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Introduction: Imaging Genomics

Imaging genetics: interest in associations between genetic variations and
neuroimaging measures as quantitative traits (QTs).

Compared to case-control status, the QTs derived through neuroimaging may
have have increased statistical power, may be closer to the underlying
biological etiology of disease, perhaps making it easier to identify underlying
genes.
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Introduction: Imaging Genomics

Statistically, interested in a multivariate regression analysis, where the
response vector comprises potentially interlinked brain imaging phenotypes
that we relate to high-throughput single nucleotide polymorphism (SNP)
data.

We focus here on multivariate phenotypes (volumetric and cortical thickness
values) of moderate dimension (e.g. 10− 30) derived from MRI for certain
ROIs.

The SNPs are naturally grouped by their belonging genes, and multiple SNPs
from a given gene may jointly carry out genetic functionalities. Would like to
explot this group structure in the regression analysis.
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Introduction: Imaging Genomics

We develop a Bayesian approach based on a continuous shrinkage prior that
encourages sparsity and induces dependence in the regression coefficients
corresponding to SNPs within the same gene, and across different
components of the imaging phenotypes.

Our approach is related to the Bayesian group lasso (Park and Casella, 2008;
Kyung et al., 2010) but adapted for multivariate phenotypes.

Primarily motivated by the Group-Sparse Multi-task regression and feature
selection estimator (somewhat) recently proposed by Wang et al. [2012].
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Wang et al. Estimator: Data set up

Imaging data

y` = (y`1, . . . , y`c)T , ` = 1, . . . , n

n subjects; c response variables (QTs)

Genetic data

x` = (x`1, . . . , x`d)T , ` = 1, . . . , n

x`j ∈ {0, 1, 2} is the number of minor allele for j th SNP.

d SNPs, which can be grouped into K genes: πk for k = 1, 2, . . . ,K .

Regression coefficients

E (y`) = WTx`, ` = 1, . . . , n

W is a d x c matrix; each wij is a coefficient.
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Wang et al. Estimator: First major component

Ŵ = arg min
W


n∑
`=1

||WTx`-y`||22 +γ1

K∑
k=1

√√√√∑
i∈πk

c∑
j=1

w2
ij + γ2

d∑
i=1

√√√√ c∑
j=1

w2
ij


Residual sum of squares; element wij of W measures the relative importance
of the i th SNP to the j th phenotype.
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Wang et al. Estimator: Second major component

Ŵ = arg min
W


n∑
`=1

||WTx`-y`||22 +γ1

K∑
k=1

√√√√∑
i∈πk

c∑
j=1

w2
ij + γ2

d∑
i=1

√√√√ c∑
j=1

w2
ij


Inspired by group lasso [Yuan and Lin, 2006], Wang et al. introduce a new
form of regularization (G2,1 − norm) to address group-wise association among
SNPs.

Coefficients within a group, across all QTs, are penalized together via
`2 − norm while `1 − norm is used to sum up group-wise penalties to enforce
sparsity between groups.

G2,1 − norm regularization differs from group lasso as it penalizes regression
coefficients for a group of SNPs across all responses jointly.
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Wang et al. Estimator: Third major component

Ŵ = arg min
W


n∑
`=1

||WTx`-y`||22 +γ1

K∑
k=1

√√√√∑
i∈πk

c∑
j=1

w2
ij + γ2

d∑
i=1

√√√√ c∑
j=1

w2
ij



As an important group may contain irrelevant individual SNPs, or a less
important group may contain individually significant SNPs, an additional
penalty term is added for individual structured sparsity.

The second penalty term enforces `2,1 − norm regularization for individual
SNPs.
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Wang et al. Estimator: ‘G-SMuRFS’
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Wang et al. Estimator: ‘G-SMuRFS’

Group-sparse multitask regression and feature selection

Ŵ = arg min
W


n∑
`=1

||WTx`-y`||22 +γ1

K∑
k=1

√√√√∑
i∈πk

c∑
j=1

w2
ij + γ2

d∑
i=1

√√√√ c∑
j=1

w2
ij


The combination of both penalty terms make up the novel method for SNP
selection, dubbed ’G-SMuRFS’ by the authors.

Computation of Ŵ is based on a simple iterative algorithm that converges to
the global optimum.

Tuning parameters, γ1 and γ2, are chosen by standard 5-fold cross-validation
in the range of (10−5, 10−4, . . . , 104, 105).
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Wang et al. Estimator: Limitations

The proposed method only provides a point estimate of the regression
coefficients. A method for computing standard errors is lacking.

By noting the connection between penalized regression methods and Bayesian
models, [Kyung et al., 2010, Park and Casella, 2008] we develop an
equivalent hierarchical Bayesian model.

This allows for inference based on the posterior distributions. As we can
validly summarize the spread of the posterior, we have valid measures of
variability. Interval estimates can then guide SNP selection.
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Bayesian Model: Priors W

Ŵ = arg min
W


n∑
`=1

||WTx`-y`||22 +γ1

K∑
k=1

√√√√∑
i∈πk

c∑
j=1

w 2
ij + γ2

d∑
i=1

√√√√ c∑
j=1

w 2
ij

 (1)

We specify a model hierarchy such that the posterior mode is identical to Ŵ in
(1).
First level: quantitative imaging traits, conditional on W and σ2, are
independently distributed as multivariate normal.

y` |W, σ2 ind∼ MVNc(WTx` , σ
2Ic) ` = 1, . . . , n
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Bayesian Model

Let W(k) = {wij |i ∈ πk , j = 1, . . . , c} be submatrix with rows corresponding to
the k th gene, k = 1, . . . ,K .

We assign conditionally independent priors to each W(k) to coincide with the
penalty terms in (1) as follows:

W(k)|λ1, λ2, σ
2 ind∼ p(W(k)|λ1, λ2, σ

2) k = 1, . . . ,K (2)

p(W(k)|λ1, λ2, σ
2) ∝ exp

−λ1

σ

√√√√∑
i∈πk

c∑
j=1

w 2
ij

 ∏
i∈πk

exp

−λ2

σ

√√√√ c∑
j=1

w 2
ij

 . (3)

Proposition 1. (Prior Propriety) The prior for W based on (2) and (3) is proper.

Density of a product multivariate Laplace distribution induces dependence in
coefficients across imaging phenotypes at both the SNP and gene level.

Given the likelihood and prior the posterior mode is by construction the
estimator of Wang et al. [2012].
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Proposition 2. (Scale mixture representation) For each i ∈ {1, . . . , d} let
k(i) ∈ {1, . . . ,K} denote the gene associated with the i th SNP. The prior (3) can
be obtained through the following scale mixture representation:

wij | σ2, τ 2
1 , . . . , τ

2
K , ω

2
1 , . . . , ω

2
d

ind∼ N

(
0, σ2(

1

τ 2
k(i)

+
1

ω2
i

)−1

)
, (4)

with continuous scale mixing variables τ2 = (τ 2
1 , . . . , τ

2
K )′ and ω2 = (ω2

1 , . . . , ω
2
d)′

distributed according to the density

p(τ2, ω2|λ2
1, λ

2
2) ∝

K∏
k=1

(
λ2

1

2

)(mk c+1

2 )
(τ 2

k )(mk c+1

2 )−1 exp

{
−
(
λ2

1

2

)
τ 2
k

}

×

∏
i∈πk

(
λ2

2

2

)( c+1
2 )

(ω2
i )( c+1

2 )−1 exp

{
−
(
λ2

2

2

)
ω2
i

}
(τ 2

k + ω2
i )−

c
2

 .
(5)
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Model Fitting: Full Conditionals

The proposed hierarchical model results in standard full conditional distributions
(Gaussian, Inverse-Gaussian, Inverse-Gamma).

[vec(W(k)T)
∣∣Y,W(-k), τ 2

∼
, ω2

∼
, σ2, λ2

1, λ
2
2] ∼ MVNmkc k = 1, . . . ,K

[νk = 1
τ2

k

∣∣∣ Y,W, τ 2
(−k), ω

2

∼
, σ2, λ2

1, λ
2
2] ∼ Inverse-Gaussian for k = 1, . . . ,K

[ηi = 1
ω2

i

∣∣∣ Y,W, τ 2

∼
, ω2

(−i), σ
2, λ2

1, λ
2
2] ∼ Inverse-Gaussian for i = 1, . . . , d

[σ2
∣∣Y,W, τ 2

∼
, ω2

∼
, λ2

1, λ
2
2] ∼ Inv − Gamma

Past work on Bayesian lassos [Park and Casella, 2008, Kyung et al., 2010] have
discussed two methods for estimation of tuning parameters (λ2

1, λ
2
2).

Keelin Greenlaw1, Farouk Nathoo1, Mary Lesperance1 Elena Szefer2, Jinko Graham2 (UVic)Bayesian Modeling for Imaging Genomics February 2, 2016 19 / 55



Model Fitting: Estimation of λ2
1 and λ2

2

Fully Bayesian model

Assign conditionally conjugate gamma priors for λ2
1 and λ2

2.

λ2
1 ∼Gamma(r1, δ1)

λ2
2 ∼Gamma(r2, δ2)

The full conditional distributions can be derived in closed form.

λ2
1 and λ2

2 can be included as unknown parameters in the Gibbs Sampling
algorithm.
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Model Fitting: Estimation of λ2
1 and λ2

2

Empirical Bayes framework

An alternative approach is to estimate the tuning parameters by maximizing the
marginal likelihood.

λ̂2
1, λ̂

2
2 = arg max

λ2
1,λ

2
2

∫
Θ

p (Y,Θ |λ2
1, λ

2
2) dΘ

where Θ = (W, τ 2

∼
, ω2

∼
, σ2)

This can be implemented using a Monte Carlo EM algorithm.
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Model Fitting: Issues with λ2
1 and λ2

2 Estimation

We begin investigating the behaviour of our MCMC algorithm by simulating data
from the model, where the underlying true W is known.

The behaviour changes drastically in two different settings.

Case 1

number of SNPs (d) � number of simulated observations (n)

Behaviour:
Everything works fine!
Gibbs sampling λ2

1 and λ2
2 estimates converge to reasonable values.

MCEM converges.
Resulting posterior means of W are good estimates.
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Simulation (d = 200, n = 500): Gibbs Sampling Results
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Simulation (d = 200, n = 500): Monte Carlo EM Results

λ2
1 estimates converge to ≈ 111.3.

λ2
2 estimates converge to ≈ 6.6.
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Model Fitting: Issues with λ2
1 and λ2

2 Estimation

We begin investigating the behaviour of our MCMC algorithm by simulating data
from the model, where the underlying true W is known.

The behaviour changes drastically in two different settings.

Case 2

number of SNPs (d) ≈ or ≥ number of simulated observations (n)

Behaviour:
Gibbs sampling λ2

1 and λ2
2 estimates converge to very large values.

MCEM diverges.
Resulting posterior means of W are overshrunk; they are poor estimates.
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Simulation (d = 510, n = 500): Gibbs Sampling Results
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Simulation (d = 510, n = 500): Monte Carlo EM Results

λ2
1 estimates diverge to infinity.

λ2
2 estimates diverge to infinity.
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Simulation (d = 510, n = 500): Fixed λ2
1 and λ2

2 Results

Aside from the full Gibbs model and MCEM for estimation of the λ2’s, we note
that when λ2

1 and λ2
2 are fixed at their true values, the mcmc algorithm performs

well in cases where d ≥ n.

Keelin Greenlaw1, Farouk Nathoo1, Mary Lesperance1 Elena Szefer2, Jinko Graham2 (UVic)Bayesian Modeling for Imaging Genomics February 2, 2016 28 / 55



Model Fitting: λ2
1, λ

2
2 Estimation Discussion

Problem with choosing tuning parameters:

With a large number of SNPs, and in particular with weak effects, choosing
the tuning parameters based on the likelihood/posterior leads to over
shrinkage.

Study the shape of the marginal likelihood, p(Y|λ2
1, λ

2
2).
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Model Fitting: Studying the Marginal Likelihood

Marginal likelihood:

p(Y|λ2
1, λ

2
2) =

∫
p (Y,W, σ2, τ 2

∼
, ω2

∼
|λ2

1, λ
2
2) d W d σ2 d τ 2

∼
d ω2

∼

W is marginalized out of the expression by using the basic properties of the
Gaussian distribution.

Y | τ 2

∼
, ω2

∼
, σ2 ∼ MVN(0, (Ic ⊗ X)Σw (Ic ⊗ XT ) + σ2 Icn )

where Σw = σ2 Ic ⊗ Diag


(

1

ω2
i

+
1

τ 2
k(i)

)−1

, i = 1, . . . , d


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Model Fitting: Studying the Marginal Likelihood

p(Y|λ2
1, λ

2
2) =

∫ [∫ ∞
0

p(Y, |σ2, τ 2

∼
, ω2

∼
)p(σ2)d σ2

]
p(τ 2

∼
|λ2

1)p(ω2

∼
|λ2

2) d τ 2

∼
d ω2

∼

Using properties of the Inv-Gamma distribution, σ2 is analytically integrated out of
the expression.

The remaining integration is analytically intractable. We use a plug-in
approximation.

p(Y|λ2
1, λ

2
2) = E τ2

∼
, ω2

∼

[
p(Y| τ 2

∼
, ω2

∼
)
]
≈ p(Y| E [τ 2

∼
] ,E [ω2

∼
] )

E [τ 2
k ] =

mkc + 1

λ2
1

; E [ω2
i ] =

c + 1

λ2
2
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Model Fitting: Studying the Marginal Likelihood

Marginal Likelihood Approximation

p(Y|λ2
1, λ

2
2) ≈

(2π)−
nc
2 abσσ

Γ( nc
2 + aσ)

Γ(aσ)
×
∣∣∣∣ (Ic ⊗ X)

(
Ic ⊗ Diag

{(
λ2

2

c + 1
+

λ2
1

mk(i)c + 1

)-1})
(Ic ⊗ XT) + Icn )

∣∣∣∣− 1
2
×

(
bσ +

1

2
YT
[

(Ic ⊗ X)

(
Ic ⊗ Diag

{(
λ2

2

c + 1
+

λ2
1

mk(i)c + 1

)-1})
(Ic ⊗ XT) + Icn )

]−1

Y

)−( nc
2

+aσ )

The approximation is evaluated over a grid of (λ2
1, λ

2
2) values for different

sets of simulated data.
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’Nicely Behaved’ Marginal Likelihood Approximaiton

simulated data:
d = 200; c = 5; n = 500

maximum point at:
λ2

1 = 30.4;λ2
2 = 0.1

Gibbs Sampler performs well

with fixed λ̂2
1 and λ̂2

2.
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’Poorly Behaved’ Marginal Likelihood Approximation

simulated data:
d = 486; c = 12; n = 632

data simulated with
weak signals

maximum point at:
λ2

1 = 105;λ2
2 = 104

Gibbs Sampler leads to
heavy overshrinking with

fixed λ̂2
1 and λ̂2

2.
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Model Fitting: Cross-Validation for λ2
1, λ

2
2?

For Bayesian lasso and related hierarchical models Park and Casella (2008)
and Kyung et al. (2010) found that ’putting λ into the Gibbs sampler seems
as effective as choosing it by cross-validation’.

For the model we have developed, under certain settings (number of SNPs
large, weak effects), we find empirically that cross-validation avoids some of
the observed problems with FB and MML choice of the tuning parameters.

Combining Gibbs sampling with CV over a 2-D grid of tuning parameters is
computationally intensive.
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Model Fitting: WAIC

We use WAIC (Watanabee, 2010) which does not require any data splitting
for its computation and can be viewed as an approximation to leave-one-out
cross-validation (Gelman, Hwang and Vehtari, 2013).

WAIC = −2
n∑

l=1

log EW,σ2 [p(y` |W, σ2)|y1, . . . , yn]

+2
n∑

l=1

VW,σ2 [log p(y` |W, σ2)|y1, . . . , yn]

We run Gibbs samplers in parallel over a 2D grid for λ2
1, λ2

2 and choose the
tuning parameters minimizing WAIC.
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Simulation Study: The Data

Genetic Data

The SNP covariates used for data simulation come from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database.

We include genetic data on 632 subjects over 486 SNPs belonging to 33 different genes.
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Simulation Study: The Data

True W Structure

A W matrix is simulated from its prior distribution with the following settings.

number of SNPs (d) = 486

SNPs are partitioned into 33 (K ) genes

number of phenotypes (c) = 12

σ2 = λ2
1 = λ2

2 = 2

Sparsity is introduced to W by setting all but 50 rows to zero.
Only the following rows are left at their simulated values.

rows corresponding to 5 genes of SNP sizes 14, 10, 6, 4, 1 (35 SNPs)

rows corresponding to 15 other SNPs

Keelin Greenlaw1, Farouk Nathoo1, Mary Lesperance1 Elena Szefer2, Jinko Graham2 (UVic)Bayesian Modeling for Imaging Genomics February 2, 2016 39 / 55



Simulation Study: Methodology

The genetic data and sparse W matrix are used to simulate 100 sets of response
variables. We apply the Wang et al. method and our Gibbs-WAIC Bayesian
method to each of the 100 datasets.

Wang et al. model fitting

Tuning parameters, γ1 and γ2, are chosen via 5-fold cross-validation in the range
of (10−5, 10−4, . . . , 104, 105).

Bayesian model fitting

The model is fit with fixed λ2
1, λ

2
2 values in the range of (0.01, 0.1, 1, 10, 100) for a

total of 25 mcmc runs in each dataset. The model with the minimum WAIC is
selected.
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Simulation Study: Estimator Bias

Wang et al. Estimator Bias

mean absolute bias = 0.0905

bias range = [−7.13, 4.63]

Posterior Mean Bias

mean absolute bias = 0.0992

bias range = [−5.07, 4.77]
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Simulation Study: Estimator MSE

Wang et al. Estimator MSE

mean MSE = 0.1796

Posterior Mean MSE

mean MSE = 0.1978
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Simulation Study: Sample 95% CI Coverage Probabilities
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Simulation Study: 95% CI Coverage Probability Summaries

All Coefficients

mean coverage probability
= 95.18%

True Non-Zero Coefficients

mean coverage probability
= 83.23%

True Zero Coefficients

mean coverage probability
= 96.54%

The Bayesian intervals seem to have reasonably adequate frequentist coverage.
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ADNI Data Application: The Data

Both genetic and structural MRI data used in this project were obtained from
the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI-1) database.

Data has been collected and processed to be similar to the data presented
and analysed by Wang et al. [2012].

We include genetic and brain measurement data on 632 subjects.
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ADNI Data Application: Genetic Data

Among all SNPs, Wang et al. [2012] only include SNPs belonging to the top 40
Alzheimer’s Disease (AD) candidate genes listed on the AlzGene database as of
June 10, 2010.

Data presented here are queried from the most recent genome build as of December
2014, from ADNI-1 genomic data.

After quality control and imputation steps, the genetic data used in this study

includes 486 SNPs from 33 genes.
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ADNI Data Application: Genetic Data

Figure : Example of SNP counts included in the dataset
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ADNI Data Application: MRI Data

FreeSurfer measurements define volumetric and cortical thickness values. A subset of FreeSurfer
measures from 12 regions of interest are selected to be included for identifying significant SNPs.

ID Region of Interest (ROI)

Left HippVol volume of hippocampus
Right HippVol

Left EntCtx
Left Parahipp thickness of entorhinal cortex and
Right EntCtx thickness of parahippocampal gyrus
Right Parahipp

Left Precuneus thickness of precuneus
Right Precuneus

Left MeanFront mean thickness of caudal midfrontal, rostral midfrontal, superior frontal,
Right MeanFront lateral orbitofrontal, and medial orbitofrontal gyri and frontal pole

Left MeanLatTemp Mean thickness of inferior temporal,
Right MeanLatTemp middle temporal, and superior temporal gyri

Wang et al. [2012] include these ROIs in their study based on knowledge that they are related to

Alzheimer’s Disease. MRI measures are adjusted for age, gender, education, handedness, and

baseline total intracranial volume (ICV) based on regression weights from healthy controls.
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ADNI Data Application: MRI Data

FreeSurfer measures are scaled and centered prior to fitting the models.

The figure on the left depicts adjusted measurements from 4 regions of interest prior to
being scaled and centered; the figure on the right afterwards.

Colours represent the disease status of subjects. (Green = CN ; Blue = LMCI ; Red = AD)
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ADNI Data Application: Methodology

We apply the Wang et al. method and our Gibbs-WAIC Bayesian method to the data.

Wang et al. model fitting and SNP selection

Tuning parameters, γ1 and γ2, are chosen via 5-fold cross-validation in the range of
(10−5, 10−4, . . . , 104, 105).

Wang et al. assign weights to each SNP by summing the absolute values of the
estimated coefficients of a single SNP over all phenotypes.

SNPs are ranked based on their weights.

Bayesian model fitting and SNP selection

The model is fit with fixed λ2
1, λ

2
2 values in the range of (10−3, 10−2, . . . , 102, 103)

for a total of 49 mcmc runs. The model with the minimum WAIC is selected.

There are a total of 5 SNPs that have 95% CI’s that do not contain zero.
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ADNI Data Application: Bayesian Model Selected SNPs
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ADNI Data Application: Top 5 Wang et al. ranked SNPs
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Discussion

We use a hierarchical Bayes representation of the estimator proposed by
Wang et al. [2012] and develop a Gibbs sampling approach for obtaining
interval estimates.

Interval estimates seem to have reasonable coverage probabilities for the
settings considered.

Extending numerical studies to compare with (i) non-parametric bootstrap
and (ii) Bayesian approach using spike-and-slab priors.

There are some obvious model improvements to be considered.

Tuning parameters: comparison of hierarchical Bayes, empirical Bayes, and
cross-validation yields unexpected results.
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