Sparse classification for significant anatomy detection in a group study

Dana Cobzas

University of Alberta

with

Linglong Kong Math, U of Alberta Mark Schmidt CS, U of British Columbia Alan Wilman BME,U of Albefta

Healthy controls

Patients

What are the areas of the brain significantly different between healthy subjects and patients ?

Voxel based analysis – data alignment

Scalar images

Subject 1

Subject 2

Subject n

Linear and nonlinear registration in atlas space

Voxel based analysis – data alignment

Scalar images

Subject 1

Subject 2

Flattened data: Only relevant parts

VBA – traditional approaches

Voxel based analysis:

- Voxel-based univariate approaches, permutations tests, FDR
- Advanced statistics to compensate for data correlation [SurfStat – Random Field Theory, Worsley, K. et al. 2008]

VBA – traditional approaches

Voxel based analysis:

- Voxel-based univariate approaches, permutations tests, FDR
- Advanced statistics to compensate for data correlation [SurfStat – Random Field Theory, Worsley, K. et al. 2008]
- Reformulate the problem as a supervised dimensionality data reduction method such that
- The detected anatomy is discriminative
- Sparse
- Compact and interpretable from an anatomical viewpoint
- There is a principled way of finding an optimal model and testing its accuracy

Dimensionality reduction

Unsupervised :

• PCA, ICA : eigenvectors have global support and do not provide anatomical specificity

Dimensionality reduction

Unsupervised :

- PCA, ICA : eigenvectors have global support and do not provide anatomical specificity
 Imposed sparseness of solution
- Sparse generative models "parts-based representations"; But they do not explicitly optimize discrimination [Kandel, Avants et al. 2015][Lee, Seung 1999][Witten, Hastie 2009]

Dimensionality reduction

Unsupervised :

- PCA, ICA : eigenvectors have global support and do not provide anatomical specificity
 Imposed sparseness of solution
- Sparse generative models "parts-based representations"; But they do not explicitly optimize discrimination [Kandel, Avants et al. 2015][Lee, Seung 1999][Witten, Hastie 2009]

Supervised :

- Pattern classification methods feature extraction and selection to achieve high classification accuracy; sparsity on feature selection;
- Goal : high classification accuracy with no focus on meaning and interpretability of selected regions; often data reduction decoupled from feature selection

[Batmanghelich et al. 2011][Sabuncu,Van Leemput 2012] [Krishnapuram et al. 2005][Ryali et al. 2010]

Sparse classification

Discriminative method where <u>relevant image regions</u> are selected using an image-regularized sparse classification.

- The detected anatomy is discriminative
- Sparse
- Compact and interpretable from an anatomical viewpoint
- There is a principled way of finding an optimal model and testing its accuracy

- Logistic regression
- Sparseness constraint
- Image-based regularization
- Cross-validation

Similar to [Kandel et al. 2013] work on sparse regression

Formulation: Logistic regression

Labels -1/1

y_i follows a logistic regression distribution with location **a**_i**x**+**b**

$$p(y_i|\mathbf{a}_i, \mathbf{x}, b) = \frac{1}{1 + \exp(-y_i(\mathbf{a}_i\mathbf{x} + b))}$$

image coefficients **x** Scalar bias b

$$\min_{\mathbf{x},b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i(\mathbf{a}_i \mathbf{x} + b))\right)$$

Optimal params x,b

Formulation: sparseness

Looking for a **sparse** solution x

$$\min_{\mathbf{x},b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i(\mathbf{a}_i \mathbf{x} + b))\right)$$

subject to $||\mathbf{x}||_0 \le s$

Formulation: sparseness

Looking for a **sparse** solution x

$$\min_{\mathbf{x},b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i(\mathbf{a}_i \mathbf{x} + b))\right)$$

subject to $||\mathbf{x}||_0 \le s$

NP hard Replace I_0 with I_1 The two penalties give identical solution for many problems

$$\min_{\mathbf{x},b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i(\mathbf{a}_i \mathbf{x} + b))\right) + \lambda_1 \|\mathbf{x}\|_1$$

Non smooth at zero catches many solutions

Formulation: sparseness

Looking for a **sparse** solution x

$$\min_{\mathbf{x},b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i(\mathbf{a}_i \mathbf{x} + b))\right)$$

subject to $||\mathbf{x}||_0 \le s$

NP hard Replace I_0 with I_1 The two penalties give identical solution for many problems

$$\min_{\mathbf{x},b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i(\mathbf{a}_i \mathbf{x} + b))\right) + \lambda_1 \|\mathbf{x}\|_1$$

Non smooth at zero catches many solutions

Formulation: compactness

Problem:

- We like the results to have an anatomical interpretation
- Add image-based regularization terms

Formulation: compactness

Problem:

- We like the results to have an anatomical interpretation
- Add image-based regularization terms

Diffusion based regularization

Diffusion

 $\partial_t x = \Delta x$

Regularization $\|\nabla x\|_2^2$

- Uniform diffusion
- Total variation TV-I₁ Nonlinear isotropic diffusion $\partial_t \mathbf{x} = \Psi'(\|\nabla \mathbf{x}\|^2)$ $\Psi(\|\nabla \mathbf{x}\|^2)$ [Weickert]

$$\Psi(s) = \sqrt{\beta^2 + s^2}$$
$$\Psi'(s) = \frac{1}{\sqrt{\beta^2 + s^2}}$$

Formulation: compactness

Problem:

- We like the results to have an anatomical interpretation
- Add image-based regularization terms

Diffusion based regularization

- Uniform diffusion
- Total variation TV-I₁ Nonlinear isotropic diffusion $\partial_t \mathbf{x} = \Psi'(\|\nabla \mathbf{x}\|^2)$ [Weickert]

Optimization

$$\min_{\mathbf{x},b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i(\mathbf{a}_i \mathbf{x} + b))\right) + \lambda_1 \|\mathbf{x}\|_1 + \lambda_2 \|\nabla x\|_2^2$$

Solving this optimization is complicated due to non-differentiability of I_1 terms. Use projected gradient methods

- choose an approximate steepest descent direction (pseudo-gradient) of the objective function
- take an approximate Newton step
- project solution (make x_k=0 if sign changed)

[Mark Schmidt UBC]

$$\mathbf{x}^{+} = \operatorname{project}_{\mathcal{C}}[\mathbf{x} - \alpha f'(\mathbf{x})],$$

Experiments

Compare <u>3 methods</u> :

- Eigenanatomy [Avants et al.] unsupervised detection of sparse regions using sparse PCA use projection of data onto eigenvectors in a logistic regression classification method
- SurfStat [Worsley et al.] compute significant regions from using RFT implemented in SurfStat use detected significant voxels in alogistic regression clasification
- SparseClassification

Each method returns – classification labels \tilde{y} and sparse regions \tilde{x} that are compared with ground truth y and x.

For each data A we computed classification results using <u>**3 folds cross-validation</u> > data divided in 3 groups, 2 used for training and one for testing – all 3 combinations Optimal params for each method are determined using cross-validation for each dataset A. Only results with optimal params are considered.</u>**

Reported measures

- Sparseness of detected regions sp
- Classification results (y vs \tilde{y}) : accuracy, sensitivity, specificity, AUC
- Accuracy and stability of regions $(\mathbf{x} \text{ vs } \widetilde{\mathbf{x}})$: dice score ; dice overlap for the 3 folds $\widetilde{\mathbf{x}}_1 \ \widetilde{\mathbf{x}}_2 \ \widetilde{\mathbf{x}}_3$
- Significance of regions in a t-test : use mean data in sparse regions x in a t-test p-val

Experiments

Compare <u>3 methods</u> :

- Eigenanatomy [Avants et al.] unsupervised detection of sparse regions using sparse PCA use projection of data onto eigenvectors in a logistic regression classification method
- SurfStat [Worsley et al.] compute significant regions from using RFT implemented in SurfStat use detected significant voxels in alogistic regression clasification
- SparseClassification

Each method returns – classification labels \tilde{y} and sparse regions \tilde{x} that are compared with ground truth y and x.

For each data A we computed classification results using <u>3 folds cross-validation</u> > data divided in 3 groups, 2 used for training and one for testing – all 3 combinations Optimal params for each method are determined using cross-validation for each dataset A. Only results with optimal params are considered.

Reported measures

- Sparseness of detected regions sp
- Classification results (y vs \tilde{y}) : accuracy, s
- Accuracy and stability of regions (x vs x):
 dice score ; dice overlap for the 3 folds x₁ x
- Significance of regions in a t-test : use mea

Synthetic data

X:

Same structure as a_i Each block has a different strength [0.1 0.2 0.3 0.4]

Will determine how much the signal in this region contributes to the data label y_i

100 data samples (subjects) in the matrix A

y:

Calculated using the value of the logistic regression distribution $p(y|a_i)$

+1/-1 labels using the Bernoulli distribution B(1,p)

 $p(y_i|\mathbf{a}_i, \mathbf{x}, b) = \frac{1}{1 + \exp(-y_i(\mathbf{a}_i\mathbf{x} + b))}$

2

- Accuracy of regions: sparse classification is best in determining stable and accurate regions of difference
- Classification accuracy: Eigenanatomy slightly better results

Real MRI data

MS study : Investigating the role of iron and atrophy in MS

37 **RRMS** patients (6 males) and 37 matched controls Age: RRMS 35.63 (std 9.2) Controls 35.69 (std 9.0) pval .97

MRI data at 4.7T : T1w, R2*, QSM (284 x 222 x 84 at .9 x .9 x 2 mm) All data is normalized to an in-house unbiased template (nonlinear registration on T1w and QSM using ANTs)

Target regions : **4 subcortical deep GM structures** Only points inside this mask are considered in all methods

"Iron": R2* data Atrophy : logDetJac with respect to template "iron" atrophy

Note on data processing

High field MRI at 4.7T

• Several imaging modalities low contrast T1w

> standard segmentation methods are suboptimal

Note on data processing

High field MRI at 4.7T

Several imaging modalities
 low contrast T1w

> standard segmentation methods are suboptimal

Quantitative iron sensitive MRI :
 R2* mapping QSM

Note on data processing

High field MRI at 4.7T

Several imaging modalities
 low contrast T1w

> standard segmentation methods are suboptimal

Quantitative iron sensitive MRI :
 R2* mapping QSM

Our own pipeline

Multi-atlas segmentation

[Heckemann et al Neuriom 2005][...]

- 10 manually segmented controls
- Nonlinear registration based on T1w+R2*+QSM (SyN ANTS)
- Label fusion

Multi-atlas segmentation

[Heckemann et al Neuriom 2005][...]

- 10 manually segmented controls
- Nonlinear registration based on T1w+R2*+QSM (SyN ANTS)
- Label fusion

Unbiased atlas

Use the same 10 controls to create an unbiased template Iterative method from [Guimond et al. CVIU 2000]

Unbiased atlas

Use the same 10 controls to create an unbiased template Iterative method from [Guimond et al. CVIU 2000]

All data is normalized into the space of the atlas by nonlinear registration (SyN) based on T1w, QSM and the MALF segmentation

Look for regions that differentiate MS patients cs Control based on **Iron (R2*)** measurements and **Atrophy (LogDetJac of deformations)**

sp=0%

sp=27%

sp=41%

Regions : sparse classification detects most stable, accurate and significant regions

Classification accuracy: Also best for real data

Extensions - data

Vector data

Multi modalities images

Tensor images (log > vectors space)

Shape data as 3D points

Extensions - data

Vector data Multi modalities images

Tensor images (logEuclidean > vector space)

Shape data as 3D points

- > $x_x x_y x_z$ three sets of coefficients
- > same entries should be zero > group sparsity

Extensions - regularization

Vector data

$$\min_{\mathbf{x}} ||A\mathbf{x} - \mathbf{y}||_2^2 + \lambda_1 ||\mathbf{x}||_1 + \lambda_2 ||\nabla x||_2^2$$

Discretized on the surface mesh

More general graph-based constraints for the imageregularization ? ex. diffusion tensors give regularization along brain fibres

Extensions – formulation

- Other type of discriminative energies : ex SVMs
- Deep learning ? Convolutional nets ?

ex. [Brosh et al MICCAI 2014] Deep belief network used for generative learning of brain atrophy manifold
> how do we impose image-based regularization (compactness of features) Is convolutional enough ?

Gray matter:

3D segmentation

Atrophy defined on shapes

"iron" as voxelbased functional data

Gray matter:

3D segmentation

Atrophy defined on shapes

"iron" as voxelbased functional data

White matter:

lesions

Degradation of fibres (DTI data)

White matter:

Gray matter:

How are all these parallel processes interacting ? How are they related to disease (group study, relate to disease duration, disease severity) ?

All this data is nonlinearly related to aging

White matter:

Gray matter:

How are all these parallel processes interacting ? How are they related to disease (group study, relate to disease duration, disease severity) ?

All this data is nonlinearly related to aging

THANK YOU