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iBA
Integrative Analysis of Neurolmaging and Genetics

UTHf;%lth Integrative Bayesian Analysis of Neuroimaging-Genetic Data MDAnderson
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Significance: Explore underlying neurobiological information of white matter integrity of the brain.
Statistical goals: Develop a novel integrated framework to combine imaging and genetic data in cocaine dependence.

Data: Genetic: 21 candidate genetic variants in 17 genes, clinical and demographic (sex, age, group).
Imaging: Diffusion Tensor Imaging (DTI) of entire Brain (more than 7 millions voxels).
IBANG method: IBANG method:
Input data Y (v) = a+ X;Bj(v) +oe

© Parameters priors © Model space prior

iBANG model fitting and inference .

pla,0) o< o™ A uniform prior distribution
b tockpatal ) v 2% possible models
P31, 7 M) ~ Niy(0,02(gX; X;) 1)

g =1/maz {n, K2}

P(Mj)=p; =2

Significate Regions Magnitude and Direction of FA Changes in Corpus Callosum
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iBA
Integrative Analysis of Neurolmaging and Genetics
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Significance: Explore underlying neurobiological information of white matter integrity of the brain.
Statistical goals: Develop a novel integrated framework to combine imaging and genetic data in cocaine dependence.

Data: Genetic: 21 candidate genetic variants in 17 genes, clinical and demographic (sex, age, group).
Imaging: Diffusion Tensor Imaging (DTI) of entire Brain (more than 7 millions voxels).
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(CELTTRNETL OISR cancer detection using dynamic CT

Sparse Functional Modeling of “Washout” for Detection of Adrenal Cancer

Non-contrast Portal Venous

:vF’ :
J"w'.' :

Distributions of HU density over three successive scans within two ROls: one containing
a malignant (top) the other a benign (bottom) adrenal lesion. In contrast to the benign
lesion, the malignant tissues exhibit relatively high HU density in the noncontrast scan

as well as the relative absence of “washout” between portal venous and delay scans.
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Cancer Imaging Overview Biomarkers/Dosimetries of normal tissue injury

Identify RT Dosimetries associated with ORN

Radiation dose map for
IMRT. The mandible
(white arrows) receives
substantial EBRT dose.
IMRT provides for a
relatively large low dose
area of exposure with
focal areas, which
exceed 40Gy.

40 60 80 100

% volume of mandible

20

T T
0 10 20 30 40 50 60 70
dose (Gy)

4/46



Cancer Imaging Overview Biomarkers/Dosimetries of normal tissue injury

DCE-MRI Mandible Vascularity During External Beam RT

A PRE-EBRT MIB_—E_BRT POST-EBRT

750 | 1 = /3

ca s P 020 40 60 o 20 a0 o
Gy Gy

Farar (=min}
Sandulache VC, Hobbs BP, et al. Dynamic contrast enhanced magnetic resonance
imaging (DCE-MRI) detects acute radiotherapy-induced alterations in mandibular bone

microvasculature, Nature Scientific Reports
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Biomarkers/Dosimetries of normal tissue injury
Pulmonary Radiation Response on FDG PET /CT
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Pre-treatment PET XRT Dose Distribution Post-treatment PET

Hypothesis: Pre-treatment pulmonary inflammation,
assessed from FDG PET imaging, predicts for post-
treatment symptomatic radiation pneumonitis.

RQ B Advancing Patient Care fhr NOVATION
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Cancer Imaging Overview “Ra

diomics”

High-throughput extraction of quantitative image features

1) CT imaging

Il) Feature extraction

1) Analysis

d |

Tumour intensity

©®

Tumour shape

Tumour texture

Radiomic features

Clinical data

Gene exprassion

Figure 1| Extracting radiomics data from images. (a) Tumours are different. Example computed tomography (CT) images of lung cancer patier
images with tumour contours left, three-dimensional visualizations right. Please note strong phenotypic differences that can be captured with rou
imaging, such as intratumour heterogeneity and tumour shape. (b) Strategy for extracting radiomics data from images. (1) Experienced physiciar
contour the tumour areas on all CT slices. (11} Features are extracted from within the defined tumour contours on the CT images, quantifying tu
intensity, shape, texture and wavelet texture. (Ill) For the analysis the radiomics features are compared with clinical data and gene-expression d

Aerts et al., Nature Communications, 2014; Parmar et al. PLOS ONE, 2014



Cancer Imaging Ove “Radiomics”

Immune Pathology Markers

254 patients with no neoadjuvant chemotherapy and known immune pathology features
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Cancer Imaging Ove “Radiomics”

Radiomics Clustering

Color Key

Pathology Clustering

Color Key
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Cancer Imaging Overview “Radiomics”

Training Dataset

Validation Dataset
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Liver Perfusion Imaging

Qutline: Liver Perfusion Imaging

1. Acquisition of perfusion characteristics in liver using CT

2. Classification of spatially correlated targets (identification metastatic sites)
a. ROI level inference
b. Voxel-wise Posterior Probability Maps

3. Functional Spatiotemporal modeling to integrate multiple scans

-

I

Nan Chen, PhD

Chaan Ng, MD Yuan Wang, PhD

Jianhua Hu, PhD
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Motivation
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perfusion CT acquisition

CT perfusion acquisition

Time-attenuation curves

CTp image
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perfusion CT acquisition

Hepatic perfusion characteristics

Physiological modeling with contrast agent as physiological indicator:

@ blood flow (BF) rate in mL/min per 100g microcirculation

blood volume (BV) in mL/100g concentration

mean transit time (MTT) duration in seconds

permeability (PS) mL/min per 100 g capillary permeability and leakage
(extracellular) space

@ hepatic arterial fraction (HAF) extent of blood supply from aorta

Miles, KA et al. (2000). Application of CT in the investigation of angiogenesis
Miles, KA (2002). Functional CT in oncology.
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perfusion CT acquisition

Perfusion Imaging

Tissue perfusion plays a critical role in oncology

@ Cancerous cell growth and migration requires the proliferation of networks of new
blood vessels through the process of angiogenesis

@ triggers modifications to the vasculature of surrounding host tissue

Hepatic perfusion characteristics

@ provide physiological correlates for neovascularization induced by tumor
angiogenesis

@ quantitative basis for characterizing vasculature changes in the tumor
microenvironment

@ implications for cancer diagnosis, treatment monitoring, and disease
prognostication and pathophysiological understanding
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perfusion CT acquisition

HOW TO STARVEA TUMOR

As a cancer tumor grows, it

builds its own network of
capillaries that tap into the body’s blood
supply and draw on the oxygen and
nutrients the tumor needs to survive

from its blood supply. Gradually,
malignant cells die and the tumor
starts to shrink
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perfusion CT acquisition

Hepatic perfusion characteristics

increase / decrease with angiogenesis

blood flow (BF) microcirculation
blood volume (BV) concentration
mean transit time (MTT)

permeability surface-area product (PS) capillary permeability and leakage
(extracellular) space

hepatic arterial fraction (HAF) extent of blood supply from aorta
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perfusion CT acquisition

perfusion CT acquisition protocol

or Phase 1 Phase 2
Cine Registered Helicals
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@ Reference dataset: Phase 1, combined with 8 anatomically registered Phase 2
images.

@ T1, pre-enhancement setpoint
@ T2, last first phase setpoint
@ T3, last second phase (post-enhancement) setpoint
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perfusion CT acquisition

CT perfusion acquisition protocol

Recommendations pertaining to acquisition put forth in radiology
literature used inappropriate statistical approaches!

@ Goh, V. et al. (2005), J Comput Assist Tomogr

@ Kambadakone, A. et al. (2011), Eur Radiol

Stable acquisition duration 30-45 secs was “inferred”:

@ t-tests between CTp values obtained at discrete acquisition durations using a
traditional hypothesis testing framework

@ stability was concluded in the absence of significant differences for tests between
successive scans

@ conclusions were also based on measures of linear dependence between pairs of
intra-patient observations at successive scans
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perfusion CT acquisition

CT perfusion acquisition protocol

Tumor Normal
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perfusion CT acquisition

CT perfusion acquisition duration
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CT perfusion acquisition duration (cont)

Normal

- high confidence
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Ng C S et al. Radiology doi:10.1148/radiol.13122708

Radiology
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perfusion CT acquisition

CT

perfusion acquisition protocol

Our recommended protocol for CTp acquisition in liver

Ng C., Hobbs, B., et al. (2013), Metastases to the liver from neuroendocrine
tumors: Effect of duration of scan acquisition on CT perfusion values, Radiology

Ng, C., Hobbs, B., et al. (2014), Effect of sampling frequency on perfusion values
in CT perfusion of liver tumors and normal liver, J Comput Assist Tomogr

Ng, C., Hobbs, B., et al. (2014), Effect of pre-enhancement set-point on CT
perfusion values in normal liver and metastases to the liver from neuroendocrine
tumors, J Comput Assist Tomogr

Hobbs B, and Ng C. (2015). Inferring stable acquisition durations for applications
of perfusion imaging in oncology, Cancer Informatics

16
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CTp as a diagnostic tool enabling quantitative evaluation

Diagnostic tool enabling quantitative evaluation

Unenhanced axial CT scan = 5 perfusion characteristics over 4

scans
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Current practice in diagnostic radiology
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

* tumor o normal
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@ Perfusion characteristics are correlated.

@ The correlation is heterogeneous across tissue types.
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Approaches that leverage between feature dependence

Scatterplot linear classification
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2% ** * 2% *
5 x o F |
ol ’ &
* *
o * o *
% M
* 50Bloodsizlow * * * 50Bloodsizlow * *
guadratic classification support vector machine
* *
*oyx *oplixoo#
£ * £
S " * & o *
* *
o * o *
% %

5‘0 5‘5 60
Blood Flow

Class assignments are
evaluated independently

18 /46



CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Inter-Region Correlation

patient 8

right region blood flow

* 8

5‘0 . 5‘5 6‘0
left region blood flow
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Inter-Region Correlation
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Sample Correlation for neighboring regions of the same tissue type

BF BV MTT PS HAF
0.88 086 0.72 0.71 0.90
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Simultaneous Classification for ROI level inference

region 1  region 2 region 3  region 4
1 tumor tumor tumor tumor

normal tumor tumor tumor
3 tumor normal tumor tumor
6 normal normal tumor tumor
7 tumor normal normal tumor
16 normal normal normal normal

Wang Y, Hobbs, BP, Hu J, Ng C, Do K, “Predictive Classification of Correlated Targets
with Application to Detection of Metastatic Cancer using Functional CT Imaging,”
Biometrics, 2015.
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Notation
@ z: tissue type; m: number of features
@ j: patient index, i =1,..., N; j: region index, j=1,...,n;
@ y;: measurement for the patient i region j

@ sji: region location

Distribution:
@ vec(Y?)~ N(1y @ pz, ¥7 ® ;)
@ Intra-region:
@ Mean: p, = Ely;|Z = 2]
@ Covariance: X, = cov(y;|Z = z)
@ Inter-region:

@ Independence across patients
@ Independence across tissue classes
@ Within the same patient and the same tissue class

COV(yij,y,'j/) = ’(p(sl'jv sij’)Z:Z
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Notation
@ z: tissue type; m: number of features
@ j: patient index, i =1,..., N; j: region index, j=1,...,n;

@ y;: measurement for the patient i region j

@ sji: region location

Distribution:
@ vec(Y?)~ N(1y @ pz, ¥7 ® ;)
@ Intra-region:
@ Mean: p, = Ely;|Z = 2]
@ Covariance: X, = cov(y;|Z = z)
@ Inter-region:
@ Independence across patients

@ Independence across tissue classes
@ Within the same patient and the same tissue class

COV(yij,y,'j/) = ’(p(sl'jv sij’)Z:Z

Note: separable correlation between biomarker and location
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Inter-region correlation:
@ Independence across patients
@ Independence across tissue classes

@ Within the same patient and the same tissue class

cov(yy, i) = P(si, )2

For features from identical class we assume:
Inter-region correlation for identical feature = ¢ (sj;, s;)

Inter-region cross-correlations = intra-region cross-correlation scaled by ¥ (sj, s;)

separability reduces the degrees of freedom in the covariance from

tnim(nfm+1) to Inf(nf + 1)+ Im(m+1)
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Inter-Region Correlation Models

@ Compound symmetry U(si, S5 ) = ¢
ijy 20’ =

@ Spatial dependence

@ Exponential: d .
Y(sij, sirs @) = exp{—g}, d = dist(sy, s;7)

@ Spherical:

2 (d d . 1d
w(su,s,y/;dnz{ 1*?($m+5'" la) d<¢

0 d>¢

@ General structure

@ Anisotropic models, etc.
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Simultaneous Bayesian Classification: ROl inference

@ Data: train ), test )y
@ The simultaneous Bayesian classification rule is

do = arg min Z Lo(di, d)p(di|Do, )

deD 477

@ p(dk|Vo,Y): the joint posterior classification probability
o Lo (dk,d): the joint weighted 0-1 loss:

Lo(dy,d) = Z {a{false negative} + (1 — «){false positive}}
k

@ D: the set of all the possible class configurations
@ requires a prior probability for each possible configurations

Pr(zni1 = di) = p'(1 — p)™+1—/,

where | = number of tumor ROIs given by dy.
@ Hyperparameter p is fixed at the estimated rate of tumor incidence in the presence
of the training data.
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Simultaneous Bayesian Classification: ROl inference

@ Data: train ), test )y
@ The simultaneous Bayesian classification rule is

do = arg min Z Lo(di, d)p(di|Do, )

deD 477

@ p(dk|Vo,Y): the joint posterior classification probability
o Lo (dk,d): the joint weighted 0-1 loss:

Lo(dy,d) = Z {a{false negative} + (1 — «){false positive}}
k

@ D: the set of all the possible class configurations
@ requires a prior probability for each possible configurations

Pr(zni1 = di) = p'(1 — p)™+1—/,

where | = number of tumor ROIs given by dy.
@ Hyperparameter p is fixed at the estimated rate of tumor incidence in the presence
of the training data.

Maximum a posteriori classifier £ Minimum risk classifier Bayesian
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CTp as a diagnostic tool enabling quantitative evaluation ROI level inference

Detection of ROIs with Metastases using Perfusion

Biomarkers

@ True positive rate (TPR): proportion of correctly identified tumor

@ False positive rate (FPR): proportion of falsely identified normal

method TPR FPR

Bayesian quadratic 0.76 0.18

Conventional  Support vector machine 0.88 0.19
(1) a = 0.5 (equal cost) 0.96 0.07

Simultaneous a = 0.8 (prefer FP) 096 0.11
(2) a = 0.5 (equal cost) 0.96 0.04

a = 0.8 (prefer FP) 1.00 0.19

(1) compound symmetry; (2) exponential decay

26
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Simulation Study

True positive rate

False positive rate
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CTp as a diagnostic tool enabling quantitative evaluation Voxel-level Inference

Voxel-level Posterior Probability maps from integration of perfusion
features

28
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CTp as a diagnostic tool enabling quantitative evaluation Voxel-level Inference

Gaussian Process Framework

Capturing Spatial Dependence among the perfusion features at voxel level:
@ Option 1: Assume a priori voxel-wise Independence with application of 3D
smoothing to resulting posterior probability maps

@ Option 2: Induce Dependent Class Assignments (Markov random field)

Pr(zn41) o ¢( )exp{ ZW,J zZi = zj* }

i~i*

with pre-specified “network” or neighborhood structure i ~ i*
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Tp as a diagnostic tool enabling quantitative evaluation
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Voxel-level Inference

Subject 17, slice 2 Bayesian discriminant analysis,subject 17, slice 2
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Tp as a diagnostic tool enabling quantitative evaluation Voxel-level Inference
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

Bayesian Nonparametric Voxel-level Inference

Identify perfusion "signatures”
@ flexibility for describing inter-feature dependence through clustering methods

@ integrate voxel-level similarity measure into Bayesian predictive framework
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

Perfusion "signatures”
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference

Using 5 latent clusters
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CTp as a diagnostic tool enabling quantitative evaluation
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CTp as a diagnostic tool enabling quantitative evaluation
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p as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference
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CTp as a diagnostic tool enabling quantitative evaluation Nonparametric Voxel-level Inference
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Nonparametric Voxel-level Inference
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Functional Data Analysis of correlated CTp curves

Functional Data Analysis of spatial-temporally correlated CTp curves
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Summary

@ Bayesian modeling is powerful tool for complex integration analysis

@ accounting for multiple source of variability
@ facilitates probabilistic inference

@ General method offers the potential to improve classification performance in
settings wherein multiple classification targets are evaluated within each subject

@ Implications for any biomedical application that utilizes biomarkers to identify
features intrinsic to a particular disease at multiple interdependent sites within an
organ

44 /46



Papers

© B. P. Hobbs and C. S. Ng, (2015). “Inferring stable acquisition durations for
applications of perfusion imaging in oncology,” Cancer Informatics

@ Y. Wang, B. P. Hobbs, J. Hu, C. S. Ng, and K. A. Do, (2015). “Predictive
Classification of Correlated Targets with Application to Detection of Metastatic
Cancer using Functional CT Imaging,” Biometrics

© B. P. Hobbs, P. F. Thall, and S. H. Lin (2015), “Bayesian Group Sequential
Clinical Trial Design using Total Toxicity Burden and Progression-Free Survival,”
Journal of the Royal Statistical Society Series C

© Y. Wang, J. Hu, K. A. Do, and B. P. Hobbs, “An Efficient Nonparametric
Estimate for Spatially Correlated Functional Data,” submitted

46 /46



	iBANG
	Cancer Imaging Overview
	cancer detection using dynamic CT
	Biomarkers/Dosimetries of normal tissue injury
	``Radiomics''

	Liver Perfusion Imaging
	Perfusion Computed Tomography (CTp)
	Motivation
	perfusion CT acquisition
	CTp as a diagnostic tool enabling quantitative evaluation
	ROI level inference
	Voxel-level Inference
	Nonparametric Voxel-level Inference

	Functional Data Analysis of correlated CTp curves
	Summary



