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Motivation
[Group analysis of image derived representations]
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Workflow

@ Lots of QC and corrections

@ Figure out how to warp one image to another

@ Perform atom-wise statistical analysis after a laundry list of
pre-processing
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Finally obtain heat maps of discriminative voxels (after
p-value corrections)




Vooxel wise analysis on the Image grid
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Vooxel wise analysis on the Image grid

The multiple testing problem is significant especially when testing at a
million (independent?) voxels J
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Type 1 and Type 2 Errors in Neuroimaging

Ho is true Hy is false

voxel not discriminative voxel is discriminative

. Type 1 Error
Reject Hy (false positive) Correct
Type 2 E
—Reject Hy Correct e ror
(false negative)

To be safe on Type 1 errors, a super conservative strategy may lead
to many false negatives




Analysis of cortical meshes
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Analysis of connectivity networks
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DTI Tractography

White matter orientational information from DTI
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DTI Tractography

Streamline fiber tracking from orientation field
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DTI Tractography

Brain atlas and connectivity matrix
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Analysis questions

Challenges
e Statistical analysis on connectivity matrix involves O(n?) terms
@ Sample sizes are small in Neuroimaging studies: large p, small n

@ The “connectivity” between different “nodes” of the graph is arbitrary
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Analysis questions

Challenges
e Statistical analysis on connectivity matrix involves O(n?) terms
@ Sample sizes are small in Neuroimaging studies: large p, small n

@ The “connectivity” between different “nodes” of the graph is arbitrary

Need for methods which are sensitive to small signal differences
o Multi-resolution analysis of shapes and connectivity networks J
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Analysis questions
Challenges

e Statistical analysis on connectivity matrix involves O(n?) terms
@ Sample sizes are small in Neuroimaging studies: large p, small n

@ The “connectivity” between different “nodes” of the graph is arbitrary

Identifying “differences” is related to finding “similarity”.
Comparison of signals in multiple resolutions
E.g., SIFT feature

An end-to-end statistical explanation as well (with some disclaimer)

e 6 o6 o
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Analysis questions

Challenges
o Statistical analysis on connectivity matrix involves O(n?) terms
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Analysis questions

Challenges
e Statistical analysis on connectivity matrix involves O(n?) terms
@ Sample sizes are small in Neuroimaging studies: large p, small n

@ The “connectivity” between different “nodes” of the graph is arbitrary

‘Wavelets?

23/86



Fourier Transform

@ Superposition of sinusodial functions e/t in different frequencies

e Fourier Transform of f(x):
(From native space to the frequency space)

{f(w) -/ f(x)eijdx}
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Fourier Transform

@ Superposition of sinusodial functions e/t in different frequencies

e Fourier Transform of f(x):
(From native space to the frequency space)

{f(w) -/ f(x)eijdx}

@ Inverse Fourier Transform:
(Reconstruct my signal)
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Weather in Madison affects forecast in Banff

@ Ringing Artifact (e.g., Gibbs phenomenon)
(caused by infinite support of Fourier bases)
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Figure: Ringing artifact using Fourier bases.
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Wavelet Transform

Unlike Fourier bases, Wavelets are localized in both time and frequency

Wavelet bases J
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Wavelet Transform

Wavelet bases J

Unlike Fourier bases, Wavelets are localized in both time and frequency
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Sine Haar Wavelet Mexican hat wavelet
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Wavelet Transform

@ Mother wavelet v: function of dilation s and translation a

{ ) =30 (55 "’)}

29 /86



Wavelet Transform

@ Mother wavelet v: function of dilation s and translation a

{ws,a(x) —v (55 "’)J

heart)
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Wavelet Transform

Fourier Wavelets

Flw) = / Fx)e%dx | | Wi(s, a) = * / Ot (=2 )dx
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Wavelet Transform

Fourier Wavelets

X —a
d
s)X

) = [ feax| | Wits.a) = 5 [ FGue

-
(f ,basis) (f,basis)
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Wavelet Transform

( .
Fourier Wavelets

flw) = / f(x)e ™ ¥dx | | We(s,a) =

-
(f ,basis)

s [ feow®

a)dx

(f,basis)

\

r ;
Inverse Fourier

f(x) = ;ﬂ/fc(w)eijdw f(x) =

Inverse Wavelets

/Wf s, a)Ys a(x)dads
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Wavelet Transform

( .
Fourier Wavelets

flw) = / f(x)e ™ ¥dx | | We(s,a) =

-
(f ,basis)

s [ feow®

a)dx

(f,basis)

\

r ;
Inverse Fourier

F(x) = 217T / Plw)odw | | F(x) =

Inverse Wavelets

/Wf s, a)Ys a(x)dads

Admissibility Condition with Cy, —/

|W(j

dw < 00
Iw!

To define Cy, V(jw) = /w(t)e—fwfdt
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Wavelet in the Frequency Domain

@ 1 (blue) in the frequency domain: band-pass filters

@ ¢ (red) in the frequency domain: low-pass filter
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Figure: A scaling function (red) and band-pass filters (blue) in the frequency domain.
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Classical Wavelet example

Scaling function coefficients Wavelet coefiicients at scale 1 Wavelet coeficients at scale 2

P

Wavelet coefficients at scale 3 Wavelet coefficients at scale 4 reconstuction from all coefficients

Figure: Example of multi-resolutional characterization (from SGWT toolbox)
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Wavelet Transform on Graphs

@ Wavelets in Euclidean Space
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Wavelet Transform on Graphs

@ Wavelets in Euclidean Space

@ Wavelets on Graphs
(Scale? Translation?)
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Wavelet Transform on Graphs
Key Idea
e Native domain: G = {V, E,w}

o First step: define analogue of Fourier transform on graphs (Maggioni,
2006), (Hammond 2012)

@ Construct orthonormal bases defined on structure of G

@ Construction of filters in the frequency domain to get band pass effect
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Wavelet Transform on Graphs
Key Idea
e Native domain: G = {V, E,w}

o First step: define analogue of Fourier transform on graphs (Maggioni,
2006), (Hammond 2012)

@ Construct orthonormal bases defined on structure of G

@ Construction of filters in the frequency domain to get band pass effect

Ingredients
@ Adjacency A: square matrix, am, for connectivity information
@ Degree Matrix: D: Diagonals are the sum of weights
@ Graph Laplacian: L=D — A
@ Orthonormal bases x; and eigenvalues A\, / € {0,--- ,N — 1} of L

40 /86



Wavelet Transform on Graphs
Key Idea
e Native domain: G = {V, E,w}

o First step: define analogue of Fourier transform on graphs (Maggioni,
2006), (Hammond 2012)

@ Construct orthonormal bases defined on structure of G

@ Construction of filters in the frequency domain to get band pass effect

N

Star shaped graph Adjacency Degree Laplacian
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Wavelet Transform on Graphs

Fourier Graph Fourier

P(w) = (.6 = [ Feax| | 7y = (£, ) = Zf<"><f("

For graph Fourier transform, the orthonormal bases come from spectral
graph theory: from a self-adjoint operator (the graph Laplacian)
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Wavelet Transform on Graphs

{Fourier J Graph Fourier

P(w) = (.6 = [ Feax| | 7y = (£, ) = Zf(n Yi(n)

For graph Fourier transform, the orthonormal bases come from spectral
graph theory: from a self-adjoint operator (the graph Laplacian)

Inverse Graph Fourier
Inverse Ffurl r N—1

f(x)=5- flw)e dw | | F(n) =" F(l)xi(n)
=0
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Wavelet Transform on Graphs

Fourier Graph Fourier

P(w) = (.6 = [ Feax| | 7y = (£, ) = Zf(n Yi(n)

For graph Fourier transform, the orthonormal bases come from spectral
graph theory: from a self-adjoint operator (the graph Laplacian)

Inverse Graph Fourier
Inverse Ffurl r N—1

f(x)=5- flw)e dw | | F(n) =" F(l)xi(n)
=0

@ Construct original signal using graph Fourier bases and coefficients f
@ L >0, s0 x and x* are the same.
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Wavelet Transform on Graphs

Woavelet function on node m, localized on node n

N-1

bs.n(m) = g(sh)xj(n)xi(m)

I=0

Choose a kernel function g (band-pass filter)
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Wavelet Transform on Graphs

Woavelet function on node m, localized on node n

=

-1

Ysn(m) = > g(sA)xj(n)xi(m)

/

I
o

Choose a kernel function g (band-pass filter)

Spectral Graph Wavelet Transform on f(n) on node n

N—1
We(s, n) Z g(sh\)f (n)
1=0
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An Example of Wavelet Functions on Graphs

Example of wavelets on graphs (mesh surface)

Mesh surface Mexican hat Mexican hat

(sphere) wavelet at scale 1 wavelet at scale 2 wavelet at scale 3

Mexican hat
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An Example of Wavelet Transform on Graphs

Forward and inverse wavelet transform of f(n) (on a brain mesh)

N-1
Wf(57 I‘I) 1psn = Zg(S)‘/ X/(n)
1=0

f(n) = — EN: " Wi(s, n)s.n(m) %S
C 0 S
8 n=1

Figure: Forward and Inverse wavelet transform.
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Application 1: Cortical Thickness Discrimination

@ Group analysis: ldentify regions showing differences between disparate
groups
> Alzheimer’s disease versus Healthy controls
o Statistical Parametric Mapping

» Hypothesis test at vertex level
» Multiple comparison correction (Bonferroni, etc.)
» Check which regions survive
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Application 1: Cortical Thickness Discrimination

@ Group analysis: ldentify regions showing differences between disparate
groups
> Alzheimer’s disease versus Healthy controls
o Statistical Parametric Mapping

» Hypothesis test at vertex level
» Multiple comparison correction (Bonferroni, etc.)
» Check which regions survive

Domain: Brain surface mesh;
Signal: Cortical thickness (distance between inner/outer cortical surfaces)
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Application 1: Cortical Thickness Discrimination

e Wavelet multi-scale descriptor (WMD):
- A set of wavelet coefficients at each vertex n for each scale s

(WMD¢(n) = {Wi(s, n)ls € S}| (1)

WMD on Lenna at scale 0, 1, 2.
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Application 1: Cortical Thickness Discrimination

e Wavelet multi-scale descriptor (WMD):
- A set of wavelet coefficients at each vertex n for each scale s

(WMD¢(n) = {Wi(s, n)|s € S}| (1)

WMD on cortical thickness at scale 0, 1, 2.
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Application 1: Cortical Thickness Discrimination (ADNI)

@ Group analysis: Alzheimer's disease (AD) subjects versus healthy

controls

Table: ADNI data details

ADNI data
Category AD (mean) | AD (s.d.) | Ctrl (mean) | Ctrl (s.d.)
# of Subjects 160 - 196 -
Age 75.53 7.41 76.09 5.13
Gender (M/F) 86 / 74 101 / 95
MMSE at Baseline | 21.83 5.98 28.87 3.09
Years of Education | 13.81 4.61 15.87 3.23
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Application 1: Cortical Thickness Discrimination (ADNI)

@ p-values from Hotelling’s T2. Then, multiple comparison correction

D TS
§ A O 4,
D ED

Figure: p-values (in —log,, scale) after FDR correction at ¢ = 107>, Row 1:
Cortical thickness, Row 2: SPHARM, Row 3: WMD
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Application 1: Cortical Thickness Discrimination (ADNI)

@ p-values and False discovery rate (FDR)

@ Group difference: the vertices below the FDR threshold

p-value

=

o

o

w

1}

-5
%10

— — ~threshald {10e-3)
— = ~threshald {10e-4)
WD

SPHARM

cT

verlices

Figure: Sorted p-values from group analysis on cortical thickness (cyan), SPHARM
(green), and WMD (red), and the FDR thresholds are represented by dotted lines.
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Application 1: Cortical Thickness Discrimination (ADNI)

o Effect of changes of g in FDR

Figure: p-values (in — log,, scale and normalized) showing the effect of FDR
correction on a left hemisphere using WMD with FDR g = 10> (left column),
g = 107> (middle column) and g = 10™" (right column) respectively.
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Application 1: Cortical Thickness Discrimination (ADRC)

e Group analysis on ADRC (local) dataset

@ The dataset consists of 42 AD and 50 Controls subjects

@ Expect to find weaker signal but the same regions found from ADNI
(small n)
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Application 1: Cortical Thickness Discrimination (ADRC)

e Group analysis on ADRC (local) dataset

@ The dataset consists of 42 AD and 50 Controls subjects

@ Expect to find weaker signal but the same regions found from ADNI
(small n)

Figure: Group analysis on AD vs Controls. p-values in — log;, scale after FDR
correction at ¢ = 0.05 are shown on a smoothed brain surface. Top row: Result using
smoothed cortical thickness, Bottom row: Result using WMD



Line Graph Transform

@ We would like to detect group differences in brain connectivity.
@ Here, the information lies on the edges of a graph, not on the vertices.

@ We need to transform the graph G to apply our framework.




Line Graph Transform

@ Line graph L(G) is a dual form of graph G.
@ Interchange of the roles of V and £ in G.
o Let gjj be the elements in the adjacency matrix A of L(G),

1 ifvEV,Vme,-,ej
8ij = )
0 otherwise

where v is a vertex in V and e is an edge in £.

P e
L\

Figure: Examples of graphs and the corresponding line graphs. Original graphs with
vertices (red) and edges (yellow) with edge weights (thickness), and corresponding line
graphs with vertices (yellow) with function (vertex size) and edges (red).
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Filtering Process on Line Graphs

@ Once we obtain L(G), we have a function defined on vertices.

@ Now, we can apply filtering operations.

@ Recall that wavelet transform is a band-pass filtering operation.

@ An illustration of smoothing operation by line graph transformation.

e

Figure: A toy example of graph structure filtering. The top panel shows the graph
filtering steps: (1) Construction of the line graph, (2) filtering the signal on the line
graph vertices, (3) reconstructing the filtered graph. The bottom panel shows the cor-
responding adjacency matrices.
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Multi-scale Descriptor for Brain Connectivity

@ Derive multi-scale descripter on L(G) and transform back to G
Wavelet Connectivity Signature (WaCS)
WaCS¢(e) = {Wk(s,e)|s € S} (2)

/oL L

Figure: An example of multi-resolution on graph edges at various resolutions.
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Application 2: Brain Connectivity Discrimination

ADRC and WRAP Dataset

ADRC: 58 healthy vs. 44 AD subjects

WRAP: 93 Family history (FH) positive vs. 250 negative subjects
162 parcellated brain regions as region of interest (ROI)

Mean fractional anisotropy (FA) of tracts between ROls

162 x 162 connectivity matrix for each subject

0 120 14

Figure: Left: ROIs and track bundles, Right: connectivity matrices.
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Application 2: Brain Connectivity Discrimination

ADRC Study
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Application 2: Brain Connectivity Discrimination

ADRC Study

Bonferroni

AD vs. CN result
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Application 2: Brain Connectivity Discrimination

FDR
ADRC Study ‘ Feature Selection ‘

Bonferroni

AD vs. CN result
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Application 2: Brain Connectivity Discrimination

FDR
ADRC Study ‘ Feature Selection }—> WRAP study

Bonferroni

AD vs. CN result
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Application 2: Brain Connectivity Discrimination

FDR
ADRC Study ‘ Feature Selection }—> WRAP study

Bonferroni FDR

AD vs. CN result FH+ vs. FH- result
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Application 2: Brain Connectome Discrimination - ADRC

@ GLM on FA (control for age/gender) for p-values
@ Bonferroni at @ = 0.01 for multiple comparisons correction

@ The edge color represents the direction of difference
- Red: stronger connection in Controls group
- Blue: stronger connection in AD group

&

Yl ey SO

o

Figure: Significant connection difference between AD vs control group with direction of
significance. Edge thickness corresponds to p-value, and the color denotes to the
direction of strength.
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Application 2: Brain Connectivity Discrimination - ADRC

@ MGLM on WaCS (control for age/gender) for p-values
@ Bonferroni at @ = 0.01 for multiple comparisons correction
@ The edge color represents the direction of difference

- Red: stronger connection in Controls group
- Blue: stronger connection in AD group

Figure: 81 significant connection difference between AD vs control group with direction
of significance. Edge thickness corresponds to p-value, and the color denotes to the

direction of strength.
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Application 2: Brain Connectivity Discrimination - ADRC

@ Hub regions: ROIs with connected edges > 5

» Left: superior and transverse occipital sulcus, superior parietal lobule,
» Right: hippocampus, transverse occipital sulcus, precuneus, medial
occipito-temporal gyrus

ctx_Ih_S_oc_sup_and_transversal
Right-Hippocampus
ctx_Ih_G_parietal_sup

Ml ctx_rh_S_oc_sup_and_transversal

[l ctx_rh_G_precuneus

) [l ctx_rh_S_oc-temp_med_and_Lingual

Figure: lllustration of the hub ROIls with connections identified as showing significant
group difference between AD and control groups.
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Application 2: Brain Connectivity Discrimination - WRAP

Further Analysis on Preclinical AD (small effect size)
@ 615 Connections of interest (COls) selected from ADRC study
@ COl selection: FDR at 0.001 on AD vs. CN analysis
@ Family History analysis on the COls using WRAP data
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Application 2: Brain Connectivity Discrimination - WRAP

Further Analysis on Preclinical AD (small effect size)
o Applying standard GLM analysis on FA revealed no connection
@ MGLM (controlling for age/gender) for WaCS on COls for p-values

@ FDR at a = 0.05 for multiple comparisons correction (less
conservative than Bonferroni) to detect subtle variations
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Application: Brain Connectivity Discrimination - WRAP

@ 7 connections identified
- Left: 5 ROIs (orbital gray matter, calcarine sulcus, lateral orbital sulcus, postro
ventral cingular gyrus and pericallosal sulcus)
- Right: 4 ROIs (precuneus, superior parietal lobule, posterior sylvian fissure,
calcarine sulcus, pericallosal sulcus)

Figure: Significant group difference between FH+ and FH- groups. Color gives sign of
strength: red (and blue) are stronger in FH- (and FH+ group).
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Longitudinal Analysis of PIB Images

e W. H. Kim, B. B. Bendlin, M. K. Chung, S. C. Johnson, V. Singh,
Statistical Inference Models for Image Datasets with Systematic
Variations, CVPR, 2015.

@ Longitudinal SUVR images from PIB scans from two time points

&= &

Figure: Changes of longitudinal SUVR images from a single subject Decreases of the
intensities are shown in various regions.
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Analysis of Images with Imperfect Registration

e W. H. Kim, S. Ravi, S. C. Johnson, O. Okonkwo, V. Singh, On

Statistical Analysis of Neuroimages with Imperfect Registration,
ICCV, 2015

@ Analysis with incorrectly registered brain images

(b)
Figure: Registered FDG-PET scans of a subject. a) Using the original deformation

field, b), c) Using deformation field with 5% and 10% noise level, d) A slice of GRF for
spatially correlated noise, €) Using deformation field with d) as noise.

(d)

76 /86



The BEMMA hammer (Dahl and Newton, 2006)

Class 1 Class 2
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The BEMMA hammer (Dahl and Newton, 2006)

Rejecting H

Class 1

Class 2




The BEMMA hammer (Dahl and Newton, 2006)

Rejecting H

Class 1

Class 2
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Graph restricted Chinese Restaurant Processes
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Graph restricted Chinese Restaurant Processes

@ The CRP is explicitly restricted by the image lattice

@ Sampling must become significantly easier (relative to distance
dependent CRPs)

@ For cluster Cj, improvements in statistical power o |C;|?
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Conclusions

MULTI RESOLUTION

J ! il
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Conclusions

MULTI RESOLUTION

] Vil

Thanks to the organizers!
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Conclusions

@ Powerful machinery for shape analysis of arbitrary meshes and graphs

@ So far: has worked well on many different datasets and diverse
application domains
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Conclusions

@ Powerful machinery for shape analysis of arbitrary meshes and graphs
@ So far: has worked well on many different datasets and diverse
application domains
If you're interested —
@ Start with the excellent papers by Maggioni and those by Hammond

@ You may also look at some of our recent ones

Kim et al., NIPS 2012
Kim et al., Neurolmage 2014
Kim et al., Neurolmage 2015
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Conclusions

@ Powerful machinery for shape analysis of arbitrary meshes and graphs
@ So far: has worked well on many different datasets and diverse
application domains
If you're interested —
@ Start with the excellent papers by Maggioni and those by Hammond

@ You may also look at some of our recent ones

Kim et al., NIPS 2012
Kim et al., Neurolmage 2014
Kim et al., Neurolmage 2015
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