On the combinatorial structure of Arthur packets: p-adic symplectic and orthogonal groups

Bin Xu

University of Calgary

April 16, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Global motivation

- k number field, \mathbb{A} adele ring of k
- Γ_k absolute Galois group, W_k Weil group
- G split symplectic or special odd orthogonal group over k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Global motivation

- k number field, \mathbb{A} adele ring of k
- Γ_k absolute Galois group, W_k Weil group
- ► G split symplectic or special odd orthogonal group over k

Definition

Automorphic representations of $G(\mathbb{A})$ are irreducible constituents of the regular representation on $L^2(G(k) \setminus G(\mathbb{A}))$.

$$L^{2}(G(k)\backslash G(\mathbb{A})) = L^{2}_{disc}(G) \oplus L^{2}_{cont}(G)$$

$$L^2_{disc}(G) = L^2_{cusp}(G) \oplus L^2_{res}(G)$$

Global Langlands Correspondence

$$\begin{cases} \text{discrete automorphic} \\ \text{representations of } G(\mathbb{A}) \end{cases}_{/\sim} \longleftrightarrow \begin{cases} \text{discrete Arthur parameters} \\ \psi: L_k \times SL(2, \mathbb{C}) \rightarrow \widehat{G} \end{cases}_{/\widehat{G}-conj}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Global Langlands Correspondence

$$\left\{\begin{array}{c} \text{discrete} \text{ automorphic} \\ \text{representations of } G(\mathbb{A}) \end{array}\right\}_{/\sim} \longleftrightarrow \left\{\begin{array}{c} \text{discrete} \text{ Arthur parameters} \\ \psi: L_k \times SL(2, \mathbb{C}) \to \widehat{G} \end{array}\right\}_{/\widehat{G} - conj}$$

 L_k is the hypothetical global Langlands group satisfying

$$1 \longrightarrow K_k \longrightarrow L_k \longrightarrow W_k \longrightarrow 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where K_k is compact.

• $\mathcal{A}_2(G)$: equivalence classes of discrete automorphic representations.

• $\Psi_2(G)$: equivalence classes of discrete Arthur parameters.

- $\mathcal{A}_2(G)$: equivalence classes of discrete automorphic representations.
- $\Psi_2(G)$: equivalence classes of discrete Arthur parameters.

Theorem (Arthur)

For each $\psi \in \Psi_2(G)$, there exits a "multi-set" Π_{ψ} of equivalence classes of irreducible admissible representations of $G(\mathbb{A})$ such that

1. $\Pi_{\psi} = \bigotimes_{\nu}' \Pi_{\psi_{\nu}}$ 2. $\mathcal{A}_{2}(G) \subseteq \bigsqcup_{\psi \in \Psi_{2}(G)} \Pi_{\psi}$

3. (Endoscopy theory): One can distinguish the automorphic representations in Π_{ψ} .

- Π_{ψ} is called global Arthur packet
- Π_{ψ_ν} is a finite "multi-set" of equivalence classes of irreducible admissible representations of G(k_ν), called local Arthur packet.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Π_{ψ} is called global Arthur packet
- Π_{ψ_ν} is a finite "multi-set" of equivalence classes of irreducible admissible representations of G(k_ν), called local Arthur packet.

Example

1. $G = SO(3) \cong PGL(2)$: Π_{ψ} is a single automorphic representation.

G = Sp(2) ≅ SL(2): Π_ψ is the restriction of an automorphic representation of GL₂(A) to SL₂(A).

Global problem

How to distinguish the residue spectrum in Π_{ψ} ?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

How to distinguish the residue spectrum in Π_{ψ} ?

Mœglin:

• global condition: zeros (poles) of certain L-functions "related" to ψ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ local condition: "fine" parametrization of $\Pi_{\psi_{v}}$.

Arthur parameter

Let F be a p-adic field, $L_F = W_F \times SL(2,\mathbb{C})$

G	Ĝ
<i>Sp</i> (2 <i>n</i>)	$SO(2n+1,\mathbb{C})$
SO(2n+1)	$Sp(2n,\mathbb{C})$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Arthur parameter

Let F be a p-adic field, $L_F = W_F \times SL(2, \mathbb{C})$

[G	Ĝ
	Sp(2n)	$SO(2n+1,\mathbb{C})$
	SO(2n+1)	$Sp(2n,\mathbb{C})$

Let $\widehat{G} \xrightarrow{std.} GL_N(\mathbb{C})$ (N = 2n or 2n+1) be the standard representation.

 $\psi: W_{F} \times SL(2,\mathbb{C}) \times SL(2,\mathbb{C}) \rightarrow \widehat{G} \xrightarrow{std.} GL(N,\mathbb{C})$

with bounded image on $\psi|_{W_F}$.

Jordan blocks

$$\psi = \oplus_i (\rho_i \otimes \nu_{\mathbf{a}_i} \otimes \nu_{\mathbf{b}_i})$$

- ρ_i equivalence class of unitary irreducible representation of W_F
- ▶ $a_i, b_i \in \mathbb{N}$
- ν_m is Sym^{m-1} -representation of $SL(2,\mathbb{C})$

Jordan blocks

$$\psi = \oplus_i (\rho_i \otimes \nu_{\mathbf{a}_i} \otimes \nu_{\mathbf{b}_i})$$

- \triangleright ρ_i equivalence class of unitary irreducible representation of W_F
- ▶ $a_i, b_i \in \mathbb{N}$
- ν_m is Sym^{m-1} -representation of $SL(2,\mathbb{C})$

Define

$$\mathsf{Jord}(\psi) = \{(
ho_i, \mathsf{a}_i, \mathsf{b}_i)\}$$

and

$$\mathsf{Jord}_{\rho}(\psi) := \{(\rho', \mathsf{a}', \mathsf{b}') \in \mathsf{Jord}(\psi) : \rho' = \rho\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Parity

For self-dual ρ : orthogonal type or symplectic type

$$(\rho, a, b) \text{ is orthogonal } \Leftrightarrow \begin{cases} a+b \text{ is even, if } \rho \text{ is orthogonal} \\ a+b \text{ is odd, if } \rho \text{ is symplectic} \end{cases}$$
$$(\rho, a, b) \text{ is symplectic } \Leftrightarrow \begin{cases} a+b \text{ is odd, if } \rho \text{ is orthogonal} \\ a+b \text{ is even, if } \rho \text{ is symplectic} \end{cases}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Parity

For self-dual ρ : orthogonal type or symplectic type

$$(\rho, a, b) \text{ is orthogonal } \Leftrightarrow \begin{cases} a+b \text{ is even, if } \rho \text{ is orthogonal} \\ a+b \text{ is odd, if } \rho \text{ is symplectic} \end{cases}$$
$$(\rho, a, b) \text{ is symplectic } \Leftrightarrow \begin{cases} a+b \text{ is odd, if } \rho \text{ is orthogonal} \\ a+b \text{ is even, if } \rho \text{ is symplectic} \end{cases}$$

$$\psi_{p} = \bigoplus_{\substack{(\rho, a, b) \in Jord(\psi)\\ \text{same parity as } \widehat{G}}} \rho \otimes \nu_{a} \otimes \nu_{b}$$

From now on, we will assume $\psi = \psi_p$.

Visualize Jordan blocks

For
$$(
ho, a, b) \in Jord(\psi)$$
, $A = (a+b)/2 - 1$ $B = |a-b|/2$ and

$$\zeta = \begin{cases} \mathsf{Sign}(a-b), & \text{if } a \neq b \\ \text{arbitrary, otherwise.} \end{cases}$$

So we can also denote (ρ, a, b) by (ρ, A, B, ζ) .

Figure: ρ

Admissible order

A total order $>_{\psi}$ on $\mathit{Jord}_{\rho}(\psi)$ is called admissible if

$$\begin{split} \forall (\rho, A, B, \zeta), (\rho, A', B', \zeta') \in Jord_{\rho}(\psi) \text{ satisfying} \\ A > A', B > B' \text{ and } \zeta = \zeta' \\ \text{we have } (\rho, A, B, \zeta) >_{\psi} (\rho, A', B', \zeta'). \\ \text{Example} \end{split}$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

Discrete diagonal restriction

Definition

We say ψ has discrete diagonal restriction if for each ρ the Jordan blocks in $Jord_{\rho}(\psi)$ are "disjoint".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Discrete diagonal restriction

Definition

We say ψ has discrete diagonal restriction if for each ρ the Jordan blocks in $Jord_{\rho}(\psi)$ are "disjoint".

In this case, $Jord_{\rho}(\psi)$ has a natural order $>_{\psi}$, namely

 $(\rho, A, B, \zeta) >_{\psi} (\rho, A', B', \zeta')$ if and only if A > A'.

Mœglin's parametrization I

Theorem (Mœglin)

Suppose ψ has discrete diagonal restriction, $>_{\psi}$ is the natural order,

$$\Pi_{\psi} = \bigoplus_{\{(\underline{l},\underline{\eta}): \prod_{(\rho,\mathsf{a},b) \in Jord(\psi)} \varepsilon_{\underline{l},\underline{\eta}}(\rho,\mathsf{a},b) = 1\}/\sim} \pi_{M,>_{\psi}}(\psi,\underline{l},\underline{\eta})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\pi_{M,>_{\psi}}(\psi,\underline{l},\underline{\eta})$ is irreducible.

Mœglin's parametrization I

Theorem (Mœglin)

Suppose ψ has discrete diagonal restriction, $>_{\psi}$ is the natural order,

$$\Pi_{\psi} = \bigoplus_{\{(\underline{l},\underline{\eta}): \prod_{(\rho,a,b) \in Jord(\psi)} \varepsilon_{\underline{l},\underline{\eta}}(\rho,a,b) = 1\}/\sim} \pi_{M,>_{\psi}}(\psi,\underline{l},\underline{\eta}).$$

where $\pi_{M,>_{\psi}}(\psi,\underline{l},\underline{\eta})$ is irreducible.

• (\underline{I}, η) are integral valued functions over $Jord(\psi)$, such that

 $\underline{l}(\rho,A,B,\zeta)\in [0,[(A-B+1)/2]] \text{ and } \underline{\eta}(\rho,A,B,\zeta)\in\{\pm1\},$

- $\succ \ \varepsilon_{\underline{l},\underline{\eta}}(\rho,A,B,\zeta) := \underline{\eta}(\rho,A,B,\zeta)^{A-B+1}(-1)^{[(A-B+1)/2]+\underline{l}(\rho,A,B,\zeta)}$
- $(\underline{l}, \underline{\eta}) \sim (\underline{l}', \underline{\eta}')$ if and only if $\underline{l} = \underline{l}'$, and

$$(\underline{\eta}/\underline{\eta}')(\rho, A, B, \zeta) = 1$$

unless $\underline{l}(\rho, A, B, \zeta) = (A - B + 1)/2$.

Dominating parameter

For ψ and admissible $>_{\psi}$, we can index $Jord_{\rho}(\psi)$ such that

$$(\rho, A_i, B_i, \zeta_i) >_{\psi} (\rho, A_{i-1}, B_{i-1}, \zeta_{i-1}).$$

We say ψ_{\gg} dominates ψ with respect to $>_{\psi}$ if $Jord_{\rho}(\psi_{\gg})$ consists of

$$(\rho, A_i + T_i, B_i + T_i, \zeta_i)$$
 for $T_i \ge 0$,

with the same admissible order $>_{\psi}$ under the natural identification.

Mœglin's parametrization II

For ψ and admissible $>_{\psi}$, we choose a dominating parameter ψ_\gg with discrete diagonal restriction. Then we define

$$\pi_{\mathsf{M},>_{\psi}}(\psi,\underline{l},\underline{\eta}) := \circ_{\rho;(\rho,\mathsf{A}_{i},\mathsf{B}_{i},\zeta_{i})\in \mathit{Jord}_{\rho}(\psi)}\mathsf{Jac}_{X_{i}}\pi_{\mathsf{M},>_{\psi}}(\psi_{\gg},\underline{l},\underline{\eta}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Mœglin's parametrization II

For ψ and admissible $>_{\psi}$, we choose a dominating parameter ψ_\gg with discrete diagonal restriction. Then we define

$$\pi_{M,>_{\psi}}(\psi,\underline{l},\underline{\eta}) := \circ_{\rho;(\rho,A_{i},B_{i},\zeta_{i})\in Jord_{\rho}(\psi)} Jac_{X_{i}}\pi_{M,>_{\psi}}(\psi_{\gg},\underline{l},\underline{\eta})$$

Proposition (Mœglin)

1.
$$\pi_{M,>_{\psi}}(\psi, \underline{l}, \underline{\eta})$$
 is either irreducible or zero.
2. If $\pi_{M,>_{\psi}}(\psi, \underline{l}, \underline{\eta}) = \pi_{M,>_{\psi}}(\psi, \underline{l}', \underline{\eta}') \neq 0$, then $(\underline{l}, \underline{\eta}) \sim (\underline{l}', \underline{\eta}')$.
3.

$$\Pi_{\psi} = \bigoplus_{\{(\underline{l},\underline{\eta}): \prod_{(\rho,a,b) \in Jord(\psi)} \varepsilon_{\underline{l},\underline{\eta}}(\rho,a,b) = 1\}/\sim} \pi_{M,>_{\psi}}(\psi,\underline{l},\underline{\eta}).$$

where $\pi_{M,>\psi}(\psi,\underline{l},\underline{\eta})$ is irreducible or zero.

Local problem

What are the conditions on $(\underline{l}, \underline{\eta})$ for $\pi_{M, >_{\psi}}(\psi, \underline{l}, \underline{\eta}) \neq 0$?

Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pull

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pull

2 ++Bn A_{n-1} B_{n-1} A_n 3 +_ + A_{n-1} Bn B_{n-1} An

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Expand

くしゃ (中)・(中)・(中)・(日)

Change sign

Example

Let $\psi = \rho \otimes \nu_{51} \otimes \nu_{31} \oplus \rho \otimes \nu_{31} \otimes \nu_{45} \oplus \rho \otimes \nu_{13} \otimes \nu_{5}$. Then $[A_3, B_3] = [40, 10] \quad [A_2, B_2] = [37, 7] \quad [A_1, B_1] = [8, 4]$ ++ A_3 A_2 $B_3 A_1 B_2$ $B_1 \quad \tilde{0}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Example

$0\leqslant \mathit{l}_1\leqslant 2, 0\leqslant \mathit{l}_2\leqslant 15, 0\leqslant \mathit{l}_3\leqslant 15, \text{ and } (-1)^{\mathit{l}_1+\mathit{l}_2+\mathit{l}_3}\eta_1\eta_2\eta_3=1.$

Example

 $0\leqslant \mathit{l}_1\leqslant 2, 0\leqslant \mathit{l}_2\leqslant 15, 0\leqslant \mathit{l}_3\leqslant 15, \text{ and } (-1)^{\mathit{l}_1+\mathit{l}_2+\mathit{l}_3}\eta_1\eta_2\eta_3=1.$

$\eta_3 = \eta_1$ and $\eta_2 = \eta_1$	$-5 \leqslant \mathit{l}_3 - \mathit{l}_2 + 2\mathit{l}_1 \leqslant 15$
$\eta_3 = \eta_1 \text{ and } \eta_2 \neq \eta_1$	$l_3 + l_2 + 2l_1 > 25$
$\eta_3 \neq \eta_1$ and $\eta_2 = \eta_1$	$l_3 - l_1 < 11 + l_1$ and $l_3 + l_2 - 2l_1 > 15$
$\eta_3 \neq \eta_1$ and $\eta_2 = \eta_1$	$l_3 - l_1 \ge 11 + l_1$ and $-36 \leqslant -l_3 - l_2 + 2l_1 \leqslant -16$
$\eta_3 \neq \eta_1$ and $\eta_2 \neq \eta_1$	$l_3 - l_1 < 11 + l_1$ and $-15 \leqslant l_3 - l_2 - 2l_1 \leqslant 5$
$\eta_3 \neq \eta_1$ and $\eta_2 \neq \eta_1$	$l_3 - l_1 \geqslant 11 + l_1$ and $-l_3 + l_2 + 2l_1 > -6$

Each case gives rise to a polytope, and by counting the integral points in them we get $|\Pi_{\psi}| = 1651$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●