}, \underline{\eta}) \sim\left(\underline{I}^{\prime}, \underline{\eta}^{\prime}\right)$.
3.

$$
\Pi_{\psi}=\bigoplus_{\left\{(\underline{L}, \underline{\eta}): \Pi_{(\rho, a, b) \in \operatorname{Jord}(\psi)} \varepsilon_{\underline{1}, \underline{\eta}}(\rho, a, b)=1\right\} / \sim} \pi_{M,>\psi}(\psi, \underline{I}, \underline{\eta}) .
$$

where $\pi_{M,>\psi}(\psi, \underline{I}, \underline{\eta})$ is irreducible or zero.

Local problem

What are the conditions on $(\underline{I}, \underline{\eta})$ for $\pi_{M,>_{\psi}}(\psi, \underline{I}, \underline{\eta}) \neq 0$?

Example

Pull

1.

Pull

2

3

Expand

Change sign

Example

Let $\psi=\rho \otimes \nu_{51} \otimes \nu_{31} \oplus \rho \otimes \nu_{31} \otimes \nu_{45} \oplus \rho \otimes \nu_{13} \otimes \nu_{5}$. Then
$\left[A_{3}, B_{3}\right]=[40,10] \quad\left[A_{2}, B_{2}\right]=[37,7] \quad\left[A_{1}, B_{1}\right]=[8,4]$

Example

$$
0 \leqslant I_{1} \leqslant 2,0 \leqslant I_{2} \leqslant 15,0 \leqslant I_{3} \leqslant 15, \text { and }(-1)^{l_{1}+l_{2}+l_{3}} \eta_{1} \eta_{2} \eta_{3}=1 .
$$

Example

$$
0 \leqslant I_{1} \leqslant 2,0 \leqslant I_{2} \leqslant 15,0 \leqslant I_{3} \leqslant 15 \text {, and }(-1)^{I_{1}+I_{2}+I_{3}} \eta_{1} \eta_{2} \eta_{3}=1 .
$$

$\eta_{3}=\eta_{1}$ and $\eta_{2}=\eta_{1}$	$-5 \leqslant I_{3}-I_{2}+2 I_{1} \leqslant 15$
$\eta_{3}=\eta_{1}$ and $\eta_{2} \neq \eta_{1}$	$I_{3}+I_{2}+2 I_{1}>25$
$\eta_{3} \neq \eta_{1}$ and $\eta_{2}=\eta_{1}$	$I_{3}-I_{1}<11+I_{1}$ and $I_{3}+I_{2}-2 I_{1}>15$
$\eta_{3} \neq \eta_{1}$ and $\eta_{2}=\eta_{1}$	$I_{3}-I_{1} \geqslant 11+I_{1}$ and $-36 \leqslant-I_{3}-I_{2}+2 I_{1} \leqslant-16$
$\eta_{3} \neq \eta_{1}$ and $\eta_{2} \neq \eta_{1}$	$I_{3}-I_{1}<11+I_{1}$ and $-15 \leqslant I_{3}-I_{2}-2 I_{1} \leqslant 5$
$\eta_{3} \neq \eta_{1}$ and $\eta_{2} \neq \eta_{1}$	$I_{3}-I_{1} \geqslant 11+I_{1}$ and $-I_{3}+I_{2}+2 I_{1}>-6$

Each case gives rise to a polytope, and by counting the integral points in them we get $\left|\Pi_{\psi}\right|=1651$.

