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Outline

Introduction
Varied methods to produce fMRI images with varied properties.

Reconstruction
Voxels are not directly measured (k-space). Reconstructed! 

Processing
Images are processed for enhancement & artifact reduction. 

Implications
Effects of image reconstruction & processing? Mean, Var, Corr?

Discussion
How was our data was produced and what was done to it?
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Introduction
In fMRI and fcMRI, there has been an amazing amount

of advanced analysis and interpretations presented,

but little attention has been paid to what the data truly are.
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Fox et al, PNAS, 2006.
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Introduction
In general, reconstructed GRE EPI images look like below.

How do we get from the below to the previous activation?

And the below isn’t even our original measurements.

Are we ahead of the data with our analyses and interpretations?
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Reconstruction
In fMRI and MRI, the measurements taken by the machine

are an array of complex-valued spatial frequencies.

This array of complex-valued spatial frequencies need to be

reconstructed into an image for us to see, analyze, and interpret.

The array of complex-valued spatial frequencies are 

reconstructed into an image via the inverse Fourier transform.

So lets briefly remind ourselves what the FT and IFT are.
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Reconstruction
Single Coil Acquisition
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Coil

Unaccelerated Acquisition (A=1).

kx

ky

Δky

Δkx

Coil measures k-space.
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Kumar et al: JMR, 18(1):69-83,1975.

Coil wraps around so uniform sensitivity.



Reconstruction
We inverse Fourier transform spatial freqs to generate image.
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Reconstruction
We inverse Fourier transform spatial freqs to generate image.

8D.B. Rowe

(nx=ny=96, Δx=Δ y=2.5 mm)
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Reconstruction
We inverse Fourier transform spatial freqs to generate image.
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Reconstruction
We inverse Fourier transform spatial freqs to generate image.
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(nx=ny=96, Δx=Δ y=2.5 mm)

(FOV=240 mm)
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imageIFT matrix spatial frequencies IFT matrix
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Phase discarded. Ask for the other ½ of YOUR data.
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Reconstruction
The machine Fourier encodes the image. Measure spatial freq.
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Reconstruction
We can stack freq. rows of reals over rows of imaginaries,
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Reconstruction
We can stack freq. rows of reals over rows of imaginaries, 

make one IFT reconstruction matrix from the two, 
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Reconstruction
We can stack freq. rows of reals over rows of imaginaries, 

make one IFT reconstruction matrix from the two, 

to get the rows of reals over rows of imaginaries. 
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Processing
Many processing operations are performed by the scanner, 

by physicists, and by engineers before statistical analysis.
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k-space Processing

Nyquist Ghost Correction

Static B0 Field Correction

Zero Fill Interpolation

Non-Cartesian Interpolation

Ramp Sampling Interpolation

Homodyne Interpolation

Apodization

And many more…
+ i 

Image Processing

Image Smoothing

Global Normalization

Motion Correction

And many more…

Image Reconstruction

2D inverse Fourier transform

In-Plane SENSE/GRAPPA

Through-Plane SENSE
Show ones in blue.

Time Series Processing

Filtering

Smoothing

Dynamic B0 Correction

Slice Timing

And many more…
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Reconstruction
We can stack freq. rows of reals over rows of imaginaries, 

make one IFT reconstruction matrix from the two, 

to get the rows of reals over rows of imaginaries. 
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Processing
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Processing
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Processing

We measure an array of complex-valued numbers, 

perform complex-valued image reconstruction to this array,

to generate complex-valued images in real and imaginary,

along the way, there is complex-valued image processing.

What are the implications of what was done to the data?
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Implications

In statistics, we know the rule that says:

If a vector f has a mean δ, and a covariance Γ,

Then y=Of has a mean μ=Oδ, and a covariance Σ=OΓOT.

Then Σ can converted into a correlation matrix R=D-1/2ΣD-1/2.

Where                             .

Assume k-space measurements independent so Γ=I.
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Implications

Operators, O.
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-1.1×10-4

1.1×10-4
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Implications

Mean, µ=Of.
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Implications

Correlation matrix and correlation image.
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Implications

Correlation, R=D-1/2ΣD-1/2.
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Reconstruction
Multi-Coil Acquisition
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Hyde et al.: JMR, 70:512–517, 1986.          Pruessmann et al.: Proc. ISRM, 579,1998.

Coil local so non uniform sensitivity.



Reconstruction
Multi-Coil Acquisition
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Each coil measures k-space.
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Reconstruction
Multi-Coil Acquisition
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Reconstruction
SENSE 
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& →

NC=4, A=1

Measured Coil Images Combined 

Image

Estimated Sensitivities
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Reconstruction
Multi-Coil Acquisition

S21
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Reconstruction
Multi-Coil Acquisition

S21
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Each coil measures k-space.
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Reconstruction
SENSE 

Measured Coil Images Separated

Combined 

Image
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Estimated Sensitivities
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Reconstruction/Processing
SENSE

CSP

0

0

1u

pu

k-space 

vector of 

Nc images  

Image vector

reconstruct Nc=4 imagespermute to by 

folded voxel

0

0

I UO P kO
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Implications

In statistics, we know the rule that says:

If a vector f has a mean δ, and a covariance Γ,

Then y=Of has a mean μ=Oδ, and a covariance Σ=OΓOT.

Then Σ can converted into a correlation matrix R=D-1/2ΣD-1/2.

Where                             .

Assume k-space measurements independent so Γ=I.
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Implications
SENSE induces long-range in-plane correlation.

Center voxel

fold

fold
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a

b

c

Basically multiplying voxel values at by 

same 3 numbers over time t to lead to 

correlated voxels.
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Implications
SENSE Reconstruction induces long-range correlation.

SENSE A=3  smoothedExperimental Results

R-R M2I-I R-I

R-R M2I-I R-I
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Karaman,Nencka,Bruce,Rowe: Brain Connect, 4:649-661,2014.



Experimental Results

Implications
GRAPPA reconstruction induces long-range correlation.
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Bruce: PhD Dissertation, 2014.



Reconstruction
Multi-Coil Acquisition
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j=1:A

Each coil measures k-space.

Larkman et al: JMRI, 13:313-317,2001.

Simultaneous Multi-Slice (SMS)

Coil local so non uniform sensitivity.



Reconstruction
Multi-Coil Acquisition
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Coil local so non uniform sensitivity.



Reconstruction
Multi-Coil Acquisition
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Reconstruction
SENSE SMS 

Measured Coil Images

Separated

Combined

Images
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Estimated Sensitivities
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Reconstruction/Processing
SENSE SMS
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Implications

In statistics, we know the rule that says:

If a vector f has a mean δ, and a covariance Γ,

Then y=Of has a mean μ=Oδ, and a covariance Σ=OΓOT.

Then Σ can converted into a correlation matrix R=D-1/2ΣD-1/2.

Where                             .

Assume k-space measurements independent so Γ=I.
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Implications

SENSE induces long-range through-plane correlation.
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Implications

SENSE induces long-range in-plane correlation.
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Implications

SENSE induces long-range through-plane correlation.
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Implications

SENSE induces long-range in-plane correlation.
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Discussion

Care needs to be taken when we obtain data.

We should get data in its originally measured form.

We should do any required processing ourselves.

We should develop models that incorporate processing.

We should use all of the data (magnitude and phase). 
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