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iBANG

Integrative Analysis of NeuroImaging and Genetics

Integrative Bayesian Analysis of Neuroimaging-Genetic Data 
 Shabnam Azadeh, Brian P.  Hobbs, Frederick G.  Moeller, David Nielsen , Veerabhadran Baladandayuthapani. 

 Significance: Explore underlying neurobiological information of white matter integrity of the brain.  

Statistical goals: Develop a novel integrated framework to combine imaging and genetic data in cocaine dependence. 

Data:  Genetic: 21 candidate genetic variants in 17 genes, clinical and demographic (sex, age, group). 
           Imaging: Diffusion Tensor Imaging (DTI) of entire Brain (more than 7 millions voxels). 

iBANG method: iBANG method: 

Significate  Regions Magnitude and Direction of  FA Changes in Corpus Callosum 
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Cancer Imaging Overview cancer detection using dynamic CT

Sparse Functional Modeling of “Washout” for Detection of Adrenal Cancer

Non-contrast Portal Venous Delay

Distributions of HU density over three successive scans within two ROIs: one containing

a malignant (top) the other a benign (bottom) adrenal lesion. In contrast to the benign

lesion, the malignant tissues exhibit relatively high HU density in the noncontrast scan

as well as the relative absence of “washout” between portal venous and delay scans.
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Cancer Imaging Overview Biomarkers/Dosimetries of normal tissue injury

Identify RT Dosimetries associated with ORN
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Cancer Imaging Overview Biomarkers/Dosimetries of normal tissue injury

DCE-MRI Mandible Vascularity During External Beam RT

Sandulache VC, Hobbs BP, et al. Dynamic contrast enhanced magnetic resonance

imaging (DCE-MRI) detects acute radiotherapy-induced alterations in mandibular bone

microvasculature, Nature Scientific Reports
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Cancer Imaging Overview Biomarkers/Dosimetries of normal tissue injury

Pulmonary Radiation Response on FDG PET/CT
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Cancer Imaging Overview “Radiomics”

High-throughput extraction of quantitative image features

Aerts et al., Nature Communications, 2014; Parmar et al. PLOS ONE, 2014
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Cancer Imaging Overview “Radiomics”

Immune Pathology Markers
254 patients with no neoadjuvant chemotherapy and known immune pathology features 
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Cancer Imaging Overview “Radiomics”

Radiomics Clustering Pathology Clustering 

Predominately  
Path Type III 

Predominately 
 Path Type IV 
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Cancer Imaging Overview “Radiomics”

Predominately 
Path Type III 

Predominately 
 Path Type IV 

Training Dataset Validation Dataset 

Predominately 
 Path Type IV 

Predominately 
Path Type III 
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Liver Perfusion Imaging

Outline: Liver Perfusion Imaging

1. Acquisition of perfusion characteristics in liver using CT

2. Classification of spatially correlated targets (identification metastatic sites)
a. ROI level inference
b. Voxel-wise Posterior Probability Maps

3. Functional Spatiotemporal modeling to integrate multiple scans

  Yuan Wang, PhD           Chaan Ng, MD 

Payel Ghosh for imaging pre-processing
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Motivation
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Motivation
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perfusion CT acquisition

CT perfusion acquisition

CTp image Time-attenuation curves
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perfusion CT acquisition

Hepatic perfusion characteristics

Physiological modeling with contrast agent as physiological indicator:

blood flow (BF) rate in mL/min per 100g microcirculation

blood volume (BV) in mL/100g concentration

mean transit time (MTT) duration in seconds

permeability (PS) mL/min per 100 g capillary permeability and leakage
(extracellular) space

hepatic arterial fraction (HAF) extent of blood supply from aorta

Miles, KA et al. (2000). Application of CT in the investigation of angiogenesis

Miles, KA (2002). Functional CT in oncology.
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perfusion CT acquisition

Perfusion Imaging

Tissue perfusion plays a critical role in oncology

Cancerous cell growth and migration requires the proliferation of networks of new
blood vessels through the process of angiogenesis

triggers modifications to the vasculature of surrounding host tissue

Hepatic perfusion characteristics

provide physiological correlates for neovascularization induced by tumor
angiogenesis

quantitative basis for characterizing vasculature changes in the tumor
microenvironment

implications for cancer diagnosis, treatment monitoring, and disease
prognostication and pathophysiological understanding
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perfusion CT acquisition
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perfusion CT acquisition

Hepatic perfusion characteristics

increase / decrease with angiogenesis

blood flow (BF) microcirculation

blood volume (BV) concentration

mean transit time (MTT)

permeability surface-area product (PS) capillary permeability and leakage
(extracellular) space

hepatic arterial fraction (HAF) extent of blood supply from aorta
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perfusion CT acquisition

perfusion CT acquisition protocol

Reference dataset: Phase 1, combined with 8 anatomically registered Phase 2
images.

T1, pre-enhancement setpoint
T2, last first phase setpoint
T3, last second phase (post-enhancement) setpoint
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perfusion CT acquisition

CT perfusion acquisition protocol

Recommendations pertaining to acquisition put forth in radiology
literature used inappropriate statistical approaches!

Goh, V. et al. (2005), J Comput Assist Tomogr

Kambadakone, A. et al. (2011), Eur Radiol

Stable acquisition duration 30-45 secs was “inferred”:

t-tests between CTp values obtained at discrete acquisition durations using a
traditional hypothesis testing framework

stability was concluded in the absence of significant differences for tests between
successive scans

conclusions were also based on measures of linear dependence between pairs of
intra-patient observations at successive scans
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perfusion CT acquisition

CT perfusion acquisition protocol
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perfusion CT acquisition

CT perfusion acquisition duration
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perfusion CT acquisition

CT perfusion acquisition duration (cont)
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perfusion CT acquisition

CT perfusion acquisition protocol

Our recommended protocol for CTp acquisition in liver

Ng C., Hobbs, B., et al. (2013), Metastases to the liver from neuroendocrine
tumors: Effect of duration of scan acquisition on CT perfusion values, Radiology

Ng, C., Hobbs, B., et al. (2014), Effect of sampling frequency on perfusion values
in CT perfusion of liver tumors and normal liver, J Comput Assist Tomogr

Ng, C., Hobbs, B., et al. (2014), Effect of pre-enhancement set-point on CT
perfusion values in normal liver and metastases to the liver from neuroendocrine
tumors, J Comput Assist Tomogr

Hobbs B, and Ng C. (2015). Inferring stable acquisition durations for applications
of perfusion imaging in oncology, Cancer Informatics
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CTp as a diagnostic tool enabling quantitative evaluation

Diagnostic tool enabling quantitative evaluation

Unenhanced axial CT scan ⇒ 5 perfusion characteristics over 4 scans

⇒
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Current practice in diagnostic radiology
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Approaches that leverage between feature dependence
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Inter-Region Correlation

patient 8
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Inter-Region Correlation

patient 8
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Simultaneous Classification for ROI level inference

region 1 region 2 region 3 region 4

1 tumor tumor tumor tumor
2 normal tumor tumor tumor
3 tumor normal tumor tumor
...

...
...

...
...

6 normal normal tumor tumor
7 tumor normal normal tumor
...

...
...

...
...

16 normal normal normal normal

Wang Y, Hobbs, BP, Hu J, Ng C, Do K, “Predictive Classification of Correlated Targets

with Application to Detection of Metastatic Cancer using Functional CT Imaging,”

Biometrics, 2015.
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Model

Notation
z : tissue type; m: number of features

i : patient index, i = 1, . . . ,N; j : region index, j = 1, . . . , ni

yij : measurement for the patient i region j

sij : region location

Distribution:
vec(Y z

i ) ∼ N(1nzi
⊗ µz ,Ψ

z
i ⊗Σz)

Intra-region:

Mean: µz = E[yij |Z = z]
Covariance: Σz = cov(yij |Z = z)

Inter-region:

Independence across patients
Independence across tissue classes
Within the same patient and the same tissue class

cov(yij , yij′ ) = ψ(sij , sij′ )Σz

Note: separable correlation between biomarker and location
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Model

Inter-region correlation:

Independence across patients

Independence across tissue classes

Within the same patient and the same tissue class

cov(yij , yij′) = ψ(sij , sij′)Σz

For features from identical class we assume:

Inter-region correlation for identical feature = ψ(sij , sij′)

Inter-region cross-correlations = intra-region cross-correlation scaled by ψ(sij , sij′)

separability reduces the degrees of freedom in the covariance from
1
2
nz
i m(nz

i m + 1) to 1
2
nz
i (nz

i + 1) + 1
2
m(m + 1)
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Inter-Region Correlation Models

Compound symmetry ψ(sij , sij′ ;φ) ≡ φ

Spatial dependence

Exponential:
ψ(sij , sij′ ;φ) = exp{−

d

φ
}, d = dist(sij , sij′ )

Spherical:

ψ(sij , sij′ ;φ) =

{
1− 2

π

(
d
φ

√
1− ( d

φ
)2 + sin−1 d

φ

)
d < φ

0 d ≥ φ

General structure

Anisotropic models, etc.
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Simultaneous Bayesian Classification: ROI inference

Data: train Y, test Y0

The simultaneous Bayesian classification rule is

d̂0 = arg min
d∈D

∑
dk∈D

Lα(dk , d )p(dk |Y0,Y)

p(dk |Y0,Y): the joint posterior classification probability
Lα(dk , d ): the joint weighted 0-1 loss:

Lα(dk , d ) =
∑
k

{α{false negative}+ (1− α){false positive}}

D: the set of all the possible class configurations
requires a prior probability for each possible configurations

Pr(zN+1 = dk ) = pl (1− p)nN+1−l ,

where l = number of tumor ROIs given by dk .
Hyperparameter p is fixed at the estimated rate of tumor incidence in the presence
of the training data.

Maximum a posteriori classifier 6= Minimum risk classifier Bayesian
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Detection of ROIs with Metastases using Perfusion
Biomarkers

True positive rate (TPR): proportion of correctly identified tumor

False positive rate (FPR): proportion of falsely identified normal

method TPR FPR

Conventional
Bayesian quadratic 0.76 0.18
Support vector machine 0.88 0.19

Simultaneous
(1)

α = 0.5 (equal cost)
α = 0.8 (prefer FP)

0.96 0.07
0.96 0.11

(2)
α = 0.5 (equal cost)
α = 0.8 (prefer FP)

0.96 0.04
1.00 0.19

(1) compound symmetry; (2) exponential decay
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Simulation Study
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CTp as a diagnostic tool enabling quantitative evaluation Voxel-level Inference

Voxel-level Posterior Probability maps from integration of perfusion
features
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CTp as a diagnostic tool enabling quantitative evaluation Voxel-level Inference

Gaussian Process Framework

Capturing Spatial Dependence among the perfusion features at voxel level:

Option 1: Assume a priori voxel-wise Independence with application of 3D
smoothing to resulting posterior probability maps

Option 2: Induce Dependent Class Assignments (Markov random field)

Pr(zN+1) ∝ c(β) exp

{
β
∑
i∼i∗

wi,j I (zi = zi∗)

}

with pre-specified “network” or neighborhood structure i ∼ i∗
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CTp as a diagnostic tool enabling quantitative evaluation Voxel-level Inference

Figure 5.1: Top left: clinically validated region of interests that color is used to distinguish
between ROIs that contain or fail to contain at least one metastatic site. Top right: class
map for region of interests, Bottom left: unsmoothed posterior probability map for one slice
of liver, and Bottom right: smoothed posterior probability map for subject 8 where blue
indicates normal tissues and red is malignancy sites.

72
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CTp as a diagnostic tool enabling quantitative evaluation Voxel-level Inference

Figure 5.3: Top left: clinically validated region of interests that color is used to distinguish
between ROIs that contain or fail to contain at least one metastatic site. Top right: class
map for region of interests, Bottom left: unsmoothed posterior probability map for one slice
of liver, and Bottom right: smoothed posterior probability map for subject 17 where blue
indicates normal tissues and red is malignancy sites.

74
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CTp as a diagnostic tool enabling quantitative evaluation Voxel-level Inference

Figure 5.4: Top left: clinically validated region of interests that color is used to distinguish
between ROIs that contain or fail to contain at least one metastatic site. Top right: class
map for region of interests, Bottom left: unsmoothed posterior probability map for one slice
of liver, and Bottom right: smoothed posterior probability map for subject 19 where blue
indicates normal tissues and red is malignancy sites.

75
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

Bayesian Nonparametric Voxel-level Inference

Identify perfusion ”signatures”

flexibility for describing inter-feature dependence through clustering methods

integrate voxel-level similarity measure into Bayesian predictive framework
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

Perfusion ”signatures”

11 

Patient ID = 18  slice = 7 

34 / 46



CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

Using 5 latent clusters 

One slice of voxel-wise posterior probability map 
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

Using 5 latent clusters 

Posterior Probability Map Distributions of smoothed 
posterior probabilities 
among training voxels  
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

Using 5 latent clusters

Slice of Posterior probability map   ROC curve using 
posterior probability as the classifier 
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

HC Pat 8 Slice 4 K=5 10,000 voxels  
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

HC Pat 8 all slices K=5 theta = 3 10,000 voxels predicted based 
on the training set of slice 4  
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

HC Pat 8 all slices K=5 theta = 3 10,000 voxels predicted based 
on the training set of slice 4  
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

HC Pat 6 
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

HC Pat 6 
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Functional Data Analysis of correlated CTp curves

Functional Data Analysis of spatial-temporally correlated CTp curves
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Summary

Summary

Bayesian modeling is powerful tool for complex integration analysis

accounting for multiple source of variability
facilitates probabilistic inference

General method offers the potential to improve classification performance in
settings wherein multiple classification targets are evaluated within each subject

Implications for any biomedical application that utilizes biomarkers to identify
features intrinsic to a particular disease at multiple interdependent sites within an
organ
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Summary
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