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Outline

Introduction
Varied methods to produce fMRI images with varied properties.

3%

Reconstruction
Voxels are not directly measured (k-space). Reconstructed!

Processing
Images are processed for enhancement & artifact reduction.

_Implications
Effects of image reconstruction & processing? Mean, Var, Corr?

Discussion
How was our data was produced and what was done to it?
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Introduction

In fMRI and fcMRI, there has been an amazing amount

of advanced analysis and interpretations presented,

but little attention has been paid to what the data truly are.

Seed Regions from Activation Maps Spherical Seed Regions

Fox et al, PNAS, 2006.
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Introduction

In general, reconstructed GRE EPI images look like below.
How do we get from the below to the previous activation?
And the below isn’t even our original measurements.

96x96
240mm FOV
2.5 mm?2
In-Plane

Are we ahead of the data with our analyses and interpretations?

D.B. Rowe 4
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Reconstruction
In fMRI and MRI, the measurements taken by the machine
are an array of complex-valued spatial frequencies.

This array of complex-valued spatial frequencies need to be
reconstructed into an image for us to see, analyze, and interpret.

The array of complex-valued spatial frequencies are
reconstructed into an image via the inverse Fourier transform.

So lets briefly remind ourselves what the FT and IFT are.



BIRS Neuroimaging Data Analysis  Coil wraps around so uniform sensitivity.

Reconstruction Coil
Single Coil Acquisition

Coil measures k-space.

Unaccelerated Acquisition (A=1).

D.B. Rowe Kumar et al: IMR, 18(1):69-83,1975.
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(FOV=240 mm)
Reconstruction (n,=n,=96, Ax=Ay=2.5 mm)
We inverse Fourier transform spatial fregs to generate image.
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0.2 spatial frequencies 0.2
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(FOV=240 mm)
Reconstruction (n,=n,=96, Ax=Ay=2.5 mm)
We inverse Fourier transform spatial fregs to generate image.
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(FOV=240 mm)
Reconstruction (n,=n,=96, Ax=Ay=2.5 mm)
We inverse Fourier transform spatial fregs to generate image.

oE
© =
C
ie))
©

spatial frequencies IFT matrix
D.B. Rowe 9



BIRS Neuroimaging Data Analysis e

(FOV=240 mm)
Reconstruction (n,=n,=96, Ax=Ay=2.5 mm)
We inverse Fourier transform spatial fregs to generate image.
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D.B. Rowe Phase discarded. Ask for the other Y2 of YOUR data. 10
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Reconstruction
The machine Fourier encodes the image. Measure spatial freq.

0 n

Imaginary

FT matrix imao FT matrix spatial frequencies
D.B. Rowe 11




BIRS Neuroimaging Data Analysis

Reconstruction o
We can stack freq. rows of reals over rows of imaginaries,

D.B. Rowe




We can stack freq. rows of reals over rows of |mag|naries,
make one IFT reconstruction matrix from the two,

D.B. Rowe
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Reconstruction
We can stack freq. rows of reals over rows of |mag|naries,
make one IFT reconstruction matrix from the two,
to get the rows of reals OVer rows of |mag|nar|es
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Processing

Many processing operations are performed by the scanner,
by physicists, and by engineers before statistical analysis.

Real

+ |

Imaginary

k-space Processing
Nyquist Ghost Correction
Static BO Field Correction
Zero Fill Interpolation
Non-Cartesian Interpolation
Ramp Sampling Interpolation
Homodyne Interpolation
Apodization

And many more...

Image Reconstruction

2D inverse Fourier transform
In-Plane SENSE/GRAPPA
Through-Plane SENSE

Image Processing
Image Smoothing
Global Normalization
Motion Correction
And many more...

Time Series Processing
Filtering

Smoothing

Dynamic BO Correction
Slice Timing

And many more...

Show ones in blue.
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Reconstruction
We can stack freq. rows of reals over rows of |mag|naries,
make one IFT reconstruction matrix from the two,
to get the rows of reals OVer rows of |mag|nar|es
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Processing

D.B. Rowe
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Processin
y O

128= 128
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Smoothing IFT Reconstruction
Processed k-space
Image ~, D
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Apodization Zero-Filling 1

D.B. Rowe
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Processing

We measure an array of complex-valued numbers,
perform complex-valued image reconstruction to this array,
to generate complex-valued images in real and imaginary,
along the way, there is complex-valued image processing.

What are the implications of what was done to the data?

D.B. Rowe
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Implications

In statistics, we know the rule that says:

If a vector f has a mean ¢, and a covariance T,

Then y=0f has a mean =04, and a covariance X=0I'O".

Then T can converted into a correlation matrix R=DY2xD-12,

Where DV?=1/,/diag(Z) .

Assume k-space measurements independent so I'=l.

D.B. Rowe
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Implications
Mean, u=0f.

D.B. Rowe 22



BIRS Neuroimaging Data Analysis

Implications
Correlation matrix and correlation image. "
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D.B. Rowe 23



BIRS Neuroimaging Data Analysis Cna T

Implications
Correlation, R=D-12xD-12,

h) O=5QA4Z
D.B. Rowe TH=.001 24
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Reconstruction
Multi-Coil Acquisition

Each coil measures k-space.
N.=4, A=1

D.B. Rowe Hyde et al.: IMR, 70:512-517, 1986. Pruessmann et al.: Proc. ISRM, 579,1998. 25
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Reconstruction
Multi-Coil Acquisition
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Each coil measures k-space.

N.=4, A=1

D.B. Rowe
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Reconstruction
Multi-Coil Acquisition

am = r.
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Each coil measures k-space.

N.=4, A=1

D.B. Rowe

Coalil local so non uniform sensitivity.

27
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Reconstruction
SENSE

Measured Coil Images Estimated Sensitivities Combined
Image

N.=4, A=1

D.B. Rowe 28
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Reconstruction
Multi-Coil Acquisition
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Each coil measures k-space.

No=4, A=3

D.B. Rowe
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Reconstruction
Multi-Coil Acquisition
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Each coil measures k-space.

No=4, A=3

D.B. Rowe
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Reconstruction
SENSE

Measured Coil Images Estimated Sensitivities Separated
Combined
Image

No=4, A=3

D.B. Rowe
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Reconstruction/Processing
SENSE

Image vector

e
U,

O, R, ’ P-s

EE BRI D B r il iem
I
o
-
©

\ T _ k-space
L folded voxel N; images




BIRS Neuroimaging Data Analysis

Implications

In statistics, we know the rule that says:

If a vector f has a mean ¢, and a covariance T,

Then y=0f has a mean =04, and a covariance X=0I'O".

Then T can converted into a correlation matrix R=DY2xD-12,

Where DV?=1/,/diag(Z) .

Assume k-space measurements independent so I'=l.

D.B. Rowe
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Implications
SENSE induces long-range in-plane correlation.

Theoretical Results SENSE A=3 smoothed

. I-|
fold 7-—>li| }\:L :...{. ,il }\:L

Center vexeié -

Basically multiplying voxel values a, by
same 3 numbers over time t to lead to
correlated voxels.

D.B. Rowe 34
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Implications
SENSE Reconstruction induces long-range correlation.

Experimental Results SENSE A=3 smoothed
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Human Subject A

D.B. Rowe Karaman,Nencka,Bruce,Rowe: Brain Connect, 4:649-661,2014. 35



BIRS Neuroimaging Data Analysis Cna T

Implications
GRAPPA reconstruction induces long-range correlation.

GRAPPA A=3 smoothed
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Experimental A

D.B. Rowe Bruce: PhD Dissertation, 2014. 36
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Reconstruction
Multi-Coil Acquisition

D.B. Rowe Larkman et al: IMRI, 13:313-317,2001.
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Reconstruction
Multi-Coil Acquisition

Each coil measures k-space.

vj,Skj
Ne=4, A=3 J=1:A, k=1:N,

D.B. Rowe
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Reconstruction
Multi-Coil Acquisition
Simultaneous Multi-Slice (SMS)

= T =¥ | R e . =
=

r . 2 A .'?",‘7.. .'.’;i.'
Each coil measures k-space.

VJ,SkJ,ak
Ne=4, A=3  j=1:A, k=1:N,

D.B. Rowe

Coalil local so non uniform sensitivity.

39
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Reconstruction
SENSE SMS

Separated
Combined

Measured Coil Images Estimated Sensitivities Images

Lt
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N.=4, A=3

D.B. Rowe 40
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Reconstruction/Processing a
SENSE SMS
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Implications

In statistics, we know the rule that says:

If a vector f has a mean ¢, and a covariance T,

Then y=0f has a mean =04, and a covariance X=0I'O".

Then T can converted into a correlation matrix R=DY2xD-12,

Where DV?=1/,/diag(Z) .

Assume k-space measurements independent so I'=l.

D.B. Rowe
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Implications

SENSE induces long-range through-plane correlation.
Coil Images R1 |11 R2 12 R3 13
£ Separated TN AT
e Images R1IEE

D.B. Rowe 43
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Implications

SENSE induces long-range in-plane correlation.
Coil Images R1 |11 R2 12 R3 13
Separated o P
Images 2:74 &17

D.B. Rowe 44
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Implications

SENSE induces long-range through-plane correlation.

Coil Images M1 M2 M3
s Separated

Images R T‘“}.

: r':.__.'l

D.B. Rowe 45
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Implications
SENSE induces long-range in-plane correlation.

Coil Images M1 M2 M3
Separated R
Images '
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Discussion

Care needs to be taken when we obtain data.

We should get data in its originally measured form.

We should do any required processing ourselves.

We should develop models that incorporate processing.

We should use all of the data (magnitude and phase).

D.B. Rowe
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