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1 Overview of the Field
While Box [1] used the word robust for the first time to mean insensitivity to the violation
of assumptions, Tukey [2] and Huber [3], in the 1960s, made substantial contributions to
establish robustness as a major sub-discipline of statistics. John Tukey at Princeton Univer-
sity invited Peter Bickel, Peter Huber and Frank Hampel in 1970-71 to make cooperative
efforts for the further progression and development of robust statistics. This period was
later called the Princeton robustness year and became known for its extensive Monte Carlo
study of robust location estimates under symmetric long-tailed distributions [4]. The team
focused on the theory of robust estimation based on specified properties and estimators
under certain conditions. Since then, many review articles (e.g., Stigler [5], 2010) and
books (e.g., Rieder [6], 2012) have been published and the definition of robustness largely
refined. One more recent definition of robustness might be the “stability theory of statis-
tical procedures [that] systematically investigates the effects of deviations from modeling
assumptions on known procedures and, if necessary, develops new, better procedures” [7].

2 Recent Developments and Open Problems
Robustness has spread widely to other fields of statistics in the robust design of experi-
ments, correction of misspecified regression functions, violation of error structures, and
furthermore against wild observations or misspecified underlying distributions. Recently,
robustness has expanded even further to the robust design of experiments for quantile re-
gression and machine learning for robust active learning [8].
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3 Presentation Highlights and Scientific Progress
The first speaker, Xiaojian Xu, presented on the historical development of robust statistics
as a sub-discipline of statistics. Some landmark articles and studies for such developments
were emphasized. In particular, the advances of robustification at the stage of experimental
design were discussed and categorized. Xu also summarized Wiens’ contributions to ro-
bust statistics, distribution theory and robustness, robust optimal designs [9], [10], robust
sampling designs [11], [12], and robust active learning [8].

Xu’s talk was followed by Julie Zhou, who discussed mimimax regression designs and
challenges. Considered was a true regression model,

yi = g(xi; θ) + f(xi) + εi, i = 1, · · · , n,

where f ∈ F is the unknown disturbance function (a neighbourhood of functions),E(εi) =
0, and Cov((ε1, · · · , εn)>) = Σ. Let MSE(ξ, f,Σ) be the mean squared matrix of an estima-
tor θ̂ of θ and φ(ξ, f,Σ) a scalar function of MSE(ξ, f,Σ), where ξ is the design distribution
of x1, · · · ,xn. Zhou formulated three minimax design problems,

min
ξ

max
f∈F

φ(ξ, f, σ2I),

min
ξ

max
Σ∈DΣ

φ(ξ, 0,Σ),

min
ξ

max
f∈F

max
Σ∈DΣ

φ(ξ, f,Σ),

where DΣ is a neighbourhood of covariance matrices. The challenges presented by these
problems lie in the fact that their objective functions may not be convex nor smooth and it
is thus difficult to construct minimax designs.

Rui Hu, the “youngest” of Wiens’ PhD students, presented her research on “maxmin”
designs (which are unlike the traditional minimix designs). She considered discriminating
two rival models, f0 and f1, in hypothesis testing, namely,

H0 : f0(y|x, µ0) versus H1 : f1(y|x, µ1),

where y is the response variable and x is the covariate vector. Hunter and Reiner [13],
in 1965, constructed optimal designs when both f0 and f1 are fixed normal densities, and
many researchers have since extended these classical optimal designs. In particular, López-
Fidalgo et al [14], 2007, proposed a classical optimal design when the two rival models are
non-normal. All of these models, however, assume that one of f0 and f1 is the true model.
Hu and Wiens [15], in 2016, proposed a robust optimal design by assuming that the correct
model lies within only an approximately known class (Hellinger neighborhood) of f0 ∈ F0

or f1 ∈ F1. Robust design is to find an optimal design measure ξ that maximizes the mini-
mum power of the test over F1. Hu presented an analytical solution and the maximization
portion was solved by proposing a sequential design. She also showed that this sequential
design is indeed optimal. Hu and Wiens [15] further considered constructing a robust opti-
mal design for discriminating between two models. A current open problem is an extension
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of their work to more than two rival models.

Zhou’s student, Lucy Gao, proposed an extension of the distributionally robust logis-
tic regression [16] to multinomial logistic regression [17]. Gao defined a distributionally
robust optimization problem as minimizing a convex loss function over logistic regression
coefficients on a family of probability measures within the Wasserstein metric ε. She also
highlighted a method of estimating the misclassification rate of robust multinomial logistic
regression by solving a tractable convex optimization problem and considering the best and
worst risk scenarios.

Xiaojian Xu wrote in her abstract that “since statistics is the science of a process of
data collecting, data analyzing, drawing conclusions, and (re)evaluating the process, the
consideration of robustification can encompass any stage of a statistical process.” Indeed,
Matthew Pietrosanu, an undergraduate student of Heo, alluded to the effectiveness of ro-
bustness in estimating high dimensional surfaces from noisy point cloud data.

4 Outcome of the Meeting
Four academic generations participated the workshop, namely, John Collins (Wiens’ PhD
supervisor), Doug Wiens, Wiens’ students, and their students. This fourth generation is not
only continuing to solve fundamental research problems in robustness but is also branching
its applications to shape analysis and statistical machine learning. Zhichun Zhai and Doug
Wiens plan to lay groundwork in the applications of robust theory in machine learning.
During the workshop, Xiaojian Xu, Linglong Kong, and Doug Wiens also discussed some
new research problems on the robust designs of experiment for composite quantile regres-
sion.

In many statistical problems including robustness theory, it is common to fix certain
parameter(s) before solving a given optimization problem. In recent years, it is becoming
more popular to study the trend of solutions as the parameter(s) vary. In robustness theory,
these problems are often formulated in a neighborhood of certain functions and/or spaces
of probability measures. The size of the neighborhood ε must be set before solving a given
loss function. However, the size ε can be built into the optimization problem itself. Rather
than treating ε as fixed, one can view the pattern of optimization solutions as ε varies.
During the workshop, a number of the researchers have observed this phenomenon. Julie
Zhou and Giseon Heo plan to meet in February 2017 to discuss novel ways to view robust
regression problems.
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