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Neuroimaging

Brain anatomy Brain functions

Structural neuroimaging Functional neuroimaging

shows contrast indirectly measure
between different tissues neural activity

MRI, DTI fMRI, PET
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A Big Data Science

The amount of neuroimaging data per study reported
from published articles in NeuroImage.

Figure 1 from Van Horn and Toga, 2014
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Data Characteristics

3D Data (Spatial Data)

1	
  

...	
  ...	
  

T	
  

...	
  ...	
  

...	
  ...	
  

...	
  ...	
  

Time	
  

Massive dat sets: up to 300,000 voxels in a standard brain template

Important features: contiguous regions, sharp edges and jumps

Complex spatial correlations (neighbors, long-range between ROIs)

Temporal correlations
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An Example

Autism Brain Imaging Data Exchange (ABIDE)

ASD: Autism spectrum disorder

Resting-state fMRI

sidesteps the challenge of designing tasks

aggregates data sets from multiple imaging sites

Voxel-wise fALFF (fractional amplitude of low-frequency fluctuations)
to characterize the local brain activity.
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Resting-state fMRI and fALFF
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ABIDE Data

A total of 1,112 individuals (539 ASDs v.s. 573 typical controls)
across 17 imaging sites

For each individual, fALFF were computed over 185,405 voxels in 90
regions of interest (ROIs) in the brain based on the Automated
Anatomical Labeling (AAL) system

Demographical variables were also collected, such as age at scan, sex
and intelligence quotient (IQ)
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Scalar-on-Image Regression

Prediction/classification studies: use brain image to

Classify a subject’s group membership (e.g. disease status)

Predict clinical response or behavior (e.g. treatment response)

Predict neural activity

Linear model

y = Xβ + ε

where

y = (y1, . . . , yn): the outcome variable

X = (x1, . . . ,xp) be the image predictor with xj = (x1,j , . . . , xn,j)
T,

xi,j is the image intensity measurement at spatial location sj ∈ B
subject i.

Jian Kang (University of Michigan) 9 / 24



Variable Selection in High-Dimensional Feature Space

Regularization methods (Tibshirani (1996), Fan and Li (2001), Zou and
Hastie (2005)),

Point mass mixture (Mitchell and Beauchamp (1988), George and
McCulloch (1993, 1997), West (2003), Clyde and George (2004))

Continuous shrinkage priors (Park and Casella (2008), Polson and Scott
(2010), Carvalho et al. (2010), Bhattacharya et al. (2012))

Non-local priors (Johnson and Rossell, (2012), Johnson (2013))

Ising or binary Markov random field priors (Li and Zhang (2010), Stingo et
al. (2011) Smith and Fahrmeir (2007), Goldsmith et al. (2012), Li et al
(2015))

Heuristic methods (Berger and Molina (2005), Hans, Dobra and West
(2007), Scott and Carvalho (2009), Bottolo and Richardson (2010))
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Ultra-high dimensional variable screening

Straightforward Approach: Let βM
j be one screening statistic. Given a

threshold parameter γ, then the selected indices is given by

M = {j : |βM
j | > γ}.

Sure Independence Screening (Fan and Lv (2008), Fan and Song (2010),
Zhao and Li (2012)),

Screening statistics βSIS
j = XTy.

Theoretical results need strong conditions.
Computation order O(np).
Performance is not good in many cases.

High-dimensional Ordinary Least-squares Projection (Wang and Leng, 2015)

Screening statistics βHOLP
j = XT(XXT)−1y.

Theoretical results do not need very strong conditions.
Computation complexity O(n2p) +O(p2n).
Performance is improved.
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A New Approach: Posterior Mean Screening

A new feature screening approach:

Motivated by scalar-on-image regression, but can be more general

Derived from the Bayesian modeling framework, but also has good
theoretical results as frequentist methods.

Performance can be much better compared to SIS and HOLP for the
scalar-on-image regression model

Computation complexity is the same as HOLP.

The algorithm can be paralleled using the GPU techniques.
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A Bayesian Model

Assign multivariate Gaussian distribution to β.

y ∼ N(Xβ, σ2In), and β ∼ N(0p, τ
2Λ),

where τ2 and σ2 are variance parameters.

The correlation matrix Λ can be chosen flexible: e.g.

Incorporate the spatial smoothness within local regions using
correlation kernel in Gaussian processes.

Between-region correlation structure.

When Λ = Ip, it has a close link to ridge regression and HOLP.

When Λ = g(XTX)−1, it becomes the Zellner’s g prior.

Key idea: Using the marginal posterior mean of βj as the screening
statistics.

Jian Kang (University of Michigan) 13 / 24



Posterior mean screening

How to efficiently compute the posterior mean for ultra-high
dimensional case?

For each j, coefficient β can be split into two parts βj and
β−j = (βk, k 6= j)T. The conditional prior distribution of β−j given βj is
given by

β−j ∼ N(0p−1, τ
2Γ−j).

where Γ−j = Λ−j,−j −Λ−j,jΛ
T
−j,j with Λ−j,−j = (λk,l)k 6=j,l 6=j and

Λ−j,j = (λk,j , k 6= j)T.
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Model Equivalence

Recall the joint model

y ∼ N(Xβ, σ2In), and β ∼ N(0p, τ
2Λ), (1)

The marginal posterior distribution of βj given y in model (1) is
equivalent to the posterior distribution of βj given y from model (2),

y ∼ N
[
xjβj , τ

2Ω−1−j

]
, and βj ∼ N[0, τ2], (2)

where Ω−j = [X−jΓ−jX
T
−j + θ2In]

−1 with θ2 = σ2/τ2. It is given by

[βj | y,X, σ2, τ2 ] ∼ N(νj , κ
2
j ),

where

βPMS
j = νj =

xT
j Ω−jy

xT
j Ω−jxj + 1

, κ2j =
τ2

xT
j Ω−jxj + 1
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Useful Identities

To simplify the computation, we introduce XΛ = [x̃1, . . . , x̃p]. Define
Ω = (XΛXT + θ2In)

−1. Then Ω−j = (Ω−1 − x̃jx̃
T
j )
−1. Furthermore,

Ω−j = Ω +
Ωx̃jx̃

T
j Ω

1− x̃T
j Ωx̃j

,

Then

xT
j Ω−jxj = xT

j Ωxj +
x̃T
j Ωxj

1− x̃T
j Ωx̃j

(x̃T
j Ωxj),

xT
j Ω−jy = xT

j Ωy +
x̃T
j Ωxj

1− x̃T
j Ωx̃j

(x̃T
j Ωy).
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Alogrithm

Input: y, X, Λ, θ2,

1 Compute X̃ = XΛ. Note that X̃ = [x̃1, . . . , x̃p].

2 Compute Ω = (X̃XT + θ2In)
−1.

3 For j = 1, . . . , p,

1 Compute [x∗j , x̃
∗
j ,y
∗] = Ω[xj , x̃j ,y]

2 Compute (aj , bj , cj) = x̃T
j [x
∗
j , x̃
∗
j ,y
∗]

3 Compute (dj , ej) = xT
j [x
∗
j ,y
∗]

4 Compute fj = aj/(1− bj)

5 Compute νj = (ej + fjcj)/(dj + fjaj + 1)

Output: {νj , j = 1, . . . , p}.
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Hyperprior Specifications

θ2 = σ2/τ2 can be very small for a less-informative prior. It can be
zero as long as XΛXT is non-singular (similar to HOLP).

For the scalar on image regression, we can choose Λ = [λj,j′ ] with
λj,j′ exp

(
−ρ‖sj − sj′‖2

)
within certain region.

The choice of γn can be based on how many variables that are
included in model. It can be proportional to the sample size n.
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Simulation Results

Top 800
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Simulation Results

Top 1,600
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Simulation Results

Top 5,000

x

y

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

HOLP PMS

SIS

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

True beta

0.0

0.5

1.0

1.5

2.0

True signals (in red): 1,600 (PMS: 1600, HOLP: 1148, SIS: 746)
Pixels: 150x150 = 22,500

Jian Kang (University of Michigan) 21 / 24



ROC Curves
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Preliminary Analysis of ABIDE Data

1112 healthy subjects with fALFF values on 185,405 voxels over 90
regions

Make prediction on the disease status yi ∈ {−1, 1}.
Iteratively PMS in remove the half voxels each time. Using cross
validation to determine the stopping time

Selected major regions: PoCG-R and IFGtriang-R, which can achieve
84% accuracy percent prediction accuracy. (I-HOLP: 75% and I-SIS:
65%).

Computational time: 69 seconds (GPU parallel computing, CUDA
7.5, Macbook Pro, C++, ArrayFire).
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Future Work

Theoretical Justifications

Sure Screening
Sure Consistency

More simulation studies for more complex correlation structure

PMS for generalized linear model (better for data analysis).

Package for implementing GPU computation in R.
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