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Motivation

Driving issue: Interest in very detailed structure:
B White matter - Cortex boundary (Kurtosis imaging, 500p1m)
B Fiber crossings and bifurcations (DWI, 800m, high b-values )

B Multiparameter mapping (Layer structure in cortex 300pm, in-vivo diagnostics)
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Data distribution: Magnetic resonance imaging (MRI)
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Fig. 2.7 Free Induction Decay (F1D) following a single 90° r.. pulse. The real and imaginary
parts of the signal correspond to the in-phase and quadrature receiver outputs. The signal is
depicted with recciver phase ¢=0 and, on complex Fourier transformation, gives real absorp-
tion and imaginary dispersion spectra at the offset frequency, Aw=wo— .

Figure: Franz Wilhelmstotter (Wikimedia)
From O. Friman “Adaptive Analysis of Functional MRI Data”, PhD Thesis, 2003
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MR aquisition ‘ mj
B Measurements in K-Space: Complex signal (amplidude and phase) at readout time

carries termal (Gaussian) noise
B complex image generated by Fast Fourier Transform (FFT)

B magnitude images as modulus of the complex image

thanks to: F. Godtliebsen
(University Tromsce), H.U. Voss
(Weill Cornell Medical College,
NY) and

T -weighted T>-weighted
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Noise distribution in single coil systems 4{4’3

B complex signal in K-space (one coil):
se(k) ~ N(ze(k), 0%)

B FFT provides complex valued image
Se(w) ~ N(éc(x), o7)

B MR image: S(z) usually obtained as
magnitude image
Notation: S; = |S(z;)|

B Signal distribution: Rician distribution
Si/or ~ Xz, with n;i = |€c(x4)| /o1

B Problem:

ES;/or >

Image: F. Godtliebsen (Tromsce)
gap severe if n << 4
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MR aquisition: Multiple Receiver Coils 'Zﬁf’g

Increase of sensitivity and reduction of time by

Methods:
B multiple Receiver Coils

B sensitivity encoding

B reduced field of view

B subsampling in K-space

B simultaneous slice aquisitions

B partial parallel aquisitions

- 8-coil system (noiseless situation):
Images from receiver coils and

combined image
Consequences:

B need for sophisticated image reconstruction
B determines signal distribution
B induces spatial correlations (see talk by D. Rowe at Opening WS)
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Data distribution: Image reconstruction from multiple coils (SENSE)

B 8 — 32 spherically arranged receiver coils

B inhomogeneous coil sensitivities, correlation
between receiver coils

B image reconstruction fromcoils k = 1,..., K
as SENSE-1: (Sotiropoulos 2013, Pruessmann
1999)

Si = | Zczksk(xz”
efficient, known distribution, location dependent
or,i, Rician distribution

R\
8-coil system (noiseless situation):
ni = | Z cikér (i)l /o Images from receiver coils and

o1, depends on coil sensitivities, correlations combined image

Si/ori ~ X2,m;

—> Rician after image reconstruction
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Preprocessing

Preprocessing steps:

B susceptibility correction (DWI)

B Eddy current correction (DWI)

B Image registration

m ..

Effects:

B All preprocessing steps involve spatial interpolation
Change data distribution to a linear combination of Ricians
Designed to keep expected value
Decrease the variance

Resulting distribution is closer to a Gaussian

Problem:
ES;/or > n:
is preserved !l

B o refers to the unprocessed data
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SNR ?

B Problem: ES; /o > 1, is preserved !l

B o refers to the unprocessed data

To address this we need to analyze unprocessed Data !!!
Properties of scale ot

B depends on parameters of the image reconstruction algorithm (scanner geometry,
scanner protocols)

B parameters are usually unknown
B spatially varying (larger in the center)

Need to estimate or:

K. Tabelow, H.U. Voss, J. Polzehl (2015).
Local estimation of the noise level in MRI using structural adaptation
Medical Image Analysis, DOI: 10.1016j.media.2014.10.008.

Modeling high resolution MRI:Statistical issues - BIRS, Feb. 1, 2016 - Page 10 (22)



Quantification of noise: Local estimation of o, ;

Assumptions:
B Si/oi ~ Xar,¢/0,

B (; local constant

B local homogeneity of tissue and fiber direction
(diffusivity)

B o; slowly varying in space

B smooth variation of coil sensitiviti -
smooth variation of coil sensitivities local variation of Co

Sequential multi-scale algorithm
B Using local weighted likelihood estimates for {; and o;
B Robust (median) smoothing for estimated o;

B Weighting schemes by localization in image space and
adaptation in parameter space

Alternatives ‘ ‘

B Global estimates from background L o
local variation of o for artificial

B Methods from Aja-Fernandez (201x), Landman (2009) 8-coil system and SENSE-1
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Smoothing

Adapive smoothing of dMRI data:

Needs to take image structure into account (adaptation)

Single images do not have enough information for successful adaptation

Model based adaptation depends on adequate modeling

—> Smoothing in R® x S2

Adaptation based on data distribution and correct assessment of data variability

smooth unprocessed or preprocessed data ???

S. Becker, K. Tabelow, S. Mohammadi, N. Weiskopf, J. Polzehl (2014).

Adaptive smoothing of multi-shell diffusion-weighted magnetic resonance data by msPOAS.

Neuroimage, 95, pp. 90—105.

Modeling high resolution MRI:Statistical issues - BIRS, Feb. 1, 2016 - Page 12 (22)



Modeling dMRI data ‘Q’“}

Diffusion Tensor Model: (Homogeneity within a voxel, no effect of fiber structure)

= o 1 2§TD719H)
P(R,7) = P(r§,7) = ——————exp | —r"—> .
#7) (rg,7) det D(4nT)3 p< 4r

B Theoretical signal:

_ T .
Co.g(0:) = Coi e P9

B Fully characterized by the Diffusion Tensor D
B Mean diffusivity

TT(D) = A+ A+ A3 = 35\
B Fractional anisotropy (FA)

pa (BO=A 4 Qe =)+ s =)\
S \2 A 422+ A2

Visualization: Color coded FA maps
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Moments of signal distribution

B Theoretical noisefree signal : (p,4(6)
B Expected signal
BShg = 1(Cog (6), 70.) =09y FLLE D [~ S2®)
b,g = HAGb,g(V); Ob,g b9/ 5 H1/2 202’9 :

_D(L+1/2)

L2 @) =R

1/2

M(-1/2,L,z)
L - generalized Laguerre polynomial, M - confluent hypergeometric function.

B variance of the preprocessed signal:

Vbg = Chg [QLUl?,g + Cb,g(a)2 - N2(Cb,g(9)70b,g)]

where Cpg < 1 - variance reduction due to preprocessing.

B Absolute discrepancy for Rician data (L = 1)

C/o 0.0 1.0 2.0 3.0 4.0 6.0

(u(¢,0) —¢)/o | 125 | 055 | 027 | 0.17 | 0.13 | 0.084 | 0.063
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Estimates

B Nonlinear regression:
’
Shg =Co,g(0 ) + €9, Eerg=0 Vare,y <oo

6 =(Co, D) = argmmeb g [Sb,g Cb.g(0 ,)]2

b,g

Estimates parameters in a weighted inadequate least squares approximation (WILSA).

Projection parameters:
;12
rgmanwb,g [ Cb,g( ) Ub,g) - Cb,g(e )}

B Quasi-Likelihood: with wy g = 1/vp. 4

0 = argmin Zwb,g [Sb,g - M(Cb,g(9/)7 Ub,g)} i

’
o b,g

Estimates parameters in adequate model by weighted least sqaures WLSE
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Signal attenuation in unprocessed HCP DWI data

LR SO max= 14200 LR bv=1000 max= 4010 LR bv=2000 max= 2640 LR bv=3000 max= 2080

RL SO max= 15100 RL bv=1000 max= 3000 RL bv=2000 max= 2490 RL bv=3000 max= 1830

Unprocessed HCP data for LR / RL phase encoding, b-values 0, 1000, 2000, 3000. Signal
attenuation at larger b-values leads to deteriating SNR

[*] Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the

McDonnell Center for Systems Neuroscience at Washington University
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Analysis of unprocessed HCP data

8 by = 1000 max= 263

Densilies of SNR (over brain mask) for 192 3D images

o=a000rL | | 2o |

8 by =3000 max=178

w10 20 20 W0 o
sigma

B Left: Estimated local scale parameter o for approximate b-values 5 s/ mm? (So),
1000 s/mm?, 2000 s/mm? and 3000 s/mm?
B Center: Densities of estimated o (2 out of 6 runs, a total of 192 image volumes, 96 with
right-to-left (RL) and 96 with left-to-right (LR) phase encoding directions)

B Right: Densities of estimated SNR (/o for same volumes.
B percentage of voxel (in brain mask) with SN R < 4

2

b-value in s/mm 0 1000 | 2000 | 3000
run with LR phase encoding | 4% | 14% | 38% | 71%
run with RL phase encoding | 3% | 13% | 37% | 71%
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Analysis of processed HCP data

Densitis of SNR (over brain masK) for 288 preprocessed images

015

8 b =200 max = 100 5 bv=3000 max=95

00

B Left: Estimated local scale parameter o for approximate b-values 5 s/ mm? (So),
1000 s/mm?, 2000 s/mm? and 3000 s/mm?

B Center: Densities of estimated o (288 image volumes)

000

50 100 10 w0 20 o s 10 5 » 2 2 S
sigma

B Right: Densities of estimated SNR (/o for same volumes.

B percentage of voxel (in brain mask) with SN R < 4 significantly reduced (mainly regions
with CSF)

B Variance reduced by a factor of 4

B Bias problem hidden
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Analysis of HCP data: Preprocessed data (DT model)

B Corrected for susceptibility, Eddy currents, ..., registered to common space.

B leads to variance reduction and spatial correlation, but leaves mean signal unchanged.

Comparison of DTl results:

CCFA (QL) slice=70 FA difference rel. change 1st EV rel. change 2nd EV rel. change 3rd EV

00 02 04 06 08 10 000 001 002 003 004 005 006 -020  -0.10 000 005 010  -020 010 000 005 010  -020  -010 000 005 010
FA FA(QL)-FA(NLR) rel. change 1st EV rel. change 2nd EV. rel. change 3rd EV.

QL with median b-value dependent o (obtained from unprocessed data)(green) and NLR (blue).
NLR shows a tissue specific negative bias in FA and positive bias in all tensor eigenvalues.
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Conclusions / Messages

Use of MR in in-vivo histology demands for increased spatial resolution
Assessing Bias provides comparability between subjects, dates, scanning devices
Image SNR proportional to voxel volume

Advanced dMRI modeling needs multiple (high) b-values

Image SNR may decay exponentially in b-values

Severe bias of (inadequate) NLR estimates in case of low SNR

Adequate modeling requires information about signal distribution (prefer SENSE over
GRAPPA)

Need to calculate or estimate noise level of unprocessed data

B Modeling of processed data by Quasi-Likelihood using estimated noise level

Signal distribution and estimated noise level also needed for adaptive smoothing
(msPOAS)
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Software:
B R-package dti, https://cran.r-project.org/
B ACID toolbox, http://www.diffusiontools.com/
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