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Motivation

Figure : Cortical thickness (mm) for left hemisphere from a single subject (101006) from the
Human Connectome Project.

Goals of this talk:
1. Determine “nature vs. nurture” for brain traits.
2. Incorporate spatial information to predict latent effects.
3. Address computational issues from large covariance matrices.
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ACE Model
Fisher’s model for polygenic effects on a phenotype:
Additive, Common, and unique Environmental components

Figure : Path diagram for the SEM. MZ: monozygotic. DZ: dizygotic.
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FSEM (Luo et al)
[Luo et al., 2016]: Functional structural equation model for
v ∈ [0,1]:

yij(v) = X ′ijβ(v) + Rij(v),

Rij(v) =
[
{1− 1lDZ (i)}+

√
0.51lDZ (i)

]
ai(v)

+
√

0.51lDZ aij(v) + ci(v) + eij(v),

with

ai(v) ∼ GP(0,Σa(v , v)),
aij(v) ∼ GP(0,Σa(v , v))
ci(v) ∼ GP(0,Σc(v , v))

eij(v) ∼ N(0, σ2
e(v)).
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FSEM (Luo et al): Three-step estimation

• Estimators:
1. Univariate analysis at every location using MLE to estimate

ACE at every vertex.
2. MWLE with bandwidth determined using 5-fold CV.
3. Estimate covariance function with compact support in R1 using

local constant regression with residuals from step 1.
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FSEM (Luo et al): Local constant regression for
covariance estimation

Ûi,j,v0,v′
0
=

{
R̂i,j,v0 R̂i,j,v′

0
if v0 6= v ′

0

0 if v0 = v ′
0

and
Ûi,v0,v′

0
=
(

R̂i,1,v0 R̂i,2,v′
0
+ R̂i,1,v′

0
R̂i,2,v0

)
/2.

Jn(v , v ′) =

1
N

n∑
i=1

mi∑
j=1

∑
{v0,v′

0∈V0(v′)}

{
Ûij(v0, v ′

0)−Σa(v , v ′)−Σc(v , v ′)
}2

Kh(v0, v)Kh(v ′
0, v

′)

+
1
n1

n1∑
i=1

∑
{v0,v′

0∈V0(v′)}

{
Ûi(v0, v ′

0)−Σa(v , v ′)−Σc(v , v ′)
}2

Kh(v0, v)Kh(v ′
0, v

′)

+
1
n2

n2∑
i=1

∑
{v0,v′

0∈V0(v′)}

{
Ûi(v0, v ′

0)− 0.5Σa(v , v ′)−Σc(v , v ′)
}2

Kh(v0, v)Kh(v ′
0, v

′).
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ACE for large spatial data

• Estimators:
1. Vertex-wise univariate analysis using MLE to estimate ACE at

every vertex.
2. Smooth MLE using biweight kernel with bandwidth determined

using GCV.
3. In our data application, use geodesic distance on Freesurfer

32k spherical template.
4. Estimate covariance functions at observed locations using a

“sandwich” formulation of local constant regression with
residuals from step 1. GCV.

5. Also developing an approach with random projections that
scales to massive matrices.
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Simplifying the spatial structure

Source: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferAnalysisPipelineOverview

• Our spatial methods will use the geodesic distance on the
Freesurfer 32k spherical template.

• Calculations are fast using great-circle formula.
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Linear combinations of sample covariances
• “Sample” covariances

All: S0 =
1
N
(
R′R

)
MZs: S1 =

1
2n1

(
R′11R12 + R′12R11

)
DZs: S2 =

1
2n2

(
R′21R22 + R′22R21

)
.

Define simple estimators

SA = S0 + S1 − 2S2 + diag S1 − diag S0

SC = 2S2 − 0.5S0 − 0.5S1 + 0.5 diagS0 − 0.5 diagS1.

• Create PSD estimates by calculating EVD and truncating
eigenvalues. Low rank.
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Sandwich formulation of local constant regression

• [Xiao et al., 2013] use sandwich formulation of covariance
estimation using bivariate P-splines, KSAK′.

• Facilitates use of GCV, (K⊗ K) vecSA

• For twin studies, we have multiple covariance functions to
estimate.

• We propose the sandwich formulation of local constant
regression estimators.

• Define K such that Kk ,l = Kh(vk , vl)/
∑V

l=1 Kh(vk , vl). Then

Σ̂A = KS+
A K′ (1)

Σ̂C = KS+
C K′. (2)

• Smooth eigenvectors only: (KΨA
+)ΛA

+(ΨA
+′

K′).

Large covariance estimation for spatial functional data with an application to twin studies 10



eBLUPs for DZ twin pair
• ai = [[ai(1), . . . ,ai(V )]′ ⊗ 12] ∈ R2V ,

a∗i = [ai1(1),ai2(1) . . . ,ai1(V ),ai2(V )]′ ∈ R2V

• Matrix formulation for DZ pair:

Yi = (IV ⊗ Xi)β +
√

0.5(IV ⊗ I2)a∗i +
√

0.5(IV ⊗ J2)ai+

(IV ⊗ J2)ci + ei

with Yi ∈ R2V , ei unique environmental variance, Xi ∈ R2×p

design matrix for the twin pair, β ∈ RVp fixed effects,
• Derive the BLUPs

â∗i = (0.5Σa ⊗ I2) {0.5Σa ⊗ I2+

(0.5Σa +Σc)⊗ J2 +Σe ⊗ I2}−1 {Yi − (IV ⊗ Xi)β}

and similarly derive predictors for âi and ĉi
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Simulation design
• For 50 MZ, 50 DZ, 100 singles, simulate GP at 1002 locations

ci(v) =
4∑

`=1

ξi`f`(v , v ′),

ξi1
iid∼ N (0,2000),

ξi2
iid∼ N (0,1367),

ξi3
iid∼ N (0,733),

ξi4
iid∼ N (0,100),

where f`(·, ·) is an orthogonal basis generating local and
long-range dependence.

• ai(v) and aij(v) modified to have a region with zero variance.
• Σe = 2diag(Σa +Σc)
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Example simulation: four seeds and Σ̂a

Figure : Estimated covariance for four randomly chosen seeds from the simulation
associated with median MLE error.
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Simulation Results
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Simulation example: Predictions for two subjects

Figure : Predicted ai for an MZ (left) and ai + aij for a DZ (right).
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Preliminary HCP Results: Covariance from a seed
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Figure : 100*Covariance of genetic effects in cortical thickness (left hemisphere) from seed
5062 using the LCR method (left) and covariance versus distance (right).
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Figure : Cortical thickness (left hemisphere) for subject 101006.

Large covariance estimation for spatial functional data with an application to twin studies 17



Preliminary results

Figure : Additive genetic effect for subject 100106 estimated from covariance function.

Large covariance estimation for spatial functional data with an application to twin studies 18



Discussion

• Incorporating spatial information improves prediction of
random effects

• Locally weighted covariance estimators can capture
short-range and long-range correlations.

• Future directions: explore better ways for PSD to minimize
distance between symmetric function on the sphere and
positive semi-definite functions.

• Develop bounds on approximation error from random
projections to control balance between accuracy and speed.
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Generalized approach for massive matrices

• Idea of random projections: Q is random semi-orthogonal with
dimensions V × R for some R << V

• Since RankSA is small, we let Q ∈ OV×R for some
R > N + 20. Then

Σ̂A ≈ KQQ′ŜAQQ′K′.

Large covariance estimation for spatial functional data with an application to twin studies 22



Approach for massive matrices, cont.

• Define T = Q′SAQ and let T̃ be the PSD matrix closest to T.
• It will turn out that we can calculate T̃ without constructing SA.
• We will define a memory efficient approach to obtain the fPCA

decomposition that is equivalent to the following estimator:

Σ̂FAST
A = KQT̃Q′K′

which is guarenteed PSD.
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Approach for massive matrices, cont.

Define R̃ = RQ, which is N × d , and similarly define R̃11, R̃12, R̃21,
R̃22. Then

T = Q′SAQ
= Q′ {S0 + S1 − 2S2 + diag S1 − diag S0}Q

= Q′
{

1
N
(
R′R

)
+

1
2n1

(
R′11R12 + R′12R11

)
+

1
n2

(
R′21R22 + R′22R21

)
+diag S1 − diag S0}Q

=
1
N

R̃′R̃ +
1

2n1

(
R̃′11R̃12 + R̃′12R̃11

)
+

1
n2

(
R̃′21R̃22 + R̃′22R̃21

)
+ Q′ (diag S1 − diagS0)Q.
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Approach for massive matrices, cont.

• We calculate the terms in diag S1 and diag S2 and use sparse
matrix multiplication to calculate Q′diag S1Q and Q′diag S0Q.

• We calculate T̃ by truncating to the eigenvalue/eigenvector
pairs corresponding to positive eigenvalues. Let
T̃ = Ψ̃AΛ̃AΨ̃A

′
.

• Define
ΨFAST

A = KQΨ̃A.

• Then our fPCA approximation of the covariance matrix is

Σ̂FAST
A = ΨFAST

A Λ̃AΨ
FAST
A

′
.
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Figure : Point-wise likelihood ratio statistic for model without versus with additive genetic
variance.
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Figure : Point-wise weighted likelihood ratio statistic for model without versus with additive
genetic variance.

Large covariance estimation for spatial functional data with an application to twin studies 27



Preliminary results

Figure : Additive genetic effect estimated from pointwise SmMLE for subject 100106.
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Example from single simulation: diagΣ̂a
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Example from a single simulation: diagΣ̂a
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Simulation design and example: Σ̂c
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