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Let X be a symmetric real matrix, with eigenvalues λ1 ≤ · · · ≤ λN .

The empirical spectral distribution (ESD) of XN is the discrete

probability measure

µ =
1

N

N∑

j=1

δλj
.

(Note: if X is a random matrix, then µ is a random measure.)
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Let X be a symmetric real matrix, with eigenvalues λ1 ≤ · · · ≤ λN .

The empirical spectral distribution (ESD) of XN is the discrete

probability measure

µ =
1

N

N∑

j=1

δλj
.

(Note: if X is a random matrix, then µ is a random measure.)

The typical quantities of interest are the linear statistics of the

matrix: ∫
f dµ =

1

N

N∑

j=1

f(λj) =
1

N
Tr(f(XN)).

A sequence of random measures µN converges to a deterministic

measure σ weakly in expectation if

E

(∫
f dµN

)
→
∫

f dσ ∀f ∈ Cc(R)
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The empirical spectral distribution (ESD) of XN is the discrete

probability measure

µ =
1

N

N∑

j=1

δλj
.

(Note: if X is a random matrix, then µ is a random measure.)

The typical quantities of interest are the linear statistics of the

matrix: ∫
f dµ =

1

N

N∑

j=1

f(λj) =
1

N
Tr(f(XN)).

A sequence of random measures µN converges to a deterministic

measure σ weakly in probability if

P

(∣∣∣∣
∫

f dµN −
∫

f dσ

∣∣∣∣ > ǫ

)
→ 0 ∀f ∈ Cc(R), ǫ > 0.
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Let X be a symmetric real matrix, with eigenvalues λ1 ≤ · · · ≤ λN .

The empirical spectral distribution (ESD) of XN is the discrete

probability measure

µ =
1

N

N∑

j=1

δλj
.

(Note: if X is a random matrix, then µ is a random measure.)

The typical quantities of interest are the linear statistics of the

matrix: ∫
f dµ =

1

N

N∑

j=1

f(λj) =
1

N
Tr(f(XN)).

A sequence of random measures µN converges to a deterministic

measure σ weakly almost surely if

P

(
lim

N→∞

∫
f dµN =

∫
f dσ

)
= 1 ∀f ∈ Cc(R).



Wigner’s Semicircle Law

• ESD

• Wigner’s Law

• Combinatorial

• Band Matrices

• Block Matrices I

• Block Matrices II

• Main Theorem

• Regularization

• LSI

• LSI in RMT

• Mollified LSI

• Proofs

• Models

• Next Steps

3 / 15

Theorem. Let XN be a symmetric matrix whose upper-triangular

entries are i.i.d., centered with variance 1
N

. Then the ESD of XN

converges weakly almost surely to the semicircle law

σ(dx) =
1

2π

√
(4− x2)+ dx.
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• Originally proved by Wigner in 1955, for standard normal entries

(GOEN ), and with convergence in expectation only.
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2π

√
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• Originally proved by Wigner in 1955, for standard normal entries

(GOEN ), and with convergence in expectation only.

• Upgraded to a.s. converge in the 1960s — really to convergence

in probability, with an explicit estimate on the rate of convergence

that is summable (O(1/N2)), thus yielding a.s. convergence by

the Borel–Cantelli Lemma.
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Theorem. Let XN be a symmetric matrix whose upper-triangular

entries are i.i.d., centered with variance 1
N

. Then the ESD of XN

converges weakly almost surely to the semicircle law

σ(dx) =
1

2π

√
(4− x2)+ dx.

• Originally proved by Wigner in 1955, for standard normal entries

(GOEN ), and with convergence in expectation only.

• Upgraded to a.s. converge in the 1960s — really to convergence

in probability, with an explicit estimate on the rate of convergence

that is summable (O(1/N2)), thus yielding a.s. convergence by

the Borel–Cantelli Lemma.

• Generalized to entries with any distribution having at least 2 finite

moments, using similar combinatorial techniques (the method of

moments).
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Prove it for polynomial test functions f . For f(x) = xk

ETr[(XN)k] =
∑

i1,...,ik

E([XN ]i1i2 [XN ]i2i3 · · · [XN ]iki1).

Use independence and identical distribution to collect terms; each

one is associated to a walk on a graph.
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one is associated to a walk on a graph.

Using variance = 1
N

, find that the terms that contribute in the limit

are rooted trees traversed in the unique path hitting every edge

twice. Count these up, get Catalan number = the moments of the

semicircle law.
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Prove it for polynomial test functions f . For f(x) = xk

ETr[(XN)k] =
∑

i1,...,ik

E([XN ]i1i2 [XN ]i2i3 · · · [XN ]iki1).

Use independence and identical distribution to collect terms; each

one is associated to a walk on a graph.

Using variance = 1
N

, find that the terms that contribute in the limit

are rooted trees traversed in the unique path hitting every edge

twice. Count these up, get Catalan number = the moments of the

semicircle law.

For a.s. convergence: follow the same method to expand

Var
(∫

xkµN (dx)
)
; find that it is a sum of terms in correspondence

with pairs of walks on graphs with certain constraints. Count these,

find overall O(1/N2) contribution.



Band Matrices: i. but not i.d. Entries

• ESD

• Wigner’s Law

• Combinatorial

• Band Matrices

• Block Matrices I

• Block Matrices II

• Main Theorem

• Regularization

• LSI

• LSI in RMT

• Mollified LSI

• Proofs

• Models

• Next Steps

5 / 15

If we relax the condition that the upper-triangular entries are i.i.d.,

these methods do not work.



Band Matrices: i. but not i.d. Entries

• ESD

• Wigner’s Law

• Combinatorial

• Band Matrices

• Block Matrices I

• Block Matrices II

• Main Theorem

• Regularization

• LSI

• LSI in RMT

• Mollified LSI

• Proofs

• Models

• Next Steps

5 / 15

If we relax the condition that the upper-triangular entries are i.i.d.,

these methods do not work. But with some uniformity assumptions,

the same result holds. For example, Anderson–Zeitouni showed that

if the entries are still independent, and have the form

√
N [XN ]ij = g(i/N, j/N)ξij

where ξij are i.i.d. and “nice”, and
∫
[0,1]2 g(x, y) dxdy = 1, then

the ESD of XN converges weakly a.s. to the semicircle law.
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If we abandon independence, however, the semicircle law is lost: it

is the fixed point in the universality class of Wigner ensembles (with

independent entries) only.
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If we relax the condition that the upper-triangular entries are i.i.d.,

these methods do not work. But with some uniformity assumptions,

the same result holds. For example, Anderson–Zeitouni showed that

if the entries are still independent, and have the form

√
N [XN ]ij = g(i/N, j/N)ξij

where ξij are i.i.d. and “nice”, and
∫
[0,1]2 g(x, y) dxdy = 1, then

the ESD of XN converges weakly a.s. to the semicircle law.

If we abandon independence, however, the semicircle law is lost: it

is the fixed point in the universality class of Wigner ensembles (with

independent entries) only.

The combinatorial methods of free probability can still be used to

understand the limiting ESD of some matrices with correlated

entries, however. . .
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Consider a random matrix of a form like this:

[
XN YN

YN ZN

]

where XN , YN , ZN are GOEN matrices, but are not independent

from each other; instead we specify the correlations between their

entires. For simplicity we assume that the correlations between

entries of XN and YN are the same for each pair of entries [XN ]ab
and [YN ]cd, etc.
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Consider a random matrix of a form like this:

[
XN YN

YN ZN

]

where XN , YN , ZN are GOEN matrices, but are not independent

from each other; instead we specify the correlations between their

entires. For simplicity we assume that the correlations between

entries of XN and YN are the same for each pair of entries [XN ]ab
and [YN ]cd, etc.

In 1996, Shlyakhtenko showed that this ensemble converges in

∗-distribution to an operator-valued semicircular operator:

[
x y
y z

]

where the {x, y, z} is a semicircular family with correlations

matching the ones above.
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Say your matrix XN is mN ×mN , with GOEN blocks in an

m×m array with specified covariances. By encoding the

covariances between the blocks as a certain mapping

η : Mm → Mm, Speicher showed one can construct the usual

non-crossing cumulant formalism for such block matrices to

efficiently compute moments of their limit ESDs.
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a.s. convergence in such models.
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Say your matrix XN is mN ×mN , with GOEN blocks in an

m×m array with specified covariances. By encoding the

covariances between the blocks as a certain mapping

η : Mm → Mm, Speicher showed one can construct the usual

non-crossing cumulant formalism for such block matrices to

efficiently compute moments of their limit ESDs. Also Bryc, Oraby,

Rashidi Far and Speicher used Cauchy transform methods to prove

a.s. convergence in such models.

All of this analysis requires m to be fixed. It would be good (but

challenging) to extend the analysis to allow m to grow with N . A

starting point is the following “genus expansion” in the Gaussian

case:

1

mN
ETr[(XN)2k] =

∑

π∈P2(2k)

απ(N)

Nk+1

1

mk+1

m∑

i1,...,i2k=1

∏

(α,β)∈π
Coviα,iα+1,iβ ,iβ+1
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A nice change of basis converts these matrices into the dual block

form: an overall N ×N block grid with independent m×m blocks

in each entry. That’s the perspective we take for our main theorem.
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A nice change of basis converts these matrices into the dual block

form: an overall N ×N block grid with independent m×m blocks

in each entry. That’s the perspective we take for our main theorem.

Theorem. [K, Zimmermann late 2016] Let XN be a random

symmetric matrix whose entries are uniformly square integrable. Let

µN denote the ESD of XN .

For each N , suppose there is a constant dN = o(logN), and a

partition of {(i, j) : 1 ≤ i ≤ j ≤ N} with blocks of size ≤ dN ,

such that entries of XN in different blocks are independent.
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A nice change of basis converts these matrices into the dual block

form: an overall N ×N block grid with independent m×m blocks

in each entry. That’s the perspective we take for our main theorem.

Theorem. [K, Zimmermann late 2016] Let XN be a random

symmetric matrix whose entries are uniformly square integrable. Let

µN denote the ESD of XN .

For each N , suppose there is a constant dN = o(logN), and a

partition of {(i, j) : 1 ≤ i ≤ j ≤ N} with blocks of size ≤ dN ,

such that entries of XN in different blocks are independent. Then for

any f ∈ Lip(R),

∫
f dµN − E

(∫
f dµN

)
→P 0.
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A nice change of basis converts these matrices into the dual block

form: an overall N ×N block grid with independent m×m blocks

in each entry. That’s the perspective we take for our main theorem.

Theorem. [K, Zimmermann late 2016] Let XN be a random

symmetric matrix whose entries are uniformly square integrable. Let

µN denote the ESD of XN .

For each N , suppose there is a constant dN = o(logN), and a

partition of {(i, j) : 1 ≤ i ≤ j ≤ N} with blocks of size ≤ dN ,

such that entries of XN in different blocks are independent. Then for

any f ∈ Lip(R),

∫
f dµN − E

(∫
f dµN

)
→P 0.

(In the block matrices studied above, this handles the case

m = o(
√
logN). But it is much more general.)
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The idea of the proof is as follows. First, using the uniform square

integrability, a fairly standard argument shows that XN can be

replaced by a cutoff:

replace [XN ]ij with [X̂N ] := [XN ]ij1√
N |[XN ]ij |≤C

.

Proving the theorem for X̂N then suffices to prove it for XN ; so we

may assume
√
NXN has uniformly bounded entries.
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The idea of the proof is as follows. First, using the uniform square

integrability, a fairly standard argument shows that XN can be

replaced by a cutoff:

replace [XN ]ij with [X̂N ] := [XN ]ij1√
N |[XN ]ij |≤C

.

Proving the theorem for X̂N then suffices to prove it for XN ; so we

may assume
√
NXN has uniformly bounded entries.

Next, add some Gaussian noise:

X̃N = X̂N + tGN

where GN is a GOEN independent from X̂N . The goal is to show

that the theorem holds for X̃N for each t, and that one can let

t = tN → 0 and recover the theorem for X̂N .
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The LSI is a coercive functional inequality. A measure on R
d

satisfies the LSI with constant c if, for f with
∫
f2 dµ = 1,

∫
f2 log f2 dµ = Entµ(f

2) ≤ c

∫
|∇f |2 dµ.
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It was first written down by Stam in 1959 (in a different form) for

Gaussian measures. It was rediscovered and named by L. Gross in

1973. Since then, it has been used in literally thousands of papers,

with applications to quantum field theory, geometric analysis,

stochastic analysis, Markov chains, interacting particle systems,

large deviations, optimal transport, random matrix theory, . . .
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The LSI is a coercive functional inequality. A measure on R
d

satisfies the LSI with constant c if, for f with
∫
f2 dµ = 1,

∫
f2 log f2 dµ = Entµ(f

2) ≤ c

∫
|∇f |2 dµ.

It was first written down by Stam in 1959 (in a different form) for

Gaussian measures. It was rediscovered and named by L. Gross in

1973. Since then, it has been used in literally thousands of papers,

with applications to quantum field theory, geometric analysis,

stochastic analysis, Markov chains, interacting particle systems,

large deviations, optimal transport, random matrix theory, . . .

Herbst concentration argument: for F ∈ Lip(Rd) and X ∼ µ,

P(|F (X)− E(F (X))| ≥ ǫ) ≤ 2 exp

(
− ǫ2

c‖f‖2Lip

)
.
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Proposition G. Let XN be a symmetric random matrix. If the joint

law of entries of
√
NXN satisfies the LSI with constant c, then for

all ǫ > 0 and f ∈ Lip(R),

P

(∣∣∣∣
∫

f dµN − E

(∫
f dµN

)∣∣∣∣ ≥ ǫ

)
≤ 2 exp

(
−N2ǫ2

4c||f ||2Lip

)
.
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Proposition G. Let XN be a symmetric random matrix. If the joint

law of entries of
√
NXN satisfies the LSI with constant c, then for

all ǫ > 0 and f ∈ Lip(R),
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(∫
f dµN

)∣∣∣∣ ≥ ǫ

)
≤ 2 exp

(
−N2ǫ2

4c||f ||2Lip

)
.

This was essentially proved by Guionnet. She deduced the result

under the stronger hypothesis that XN has i.i.d. upper-triangular

entries, each satisfying the LSI with constant c.
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entries, each satisfying the LSI with constant c. This is stronger

because of:

Segal’s Lemma. If µ1 satisfies the LSI with constant c1 and µ2

satisfies the LSI with constant c2, then µ1 ⊗ µ2 satisfies the LSI with

constant max{c1, c2}.

Proposition G is proved noticing that, if f ∈ Lip(R), then

F : X 7→ Tr(f(X)) is Lip(Ms.a.
N ) with ‖F‖Lip ≤ ‖f‖Lip.
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Theorem KZ. Let X be a bounded random vector and let G be a

standard normal random vector on R
d. Then for each t > 0,

LawX+tG satisfies the LSI with constant

c(t) ≤ 289‖|X|‖2∞ exp

(
20d+

5‖|X|‖2∞
t

)
.
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The 289 and the 20d are probably not sharp (probably should be

independent of dimension). But the exp(C/t) behavior is sharp.
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d. Then for each t > 0,

LawX+tG satisfies the LSI with constant

c(t) ≤ 289‖|X|‖2∞ exp

(
20d+

5‖|X|‖2∞
t

)
.

The 289 and the 20d are probably not sharp (probably should be

independent of dimension). But the exp(C/t) behavior is sharp.

To apply this to X̃N = X̂N + tGN , break up into random vectors

corresponding to the entries of the blocks of the partition. Each has

dimension ≤ dN . Apply the above theorem with

tN =
CdN

logN − 21dN
; ∴ c(tN) = O(N).

By Segal’s lemma, get Law
X̃N

satisfies LSI with constant c(tN ).
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Getting from X̃N to X̂N :

Compare
∫
f dµ̂N −E

(∫
f dµ̂N

)
to
∫
f dµ̃N −E

(∫
f dµ̃N

)
with

a standard ǫ/3 argument.
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using the Hoffman–Wielandt lemma) to give a term proportional to

tN , which tends to 0.
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Proving Theorem KZ:

We use the “Lyapunov” approach, carefully tracking the dependence

of the LSI constant on the Lyapunov exponents.
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Proving Theorem KZ:

We use the “Lyapunov” approach, carefully tracking the dependence

of the LSI constant on the Lyapunov exponents. There is also an

“elementary” proof (giving a worse constant) that goes like this:

If µ satisfies LSI with constant c, and F ∈ Lip(Rd), then F∗µ
satisfies LSI with constant c‖F‖2Lip.
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tN , which tends to 0. (Note: even if c(t) were independent of

dimension, we still need dN = O(logN) to make tN → 0.)

Proving Theorem KZ:

We use the “Lyapunov” approach, carefully tracking the dependence

of the LSI constant on the Lyapunov exponents. There is also an

“elementary” proof (giving a worse constant) that goes like this:

If µ satisfies LSI with constant c, and F ∈ Lip(Rd), then F∗µ
satisfies LSI with constant c‖F‖2Lip. It turns out that LawX+tG is

the push-forward of LawG under some Lipschitz map Ft.
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Our theorem gives a framework for upgrading convergence in

expectation to convergence in probability for a wide class of matrix

models. Now we need to find matrix models that converge in

expectation!
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Our theorem gives a framework for upgrading convergence in

expectation to convergence in probability for a wide class of matrix

models. Now we need to find matrix models that converge in

expectation!

E.g. Let XN be a block matrix with m×m independent blocks

(where m may grow with N ) of the following form: given ℓ

independent GOEm matrices G
(k)
m ,

ℓ∑

k=1

(
A(k)

m G(k)
m B(k)

m +B(k)∗
m G(k)

m A(k)∗
m

)

where {A(k)
m , B

(k)
m }ℓk=1 has a limit ∗-distribution as m → ∞. Can

check using standard free probability techniques that you get a limit

∗-distribution if ℓ is fixed.
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2
(AmGm +GmAm), where Am is a

deterministic sequence converging in ∗-distribution to the

semicircular distribution. ESD → Tetilla Law:
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Our theorem gives a framework for upgrading convergence in

expectation to convergence in probability for a wide class of matrix

models. Now we need to find matrix models that converge in

expectation!

E.g. Let XN be a block matrix with m×m independent blocks

(where m may grow with N ) of the following form: given ℓ

independent GOEm matrices G
(k)
m ,

ℓ∑

k=1

(
A(k)

m G(k)
m B(k)

m +B(k)∗
m G(k)

m A(k)∗
m

)

where {A(k)
m , B

(k)
m }ℓk=1 has a limit ∗-distribution. Can check using

standard free probability techniques that you get a limit ∗-distribution

if ℓ is fixed. Can you let ℓ grow with m?
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• Improve to a.s. convergence. Does not follow from these

estimates in general (and probably not at all with wild enough

distributions). But there should be conditions on the entries. In

Guionnet’s approach (with independent entries), suffices to

assume the laws of the entries satisfy LSIs. How about in these

correlated matrices?
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distributions). But there should be conditions on the entries. In

Guionnet’s approach (with independent entries), suffices to

assume the laws of the entries satisfy LSIs. How about in these

correlated matrices?

• Increase the allowed size of the partition blocks (if possible).

Requires a totally different approach: the sharpest theoretical

estimates for our mollified LSIs will require dN = O(logN).
Combinatorial approach?
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• Increase the allowed size of the partition blocks (if possible).

Requires a totally different approach: the sharpest theoretical

estimates for our mollified LSIs will require dN = O(logN).
Combinatorial approach?

• Alternative framework: use LSI to show convergence in

probability even if all entries are correlated, but correlation

strength decays quickly with distance between entries. (Work in

progress.)
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