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Outline of the Talk

@ Spatio-temporal Model for detection of task-related
activation patterns (single subject):

- Correlated Errors.
- Network priors capturing structural dependencies.
@ Extension to multiple subjects:
- Nonparametric priors to capture the association among

voxel time series within and across subjects
- Variational Bayes algorithm for inference.
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The General Linear Model of Friston et al. (1994)
fMRI = BOLD Signal + Noise

BOLD Signal: convolution of stimulus function v(t) and HRF
h(t) - time lapse between v(t) and vascular response

t
X(t) = (v * B)(t) = /0 v(s)h(t — s)ds

Block Design Hemodynamic Response Function (HRF)
Convolved With
* =

Event-related Design

i1l

Noise: caused by hardware and subjects themselves.
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Model for Single Subject

Y,=X06,+¢e,, v=1,...,V

Y, =(Y1,...,Y,7) time-series data for voxel v.
@ X, the convolved design matrix T x p (set p=1).
@ Poisson HRF with voxel-dependent parameter \,

i, (1) = exp(~ A )AL/t

® B, = (Bu1,-..,Bup)" vector of regression coefficients.

@ &, ~ Nr(0,%,).
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Modelling Challenges

Temporal Modelling:
@ Choice and parameters of the HRF
(Gossl et. al (2001), Woolrich et al. (2004), Quiros et al. (2010)).

@ Noise structure - AR(q)
(Woolrich et al. (2004), Penny et al. (2005), Lee et al. (2014)).

Spatial Modelling:

@ Spatial priors on g3,
(GMRF in Gossl et. al (2001) & Quiros et al. (2010); Laplacian in
Penny et al. (2005); SSBF in Flandrin and Penny (2007)).

(Spike-and-slab in Smith and Fahrmeir (2007) & Kalus et al.
(2013) & Lee et al. (2014)).
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Temporal Modeling

Source of variability:
@ Low-frequency noise, as head movement caused by slow
rotation or translation during scanning.

@ Physiological noise, as cardiac and respiratory
cycle-related pulsations.

Introduce a shift component or model the noise as long-range
()= YTT¥as T — oo

(not negligible dependence between distant observations)

(Zarahn et al. (1997, Neurolm) & Aguirre et al. (1997, Neurolm); Fadili &
Bullmore (2002, Neurolm;2005, IEEETrSPr) and Jeong, Vannucci, and Ko
(2013, Biometrics)).

Ey ~ NT(ovzu)a Zu(iaj) = [’7(|I_/|)]
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Use wavelet transforms to “whiten” the data.

@ Wavelets decorrelate data from long-memory processes

(Wornell & Oppenheim (1992, IEEETrSPr), Tewfik & Kim (1992,
IEEETrITh), McCoy & Walden (1996, JCGS), Craigmile & Percival
(2005, IEEETrITh), Ko and Vannucci (2006, JSPI)).

@ Let W be the T x T matrix of the wavelet transform
Y, =X 6, +¢e,, &,~Nr(0,%X)),
with Y = WY, X* = WX,, & = We,.
@ Y =Wx, W =diag[¢,, «,], with 1, the innovation

variance and «,, € (0, 1) the long memory parameter
(Vannucci and Corradi (1999, JRSSB)).
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@ Dirichlet Process (DP) prior on (¢, )

(v, a0)|G ~G;
G|777 GO NDP(U? GO);
Go :IG(ao, bo) X Beta(a1 , b1)
This induces a “clustering” of spatially remote voxels that
exhibit fMRI time series signals with similar characteristics,

as an aspect of functional connectivity
(Friston, K. (1994, HumBMap)).

@ Complete temporal modelling with Uniform prior on
voxel-dependent delay parameter A\, of the HRF,

)\VNU(U1,U2)7 v=1,..., V.
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Spatial Modelling

@ Mixture prior (Spike-and-slab prior) on 3,
By ~7NO,7)+ (1 —v)d, v=1,...,V,

This prior selects activated voxels.
If a voxel is not activated, then 5, = 0
If a voxel is activated, then 5, ~ N(0, 7).

@ Markov Random Field (MRF) prior on the voxel-dependent
selection parameter ~, for activation
P(7.1d, €7 k € N,) ccexp(r.(d + e Y 7))

keN,

with N, the set of neighbors of voxel v, d € R, e > 0.

(George & McCulloch (1997, SINICA); Stingo and Vannucci (2011, Bioinfo))
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Posterior Inference

@ MCMC:
- MH schemes that use add-delete-swap moves on (v, 5.)
(George & McCulloch (1997, SINICA); Savitsky et al. (2011, STS))
- Full conditionals on X,

- Sampling algorithms for nonparametric DP models on
(¢, o) (algorithm 8 of Neal (2000, JCGS))

@ Hyperparameter settings:

DP prior with oo = 1

MREF prior d = —2.5 (10% base prob) and e = 0.3
Vague or non-informative priors otherwise

MCMC chains with 10,000 iterations, with 5,000 burn-in.
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Synthetic Data

Simulate Ysyn = Y + w, where Y is simulated from our model
and w is a selected slice (64 x 64) from the real fMRI study.

(a)

10 20 3 40 50
Voxel

10 20 3 40 50
Voxel

(a) True activation map; (b) First scan of synthetic data. (c) Our mehod. (d)
SPM8 (Penny et al., 2005 - Bayes model, AR errors, spatial prior on 3).
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Real Data

@ Data available at http:
//www.fil.ion.ucl.ac.uk/spm/data/attention/

@ A single subject, 4 different conditions
“Fixation”, “Attention”, “No Attention”, and “Stationary”.

@ Stimulus function: 1 for the images during the “Attention”
and “No Attention” conditions and 0 during “Fixation”.

@ Slices analysed: primary visual cortex (V1),
motion-selective cortical area (V5), and posterior parietal
cortex(PP).



http://www.fil.ion.ucl.ac.uk/spm/data/attention/
http://www.fil.ion.ucl.ac.uk/spm/data/attention/
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Structural MRI images, posterior activation maps and SPM result.
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Posterior mean maps of 5 and A.
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Extensions to Multiple Subjects

@ Multiple subjects - computational challenges!

@ Two stage modelling:

Bowman et al. (2008, Neurolm)
(single-voxel estimates for each subject;
ROI-based summaries to define “contrast” images)

Sanyal and Ferreira (2012, Neurolm)
(GLM with indep errors to estimate the 3’s)
(2D wavelets at 2nd stage with spike-and-slab priors)
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Regression Model for Multiple Subjects

Extend the single-subject regression model to multiple subjects

Yio = XiwBiv + €ivs € ~ N7(0,%;)

@ Y, =(Yi1,...,Ye7)!, T x 1 BOLD response data for the
vth voxel in the jth subject

@ X, T x pdesign matrix, with Poisson HRF
@ (., p x 1 vector of regression coefficients
@ ¢j,, along memory process

@ We work in the wavelet domain

Yo, = XiBiv + iy i, ~ Nr(0,X5,), Xj, ~ diag(¥i, i)

iv
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Spatial prior on

Objective: capture correlation of voxel time series within and
across subjects.

Proposed prior: spike-and-slab nonparametric prior,
Bii/h/il/a Gi ~ ’YiVGi + (1 - ’71'1/)50
Clustering of subjects based on similar activation patterns;

clustering of voxels within each subject according to similar
activation strengths.

Subject 3 .
Subject 1 Subject 2

Subject 5
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Hierarchical Dirichlet process (HDP) as slab distribution on 3;,

Bivlviv, Gi ~ i Gi+ (1 = 7iv)d0
Gilm,Go ~ DP(n1, Go)
Golnz, Po ~ DP(n2, Po)

Py, = N(O,7)

@ 14,72 concentration parameters, controlling the variability

@ Fy: base measure, generating the global components
which are shared within and across subjects
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Other priors

@ To capture the spatial correlation among voxels in each
subject, use MRF prior on ;,

P(viv|d, €, ik, k € Ni,) o exp(yi(d + e > k) (1)
keN;,

with N;, the set of neighboring voxels of voxel v in subject
i, d € (—o0, o) the sparsity parameter, and e > 0 the
smoothing parameter

@ )\, ~ Uniform(uy, o)
@ v;, ~ Inverse Gamma(ag, byg)

® «;, ~ Beta(ay, by)
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Posterior Inference

Strategy I: MCMC approach

@ Jointly update (3, ~) with a combination of add-delete-swap
steps and a Gibbs sampler proposed by Teh et al, 2006
(based on the Chinese restaurant franchise)

@ Update A with Metropolis-Hastings (MH) schemes
@ Update ¢ with Gibbs sampling or MH algorithm
@ Update o with MH algorithm
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Strategy lI: Variational Bayes (VB) approach

@ Basic idea: approximate the true posterior distribution p
with a variational distribution g

m
H q(zlv)) (2)
Jj=1

so that the Kullback-Leibler (KL) divergence between g
and p is minimized (Jordan et al. 1999)

@ Challenge: What are the optimal variational parameters for
the delay parameter \;, and long memory parameter «;,?

@ Solution: combine VB inference and importance sampling
in the algorithm (Carbonetto and Stephens, 2012)
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Simulation Study

We simulate
@ 30 subjects, event-related design
@ one slice with 30 x 30 voxels for each subject
@ 4 different activation patterns

@ 10 different components from which nonzero g;,’s are
generated
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Parameter Setting:

@ Four activation patterns:

Subjects 1-7 Subjects 8-15 Subjects 16-22 Subjects 23-30

@ (3, for active voxels: sampled from components
¢k ~ Normal(0,1),k=1,...,10

@ Delay parameters in HRF: \;, ~ Uniform(0, 8)

@ Innovation variances: v;, ~ truncated Normal(0,1) on
(0,00)

@ Long memory parameters: «;, ~ Uniform(0, 1)
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Activation Detection

MCMC VB
True Activation Maps  Posterior Activation Maps Posterior Activation Maps

Subject 2

Subject 9

Subject 17

Subject 27




Estimation of 5 and )\

Subject 2

Subject 9

Subject 17

Subject 27

Posterior 1

MCMC
Posterior B vs True

VB
Posterior B vs True B
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MCMC
Posterior A vs True A

VB
Posterior A vs True A
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Estimation of 1) and «

MCMC VB MCMC VB
Posterior y vs True y  Posterior y vs True y Posterior a vs True o Posterior a vs True a

Poserior a

Subject 2

Posterior

Subject 9

Subject 17

Subject 27

Posterior ¢
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Comparison of MCMC and VB

MCMC
@ Good performance on activation detection
@ Good estimation results for model parameters
@ Very expensive computation

VB

@ Good performance on activation detection, with a slightly
higher FPR

@ Good estimation results for model parameters
@ Much more computationally efficient (32 fold faster)
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Synthetic Data

Ysyn = Y + w, with Y simulated from our model and w selected
slice from real fMRI data. 27 subjects, 3 activation patterns.

Our method (VB) Multiscale method
True p Posterior mean map of B Posterior mean map of p

Subject 7

Subject 18

Subject 26

Comparison with two-stage method of Sanyal & Ferreira (2012).
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Case Study

@ Real fMRI data collected by Dr. Versace’s lab at MD
Anderson cancer center
o Data Dimension: 27 subjects, 286 time points, 2 slices of
interest, 64 x 64 voxels per slice

Occipital Slice Frontal Slice
(y =-60 mm) (y =+38 mm)

o Event-related design
@ Goal: detecting brain activity in response to visual scenes
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Subject 7

Subject 16

Subject 24

Our method; SPM8 (Penny et al., 2005); single-sub (Zhang et al., 2014).
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Subject 7 ‘
s

Subject 16

Subject 24

Our method; SPM8 (Penny et al., 2005); single-sub (Zhang et al., 2014).
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Results of subject-level clustering

a5l

5 27 14 17 6 9 26 8 13 22 11 10 23 16 18 19 21 15 1 20 2 25 7 24 4 12 3

All Subjects

Cluster 1 Cluster 2

Figure : Occipital slice. Group-level 5 maps.
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Conclusions

@ Flexible class of spatio-temporal models for fMRI data.
@ Incorporate several features into one modeling framework

@ Use priors to take into account structural feature in the
data

@ Improve performance of activation detection

@ Capture the association among voxel time series within
and across subjects via Bayesian nonparametric models

@ Compare VB and MCMC
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