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Imaging Genetics

@ Imaging genetics refers to situations where imaging
technologies are used as “phenotypic assays” in studies on
subjects carrying genetic risk variants that relate to a
psychiatric disorder (Silver, Montana & Nichols, 2010, Neurolm).

¥ Overall idea is that individual differences in the genetic
make-up lead to differences in brain wiring structure and
intellectual function.

== Modeling the link between the imaging and genetic
components could indeed lead to improved diagnostics
and therapeutic interventions.

. Ex: Schizophrenia, a severe psychiatric disorder disrupting
normal thinking, speech, and behavior.
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Data, and data processing

@ Data from the Mind Clinical Imaging consortium. ny = 118
healthy controls and n, = 92 schizophrenic patients.

@ fMRI data, measuring brain activity as changes in blood
flow, collected during a sensorimotor task:

@ Atlas-based parcellation of the brain into p anatomical
regions (ROls - features).
© Data as ROI-based summaries of BOLD signal intensities

Xij, i=1,...,n, j=1,...,p

for p features (ROIs) on n subjects.

@ Z;=(Zy,...,ZRr)", R genetic covariates (SNPs implicated
in schizophrenia) available on all subjects.
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A Discriminative integrative model

Goal: Identify brain regions with discriminating activation
patterns and SNPs relevant to explain such activations in either
(or both) subgroups. We propose:

= Hierarchical mixture model with selection of discriminating
features (e.g. ROIs)

= The model is a mixture of K components, each describing
activations in K groups (e.g. cases and controls), and each
depending on selected covariates (e.g. SNP)

== Network priors that capture structural dependencies
among the features.
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Mixture model with feature selection

We assume a general Gaussian mixture model with K groups
(e.g., schizophrenic and healthy controls).

@ Data from group k modeled as
(Xf|gi = k7 ) ~ N(Il'kv Zk)a

with k =1,..., K and p, and X4 are the group-specificic
mean and covariance matrix.

@ Group assignments: g = (91, ...,9n)’, where g; = k if the
i observation comes from group k and wy = P(g; = k).

2 Supervised setting (discriminant analysis): K, g known
(W, = nk/n). Model-based approach to classification.
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We envision that only some of the features (ROIs) discriminate
the n subjects.

w Introduce v = (74, ...,7p) such that v; = 1 if j-th feature is
discriminatory, 7; = 0 otherwise.

Indicate features indexed by v; = 1 as X,), and those
indexed by ; = 0 as X(,c).

1> Model becomes

(Xi|9i = Kk, ) ~ N(tk(y)s Zk(y))
(xi('yc)|') ~ N(Ovﬂ(v‘:))7

with g; = k if the i-th sample belongs to group k.

Variable selection for mixture models, Tadesse et al (2005,
JASA), Raftery & Dean (2006, JASA), Stingo et al. (2012,
Sinica).
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Network priors

@ Use Markov Random Field prior on -, capturing spatial
dependencies among ROls (proximity)

P(yjlvi, i € Nj) = m’

where F(v;) = e+ fZ,-eNj(ny,- — 1) and N, is the set of
direct neighbors of ROI j in the network.

Parameter e controls sparsity. Higher values of f induce
more neighbors to assume the same values.

w Favors clusters of “relevant” ROlIs.
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Covariate-dependent mixture components

We want to link imaging and genetic information in the
participants’ subgroups.

1= Allow mixture components to depend on the covariates
l"‘ik(’y):l"'Ok('y)—i_lBZ(-('y)Z/v k:17"'>Ka
where po () is a baseline process (see later).

¥ Obtain component-specific parameters determining how
SNPs affect brain activities, given selected ROls.
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We want to identify different covariates (SNPs) affecting the
individual mixture components.

= Use spike and slab priors on By,

Bri(ry ~ 0N (Bok(y), hEk()) + (1 = 0k )Zo(Brk() ),

with §, = 1 if r-th covariate relevant to explain
measurements in k-th group.

Assume Bernoulli priors on §.

Variable selection approach to linear regression models of
George and McCulloch (1997, Sinica) and Brown et al.
(1998,2002, JRSSB).
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Spatial dependencies

= Model component-specific dependencies via distribution of
Kok(y) (random effect)

Bok(y) ~ No,(Vk(y), MToky), k=1,...,K,
with Tok(y ~ IW(dk, Q) and normal prior on v,
= This component captures correlation among distant ROIs

(functional connectivity), and it is in addition to the local
dependence captured by the network prior.

= Can also estimate component-specific networks among
selected ROls as
Bok(1)| Gk(y) ~ No, Wk(p)s MTok(y)), k=1,...,K,

with G the graph encoding the relationships (Dobra et
al, 2011).
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MCMC for posterior inference

Want to select discriminating features (via ) and important
covariates (via 4). Also, inference on the dependence structure
among the selected features (po(-))-

@ Metropolis-Hastings step on « (add /delete/swap).

© Metropolis-Hastings step for &, (add/delete/swap).

© Random walk Metropolis-Hastings step on the Kok(+)'S:

N / 2
fok = M(())kjd +e¢, e~ N(0,v9)

Posterior inference via marginal posterior probabilities of
inclusion. Post-MCMC estimates of variance components and
regression coefficients.

Use predictive distribution to classify new samples based on
the selected features and covariates.



Schizophrenia Case study
0000000000

Case study on schizophrenia

% Participant recruitment and data collection by the Mind
Clinical Imaging consortium (MCIC), a collaborative effort
of teams from Boston, lowa, Minnesota and New Mexico.

% fMRI data during a sensorimotor task for ny = 118 healthy
controls and ny = 92 schizophrenic patients.

% Training set of 174 participants and validation set with 36
participants (balanced scheme).

% R = 81 genetic covariates (SNP) available for each
participant in the study (implicated in schizophrenia).

= Use our unified modeling framework to relate brain
activities in subjects with different conditions to the
individuals’ specific genetic characteristics.
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Processing of the fMRI data

% Imaging data preprocessed in SPM5, realigned,
normalised, re-sliced and spatially smoothed.

% Data summarized in individual contrast images of
ROI-based summary statistics:

@ Multiple regressions fit to the data from each participant,
with regressors for stimulus and its temporal derivative plus
intercept.

@ Resulting regression coefficients used to create contrast
images —also called statistical parametric maps (Friston,
1995)— capturing the stimulus effect at each voxel.

© Maps segmented into p = 116 regions of interest (ROIs)
according to the MNI space Automated Anatomical
Labeling (AAL) atlas and activations in each region
summarised by median value for that region.
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@ For ~, set e = —4 (1% of total features, sparsity)
and f = 0.1 and 0.5 (small to moderate neighborhood
effect).

@ For §, set wyx = 0.1 (10% of covariates).
@ Vague prior specifications otherwise.

@ MCMC chains with 200,000 iterations and a burn-in of
1,000 iterations.
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Results: Selection of discriminating ROls

il h ’ sl - u - - 4 u
ROI Name p(vjlZ, X) for f = 0.1 | p(y|Z, X) forf=0.5
ROI'5 | Frontal Sup Orb L 0.39 0.78
ROI 21 Olfactory L 1.00 1.00
ROI 22 Olfactory R 1.00 1.00
ROI 27 Rectus L 0.94 1.00
ROI 28 Rectus R 0.90 0.99

Increase in posterior prob of ROI 5 due to MRF prior, since ROI 5 is
connected to ROls 21, 27 and 28.
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Orbital part of the superior frontal gyrus (ROI 5, coded as "1,
spanning superior frontal gyrus, middle frontal gyrus, inferior frontal
gyrus); olfactory cortex (ROls 21&22, coded as '2’, spanning
subcallosal gyrus and anterior cingulate); gyrus rectus (ROls 27&28,
coded as '3, spanning medial frontal gyrus, rectal gyrus and superior
frontal gyrus). Cross-hair identifies Brodmann area 10.
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Results: Component-specific connectivity

Estimated correlation matrices for control and schizophrenic
groups

1.0000 0.0149 0.0267 0.0295 0.0328
0.0149 1.0000 0.0246 0.0293 0.0235
COI’I’Mm = 0.0267 0.0246 1.0000 0.0373 0.0506
0.0295 0.0293 0.0373 1.0000 0.0539
0.0328 0.0235 0.0506 0.0539 1.0000

and

1.0000 0.3532 0.3403 0.3310 0.3562
0.3532 1.0000 0.4509 0.4193 0.4227
COFI’MO2 = 0.3403 0.4509 1.0000 0.3617 0.4024
0.3310 0.4193 0.3617 1.0000 0.3818
0.3562 0.4227 0.4024 0.3818 1.0000

Finding consistent with work in fMRI, less unique brain activity
in cases versus controls, supporting a generalized cognitive
deficit in schizophrenic patients, Calhoun et al. (2006).
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Results: Selection of SNPs

Poserior rbatity ofncusion

Control group

Schizophrenia group

S % S+ by ’
Schizophrenia

SNP Name p(d2y|Z, X) for f = 0.1 | p(d/|Z,X) for f =0.5
SNP 25 | rs1934909 0.49 0.47
SNP 31 rs875462 0.92 0.83
SNP 44 | rs17101921 0.84 0.85

Control

SNP Name p(61|Z,X)for f =0.1 | p(61,|Z,X)forf=0.5
SNP 16 | rs6794467 0.98 0.99
SNP 50 | rs2421954 0.98 0.99
SNP 70 | rs2270641 0.98 0.99
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= Selected SNPs relate to genes DISC1 and DTNBP1,
implicated in schizophrenia. Colantuoni et al. (2008) report
age-related changes in the expression of these genes in
the human prefrontal cortex, including Brodmann area 10.

= Selected SNPs in the control group are implicated in the
functioning of the central nervous system (CNS) that
controls behavior.

¥ Post-MCMC estimates of the regression coefficients inform
us on the effects of the selected SNPs on the activations of
the discriminating ROIs we selected.

= Qur setting allows individual covariates to have differential

effects (811 - - -» Brk(y)) ON the selected features.
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Results: Inference on selected regression coefficients

Interestingly, while effects are all significant across selected
ROls in the control group, differential effects are indicated in the
schizophrenia group (SNP 25 - in gene DISC1- has a
significant effect on the Rectus L only and SNP 31 - in gene
DTNBP1- on the Olfactory ROls).

ROI Name Schizophrenia group Control Group
SNP 25 SNP 16
ROI'5 | Frontal Sup Orb L | 0.0646 (-0.0861,0.2153) | -0.1801 (-0.3123,-0.0478)
ROI 21 Olfactory L 0.0635 (-0.1053,0.2322) | -0.2821 (-0.4446,-0.1195)
ROI 22 Olfactory R 0.0644 (-0.1060,0.2348) | -0.2783 (-0.4176,-0.1389)
ROI 27 Rectus L 0.2297 (0.0401,0.4193) | -0.2719 (-0.4400,-0.1038)
ROI 28 Rectus R 0.1649 (-0.0215,0.3514) | -0.2919 (-0.4350,-0.1487)
SNP 31 SNP 50
ROI'5 | Frontal Sup Orb L | 0.0125 (-0.0698,0.0949) 0.2100 (0.0584,0.3615)
ROI 21 Olfactory L 0.1392 (0.0470,0.2314) 0.3273 (0.1411,0.5135)
ROI 22 Olfactory R 0.1373 (0.0442,0.2304) 0.2468 (0.0872,0.4064)
ROI 27 Rectus L 0.0978 (-0.0057,0.2014) 0.2240 (0.0313,0.4166)
ROI 28 Rectus R 0.0740 (-0.0279,0.1759) 0.2446 (0.0806,0.4087)
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Predictions and comparisons

@ Using all the selected ROls and the selected SNPs, we
correctly classify 67% of the validation set.

@ We compare our joint estimation strategy with two-step
approaches:

(1) first classify subjects based on the imaging data (ROls)
data only

(2) then apply variable selection in linear models that regress
the individual ROIs on the SNPs.

In step (1) Bayesian variable selection method for probit
models of Sha et al. (2004, Biometrics) and support vector
machine (SVM) gave classifications very similar to ours.

In step (2), Guan and Stephens (2011, AOAS) selected
none of the SNPs in the control group, and SNP9 for ROI5,
SNP47 for ROI21 and SNP21 for ROI22 in schizophrenia.
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Alternative predictive model

A predictive model for disease status that takes into account
direct associations between the SNPs/ROlIs information and
the disease status, as well as the indirect associations captured
by a ROI-SNPs network

Z

Genetic Information

i

Clinical Outcome

X

Imaging Information
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Alternative predictive model

A regulatory network in which SNPs can affect ROI intensities

Z

Genetic Information

Y ROI-SNPs
Network
Clinical Outcome

X

Imaging Information
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Alternative predictive model

The selection of discriminatory SNPs is informed by the
ROI-SNP network (since SNPs involved in the regulatory
network are more likely to be significantly associated with the
clinical outcome).

Z

Genetic Information

-~

-~
Y ROI-SNPs
Network
Clinical Outcome

X

Imaging Information
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Alternative predictive model

ROls highly connected in the ROI-SNP network are more likely
associated with the clinical outcome; and clusters of adjacent
ROls

Z

Genetic Information

-~

-~
Y ROI-SNPs
Network
Clinical Outcome

-

X

Imoging Information
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Modeling highlights

@ Bayesian Probit regression = auxiliary latent variables
y* =180+ 280 + XB® + v, v~ N(O, In)

where
1 ify* >0,
yi= { i

0 otherwise,

@ DAG model to describe the ROI-SNPs network

@ Bayesian Variable Selection: Covariate-dependent Markov
Random Field Priors for 3(!) and 3(®) that depend on the
ROI-SNPs network and the structural (spatial)
dependences (for the ROIs)
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Results: ROI-SNP network

@ ()

ROIs
4 60 80 100
I I I

20
1

Figure: (a) ROI-SNP marginal posterior probabilities; (b) ROI-SNP
network. Red nodes correspond to SNPs and
correspond to ROls.
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Results: Selection of discriminatory ROIs and SNPS

Marginal posterior probabilities for ROls (left) and SNPs (right)
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Conclusions

References:

@ Stingo, F.C., Guindani, M., Vannucci, M. and Calhoun, V. (2013). An
Integrative Bayesian Modeling Approach to Imaging Genetics. Journal
of the American Statistical Association, 108, 876-891.

@ Chekou, T, Stingo, F.C., Guindani, M. and Do, K. A Bayesian predictive
model for imaging genetics with an application to schizophrenia. Under
Invited Revision.

= Bayesian hierarchical modeling for the analysis of data that
arise in imaging genetics.

= |dentify brain regions (ROIs) with discriminating activations
between schizophrenic patients and healthy controls and
corresponding selection of SNPs.
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Drawbacks and future work

= We use ROIl-based summary statistics (point estimates):
iz jmplicit assumptions of stationarity
1= |oss of temporal information
1= |oss of power

= We have considered healthy controls and schizophrenic
patients, based on clinical, symptom-based, categories:
1= Schizophrenia is a complex disease, and symptom-based
categories are increasingly seen inadequate to represent
such complexity:
= Unsupervised model based clustering is necessary to
identify important subgroups of the population
= Available information can be incorporated in the clustering
selection in a purely Bayesian framework.
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Simulations

R = 50 covariates (SNPs), 2 used to generate the
measurements. p = 104 features, 4 discriminating.

n = 200 observations generated from a mixture of K = 2
multivariate normal densities,

X ~ Ii<i<1s0Na(wot + B Zj 1) + 1so<i<200Na(uoz + B3 Zi, x2)

with X; = (X1, ..., X;4)". Training and validation sets.

Set the 4 x 1 vector pgy to 0.8, those of ug, to —0.8. Set
B, =0.8 1544 and B> = 0.8 - 15.4. Covariance structure
induced by setting the off-diagonal elements of X1 and X,
to 0.5, diagonal elements were set to 1.

Generate 100 noisy features from multivariate normal with
mean zero, vars 1 and off-diagonal elements 0.1.
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For ~, set e = —3 (5% of total features) and f = 0 (no network -
Bernoulli prior). For 4, set wy = 0.05 (5% of covariates). Vague
prior specifications otherwise.

Features Covariates - Group 1 Covaiates - Group 2

All 4 features identified, two covariates for first group and one
for the second. 73% corrected classified subjects on val set.
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Component-specific functional connectivity captured by

group-specific estimated correlation matrices

1.0000
0.5480
0.5916
0.4426

Corry,, =

and

1.0000
0.5322
0.5740
0.5379

Corry,, =

Good agreement with the true correlation structures:

0.5480
1.0000
0.6075
0.4848

0.5322
1.0000
0.5075
0.4535

0.5916
0.6075
1.0000
0.4930

0.5740
0.5075
1.0000
0.4924

0.4426
0.4848
0.4930
1.0000

0.5379
0.4535
0.4924
1.0000

Ry = 0.994 for Corr‘u01 and Ry = 0.997 for Corrﬂoz.
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Misclassification of 26% of the subjects. Repeated over 100
splits of the data into training and validation sets, average
misclassification error of 25.2% , 95% c.i. of (17,36)%.
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Comparison with alternative approaches

Our model jointly infers discriminating activation patterns and
identifies genetic features related to those patterns. We
compare with two-step approaches:

(1) first classify subjects based on the feature (ROls) data only
(2) then apply variable selection in linear models that regress
the discriminatory features on the genetic covariates.

In step (1) Bayesian variable selection method for probit models
of Sha et al. (2004, Biometrics) and support vector machine
(SVM) gave classification errors similar to ours.

In step (2), the method of Guan and Stephens (2011, AOAS)
led to more false positives (FP). For example, 2 true positives
(TP) and 2 FP for feature 13 in the control group and feature 20
in the schizophrenia group, and 2 TP and 1 FP for feature 83 in
the control group and feature 13 in the schizophrenia group.
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Modeling the ROI-SNPs Network

J We model the ROI-SNP network as a DAG.

1 The DAG can be written as a system of linear regressions,
to model ROls potentially affected by the SNPs

w Conditional independence assumption: Xg 1L Xy | Z

Xg:Z,B(gs)+€g, g: 1,...7G,

€g = (619, ceny Gng)T ~ N(O7 Ugln)

1 Selection indicators:
T'® a G x M matrix with elements 559 = 1 if SNP m
affects the ROI g and ’yé?% = 0, otherwise.
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Variable Selection prior

@ Mixture prior (Spike-and-slab prior) on the Sgm’s
B ~ Yom PM(0,7,7,0%) + (1 =250 do, m=1,.... M

If a SNP does not affect ROI g, then Sgm = 0
If a SNP affects ROI, then Bgm ~ PM(O, r, 7, 02).
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Variable Selection prior

@ Mixture prior (Spike-and-slab prior) on the Sgm’s
B ~ Yom PM(0,7,7,0%) + (1 =250 do, m=1,.... M

If a SNP does not affect ROI g, then Sgm = 0
If a SNP affects ROI, then Bgm ~ PM(O, r, 7, 02).

° '7gm ~ Bem(q )
e PM(0,r,t,0°) denotes a product moment prior (pMOM,
Johnson & Rossell, 2012), with density

62r 1
M(B, r, T, 02) = [(2,. _ 1)”] (27T)0~5(h0'2)’+0'5 exp {'2h02 ﬁ2}
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Product Moment prior

@ Symmetric at zero
@ Low prior probability to coefficients close to 0 = large
effect sizes (Non local prior) .

pMOM density

beta

Parameters r, h, 02: r characterizes the order of the
distribution and h determines the dispersion around zero.
(T h = 1 effects).
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Selection of discriminatory SNPs

Imaging Information

y* =160+ Zﬁ(l) + X/@(z) +
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Selection of discriminatory SNPs

@ Spike-and-slab prior on the ﬁ,(,:)’s
B ~ k) PM(O0,r.7,0%) + (1 =2fp)) do, m=1,....M

@ We model the SNP selection indicators vﬁ,l) as a function
of I'®:
exp (v1 +71 081 1)

Gy

P! =1IT® 1y, 74) = -
T+exp(vi+ 712 g1 Ygm

[ vy sparsity parameter

d 74 controls the effect of the ROI-SNP network on the SNP
selection

1= increasing function of the number of ROIs connected to
each SNP.
7 ~ TrunNorm(0, 0, 02)
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Selection of discriminatory ROIls

2

Genetic Information

Clinical Outcome
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Selection of discriminatory ROIls

@ Spike-and-slab prior on the Béf)’s

BE ~aF) PM(O,r.7,0%) + (1 =1§) b0, g=1,....G

@ Spatial dependencies via a covariate-dependent MRF:

M
2 2
PO P, (1) )gen,) ox exp (m;ﬁ) T2 ) Y

m=1

2 2
9’ €Ng

d v general sparsity parameter
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Selection of discriminatory ROIls

@ Spike-and-slab prior on the 652)’5

B8P ~ AP PM(O,1,7,0%) + (1 —7P) b0, g=1.....G

@ Spatial dependencies via a covariate-dependent MRF:

M
PO IT®. (1) )greny) o exp (vmff) +72 Y Y+

m=1

+215 Z bgg’I(’Yéz) = é?))
g'eNg

[ 7» controls the effect of the number of SNPs connected to
the ROls;

T ~ TruncNorm(0, r.,, 0, 02 ), r,, chosen to avoid the

» Y To

phase-transition problem.
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Selection of discriminatory ROIls

@ Spike-and-slab prior on the ﬂéz)’s

BE ~ A PM(O,r.7.0%) + (1 =1 b0, g=1.....G

@ Spatial dependencies via a covariate-dependent MRF:

v
PO, (Vg))g’e/vg) o exp (Vzm(f) +72) 19,84

m=1

+21p > bggI( = Vg(f))) -

g'eNg

O by = exp{-9290 1 it g’ € Ny and 0 otherwise.
72 is a smoothness parameter: 1 n2 = 1 #{vge) = 1}
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MCMC for posterior inference

J Main interest is in the selection of discriminatory SNPs (via
~(M) and ROIs (via v(?)).

1 Also, we are interested on inferring the dependence
structure of the ROI-SNP network (my and 72).

@ Metropolis-Hastings step on v, (2 and T'® (stochastic
search: add /delete/swap).

© Metropolis-Hastings step for 71 and 7».
@ MW =70 L i=12

@ adaptive MCMC to estimate Z(72), normalizing constant of
P(v®|T® 1y, 75, 12) (Atchade et al, 2013).



Conclusions
000

Prediction: classification of future cases

1 We can use Nney further measurements Xpew and Zpew 1o
predict disease status ynew for new subjects.

1 The latent variables y},, are predicted using a Bayesian
model averaging approach (Sha et al, 2004):

Ynew = Z (1nBOJanewB“)+Xnewﬁ(2))p(7(1)7')’(2)‘y*»Xa Z, é)a

(v ,~@)

where
0 0= (,72,1'®)and & = (B, BT, 3®T)T are MCMC
posterior estimates
o The latent variable y* is set to the mean y* of the y*’s,
sampled during the MCMC algorithm.
o The predictive probabilities of disease status can be
computed as p(y; = 11X, Z) ~ ®(§7)
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