Isoperimetric inequalities for complete proper minimal submanifolds in hyperbolic space (joint work with Sung-Hong Min)

Keomkyo Seo

Sookmyung Women's University, Korea

Geometric and Analytic Inequalities Banff July 11, 2016

Introduction

Theorem (Classical Isoperimetric Inequality)

Let C be a simple closed curve in the plane whose length is L and that encloses an area A. Then

$$4\pi A \leqslant L^2$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equality holds if and only if C is a circle.

Two ways of a generalization

•
$$\Omega^2 \subset \mathbb{R}^2 \to \Omega^n \subset \mathbb{R}^n$$

 $n^n \omega_n |\Omega|^{n-1} \leq |\partial \Omega|^n$

and equality holds if and only if Ω is a ball. (ω_n is the volume of the unit ball in \mathbb{R}^n)

- For $M^n \subset \overline{M}^{n+m}$
 - Simplest case: M² ⊂ ℝ² ⊂ ℝ³. In this case we have 4πA ≤ L² with equality if and only if M is a disk.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• A natural extension: a minimal surface $M^2 \subset \mathbb{R}^3$

Two ways of a generalization

•
$$\Omega^2 \subset \mathbb{R}^2 \to \Omega^n \subset \mathbb{R}^n$$

 $n^{n}\omega_{n}|\Omega|^{n-1} \leq |\partial\Omega|^{n}$

and equality holds if and only if Ω is a ball. (ω_n is the volume of the unit ball in \mathbb{R}^n)

- For $M^n \subset \overline{M}^{n+m}$
 - Simplest case: M² ⊂ ℝ² ⊂ ℝ³. In this case we have 4πA ≤ L² with equality if and only if M is a disk.

• A natural extension: a minimal surface $M^2 \subset \mathbb{R}^3$

Two ways of a generalization

•
$$\Omega^2 \subset \mathbb{R}^2 \to \Omega^n \subset \mathbb{R}^n$$

$$n^n \omega_n |\Omega|^{n-1} \leq |\partial \Omega|^n$$

and equality holds if and only if Ω is a ball. (ω_n is the volume of the unit ball in \mathbb{R}^n)

- For $M^n \subset \overline{M}^{n+m}$
 - Simplest case: M² ⊂ ℝ² ⊂ ℝ³. In this case we have 4πA ≤ L² with equality if and only if M is a disk.

• A natural extension: a minimal surface $M^2 \subset \mathbb{R}^3$

Isoperimetric inequality for compact minimal surfaces

Question

For a minimal surface $M^2 \subset \mathbb{R}^3$, does the isoperimetric inequality

 $4\pi A \leqslant L^2$.

hold? And does equality hold if and only if the minimal surface is a disk? This problem has been partially proved but not completely.

- Yes, for simply-connected case. (Carleman 1921)
- Yes, for doubly-connected case. (Osserman-Schiffer 1975, Feinberg 1977)
- Yes, for $\sharp(\partial M) \leq 2$. (Li-Schoen-Yau 1984, Choe 1990)
- Yes, for triply-connected case. (Choe-Schoen, recent)

This problem is still open.

Isoperimetric inequality for compact minimal surfaces

Question

For a minimal surface $M^2 \subset \mathbb{R}^3$, does the isoperimetric inequality

 $4\pi A \leqslant L^2$.

hold? And does equality hold if and only if the minimal surface is a disk?

This problem has been partially proved but not completely.

- Yes, for simply-connected case. (Carleman 1921)
- Yes, for doubly-connected case. (Osserman-Schiffer 1975, Feinberg 1977)

- Yes, for $\sharp(\partial M) \leq 2$. (Li-Schoen-Yau 1984, Choe 1990)
- Yes, for triply-connected case. (Choe-Schoen, recent)

This problem is still open.

Isoperimetric inequality for compact minimal surfaces

Question

For a minimal surface $M^2 \subset \mathbb{R}^3$, does the isoperimetric inequality

$$4\pi A \leqslant L^2$$
.

hold? And does equality hold if and only if the minimal surface is a disk? This problem has been partially proved but not completely.

- Yes, for simply-connected case. (Carleman 1921)
- Yes, for doubly-connected case. (Osserman-Schiffer 1975, Feinberg 1977)
- Yes, for $\sharp(\partial M) \leq 2$. (Li-Schoen-Yau 1984, Choe 1990)
- Yes, for triply-connected case. (Choe-Schoen, recent)

This problem is still open.

Higher-dimensional cases in Euclidean space

Question

For a compact minimal submanifold $\Sigma^k \subset \mathbb{R}^n$, does the isoperimetric inequality

 $k^k \omega_k |\Sigma|^{k-1} \leqslant |\partial \Sigma|^k$

holds? And does equality hold if and only if Ω is a ball in \mathbb{R}^k ? (ω_k is the volume of the unit ball in \mathbb{R}^k)

Two partial answers:

- Yes, for Σ area-minimizing . (Almgren 1986)
- Yes, for $0 \in \Sigma$ and $\partial \Sigma \subset \partial B(r)$ (Simon 1980')

Higher-dimensional cases in Euclidean space

Question

For a compact minimal submanifold $\Sigma^k \subset \mathbb{R}^n$, does the isoperimetric inequality

$$k^k \omega_k |\Sigma|^{k-1} \leqslant |\partial \Sigma|^k$$

holds? And does equality hold if and only if Ω is a ball in \mathbb{R}^k ? (ω_k is the volume of the unit ball in \mathbb{R}^k)

Two partial answers:

- \bullet Yes, for Σ area-minimizing . (Almgren 1986)
- Yes, for $0 \in \Sigma$ and $\partial \Sigma \subset \partial B(r)$ (Simon 1980')

Higher-dimensional cases in Euclidean space

Question

For a compact minimal submanifold $\Sigma^k \subset \mathbb{R}^n$, does the isoperimetric inequality

$$k^k \omega_k |\Sigma|^{k-1} \leqslant |\partial \Sigma|^k$$

holds? And does equality hold if and only if Ω is a ball in \mathbb{R}^k ? (ω_k is the volume of the unit ball in \mathbb{R}^k)

Two partial answers:

- Yes, for Σ area-minimizing . (Almgren 1986)
- Yes, for $0 \in \Sigma$ and $\partial \Sigma \subset \partial B(r)$ (Simon 1980')

Two important results about isoperimetric inequalities on minimal submanifolds in hyperbolic space

• 2-dimensional case: (Choe-Gulliver 1992) For Σ with $\sharp(\partial \Sigma) \leqslant 2$,

 $4\pi \operatorname{Area}(\Sigma) \leq \operatorname{Length}(\partial \Sigma)^2 - \operatorname{Area}(\Sigma)^2$

with equality if and only if Σ is a geodesic ball in a totally geodesic 2-plane in \mathbb{H}^n .

• higher-dimensional case: (Yau 1975, Choe-Gulliver 1992)

 $(k-1)\operatorname{Vol}(\Sigma) \leq \operatorname{Vol}(\partial \Sigma).$

Two important results about isoperimetric inequalities on minimal submanifolds in hyperbolic space

• 2-dimensional case: (Choe-Gulliver 1992) For Σ with $\sharp(\partial \Sigma) \leqslant 2$,

 $4\pi \operatorname{Area}(\Sigma) \leq \operatorname{Length}(\partial \Sigma)^2 - \operatorname{Area}(\Sigma)^2$

with equality if and only if Σ is a geodesic ball in a totally geodesic 2-plane in \mathbb{H}^n .

• higher-dimensional case: (Yau 1975, Choe-Gulliver 1992)

 $(k-1)\operatorname{Vol}(\Sigma) \leq \operatorname{Vol}(\partial \Sigma).$

Two important results about isoperimetric inequalities on minimal submanifolds in hyperbolic space

• 2-dimensional case: (Choe-Gulliver 1992) For Σ with $\sharp(\partial \Sigma) \leqslant 2$,

 $4\pi \mathrm{Area}(\Sigma) \leqslant \mathrm{Length}(\partial \Sigma)^2 - \mathrm{Area}(\Sigma)^2$

with equality if and only if Σ is a geodesic ball in a totally geodesic 2-plane in \mathbb{H}^n .

• higher-dimensional case: (Yau 1975, Choe-Gulliver 1992)

 $(k-1)\operatorname{Vol}(\Sigma) \leq \operatorname{Vol}(\partial \Sigma).$

Two important results about isoperimetric inequalities on minimal submanifolds in hyperbolic space

• 2-dimensional case: (Choe-Gulliver 1992) For Σ with $\sharp(\partial \Sigma) \leqslant 2$,

 $4\pi \mathrm{Area}(\Sigma) \leqslant \mathrm{Length}(\partial \Sigma)^2 - \mathrm{Area}(\Sigma)^2$

with equality if and only if Σ is a geodesic ball in a totally geodesic 2-plane in \mathbb{H}^n .

• higher-dimensional case: (Yau 1975, Choe-Gulliver 1992)

 $(k-1)\operatorname{Vol}(\Sigma) \leq \operatorname{Vol}(\partial \Sigma).$

Two important results about isoperimetric inequalities on minimal submanifolds in hyperbolic space

• 2-dimensional case: (Choe-Gulliver 1992) For Σ with $\sharp(\partial \Sigma) \leq 2$,

 $4\pi \mathrm{Area}(\Sigma) \leqslant \mathrm{Length}(\partial \Sigma)^2 - \mathrm{Area}(\Sigma)^2$

with equality if and only if Σ is a geodesic ball in a totally geodesic 2-plane in \mathbb{H}^n .

• higher-dimensional case: (Yau 1975, Choe-Gulliver 1992)

 $(k-1)\operatorname{Vol}(\Sigma) \leq \operatorname{Vol}(\partial \Sigma).$

- \mathbb{H}^n : the hyperbolic *n*-space of constant curvature -1
- We choose the Poincaré ball model B^n among several models of \mathbb{H}^n .
- Then B^n can be regarded as both
 - the unit ball in \mathbb{R}^n and
 - the Poincaré ball model of \mathbb{H}^n .
- ds²_ℍ: the hyperbolic metric on Bⁿ
 ds²_ℝ: the Euclidean metric on Bⁿ
 r: the Euclidean distance from the origin
 Then we have the following conformal equivalence of ℍⁿ with ℝⁿ:

$$ds_{\mathbb{H}}^2 = \frac{4}{(1-r^2)^2} ds_{\mathbb{R}}^2,$$

- \mathbb{H}^n : the hyperbolic *n*-space of constant curvature -1
- We choose the Poincaré ball model B^n among several models of \mathbb{H}^n .
- Then B^n can be regarded as both
 - the unit ball in ℝⁿ and
 - the Poincaré ball model of \mathbb{H}^n .
- ds²_ℝ: the hyperbolic metric on Bⁿ
 ds²_ℝ: the Euclidean metric on Bⁿ
 r: the Euclidean distance from the origin
 Then we have the following conformal equivalence of Hⁿ with ℝⁿ:

$$ds_{\mathbb{H}}^2 = rac{4}{(1-r^2)^2} ds_{\mathbb{R}}^2,$$

- Σ : complete proper minimal submanifold in \mathbb{H}^n
- Note that Σ ⊂ ℍⁿ is called proper if, for any compact subset C ⊂ ℍⁿ, the intersection C ∩ Σ is also compact in ℍⁿ.
- The existence of complete minimal submanifolds in hyperbolic space was proved by M. Anderson(1982, 1983) and F.H. Lin(1989). More precisely, given γ^{k-1} ⊂ ∂_∞ℍⁿ, there exists a k-dimensional area-minimizing Σ satisfying that ∂Σ.
- Vol_R(Σ): the k-dimensional Euclidean volume of Σ Vol_R(∂_∞Σ): the (k − 1)-dimensional Euclidean volume of the ideal boundary ∂_∞Σ := Σ ∩ ∂_∞ℍⁿ

- Σ : complete proper minimal submanifold in \mathbb{H}^n
- Note that $\Sigma \subset \mathbb{H}^n$ is called proper if, for any compact subset $C \subset \mathbb{H}^n$, the intersection $C \cap \Sigma$ is also compact in \mathbb{H}^n .
- The existence of complete minimal submanifolds in hyperbolic space was proved by M. Anderson(1982, 1983) and F.H. Lin(1989). More precisely, given γ^{k-1} ⊂ ∂_∞ℍⁿ, there exists a k-dimensional area-minimizing Σ satisfying that ∂Σ.
- Vol_R(Σ): the k-dimensional Euclidean volume of Σ Vol_R(∂_∞Σ): the (k − 1)-dimensional Euclidean volume of the ideal boundary ∂_∞Σ := Σ ∩ ∂_∞ℍⁿ

- Σ : complete proper minimal submanifold in \mathbb{H}^n
- Note that $\Sigma \subset \mathbb{H}^n$ is called proper if, for any compact subset $C \subset \mathbb{H}^n$, the intersection $C \cap \Sigma$ is also compact in \mathbb{H}^n .
- The existence of complete minimal submanifolds in hyperbolic space was proved by M. Anderson(1982, 1983) and F.H. Lin(1989). More precisely, given γ^{k-1} ⊂ ∂_∞ℍⁿ, there exists a k-dimensional area-minimizing Σ satisfying that ∂Σ.
- Vol_R(Σ): the k-dimensional Euclidean volume of Σ Vol_R(∂_∞Σ): the (k − 1)-dimensional Euclidean volume of the ideal boundary ∂_∞Σ := Σ ∩ ∂_∞ℍⁿ

- Σ : complete proper minimal submanifold in \mathbb{H}^n
- Note that $\Sigma \subset \mathbb{H}^n$ is called proper if, for any compact subset $C \subset \mathbb{H}^n$, the intersection $C \cap \Sigma$ is also compact in \mathbb{H}^n .
- The existence of complete minimal submanifolds in hyperbolic space was proved by M. Anderson(1982, 1983) and F.H. Lin(1989). More precisely, given γ^{k-1} ⊂ ∂_∞ ℍⁿ, there exists a k-dimensional area-minimizing Σ satisfying that ∂Σ.
- Vol_R(Σ): the k-dimensional Euclidean volume of Σ Vol_R(∂_∞Σ): the (k − 1)-dimensional Euclidean volume of the ideal boundary ∂_∞Σ := Σ ∩ ∂_∞ℍⁿ

Linear isoperimetric inequality implies classical isoperimetric inequality

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in the Poincaré ball model Bⁿ. Then

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) \leqslant rac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma),$$

where equality holds if and only if Σ is a k-dimensional unit ball B^k in B^n .

Corollary

Let Σ be a *k*-dimensional complete proper minimal submanifold in the Poincaré ball model B^n . If $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \ge \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, then

$$k^k \omega_k \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \leq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^k$$
,

where $\omega_k = \operatorname{Vol}_{\mathbb{R}}(B^k)$. Moreover, equality holds if and only if Σ is a *k*-dimensional unit ball B^k in B^n .

Linear isoperimetric inequality implies classical isoperimetric inequality

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in the Poincaré ball model B^n . Then

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) \leqslant rac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma),$$

where equality holds if and only if Σ is a k-dimensional unit ball B^k in B^n .

Corollary

Let Σ be a k-dimensional complete proper minimal submanifold in the Poincaré ball model B^n . If $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \ge \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, then

$$k^k \omega_k \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \leq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^k$$
,

where $\omega_k = \operatorname{Vol}_{\mathbb{R}}(B^k)$. Moreover, equality holds if and only if Σ is a *k*-dimensional unit ball B^k in B^n .

Linear isoperimetric inequality implies classical isoperimetric inequality

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in the Poincaré ball model B^n . Then

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) \leqslant rac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma),$$

where equality holds if and only if Σ is a k-dimensional unit ball B^k in B^n .

Corollary

Let Σ be a *k*-dimensional complete proper minimal submanifold in the Poincaré ball model B^n . If $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \geq \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, then

$$k^{k}\omega_{k}\operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \leqslant \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma)^{k},$$

where $\omega_k = \operatorname{Vol}_{\mathbb{R}}(B^k)$. Moreover, equality holds if and only if Σ is a *k*-dimensional unit ball B^k in B^n .

From the linear isoperimetric inequality and the assumption that $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \ge \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, it follows that

$$\begin{aligned} k^{k} \omega_{k} \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} &\leq k^{k} \omega_{k} \left(\frac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma) \right)^{k-1} \\ &= k \omega_{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^{k-1} \\ &\leq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^{k}. \end{aligned}$$

.Remark

The conclusion of Corollary is sharp in the following sense: Assume that Σ is totally geodesic in the Poincaré ball model B^n . Since the Euclidean projection of Σ onto the flat hypersurface containing $\partial \Sigma$ is volume-decreasing, we have the reverse isoperimetric inequality

$$k^k \omega_k \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \ge \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^k.$$

Moreover equality holds if and only if Σ is a *k*-dimensional unit ball B^k in Euclidean space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From the linear isoperimetric inequality and the assumption that $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \ge \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, it follows that

$$\begin{aligned} k^{k} \omega_{k} \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} &\leq k^{k} \omega_{k} \left(\frac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma) \right)^{k-1} \\ &= k \omega_{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^{k-1} \\ &\leq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^{k}. \end{aligned}$$

.Remark

The conclusion of Corollary is sharp in the following sense: Assume that Σ is totally geodesic in the Poincaré ball model B^n . Since the Euclidean projection of Σ onto the flat hypersurface containing $\partial \Sigma$ is volume-decreasing, we have the reverse isoperimetric inequality

$$k^{k}\omega_{k}\mathrm{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \geq \mathrm{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma)^{k}.$$

Moreover equality holds if and only if Σ is a *k*-dimensional unit ball B^k in Euclidean space.

From the linear isoperimetric inequality and the assumption that $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \ge \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, it follows that

$$\begin{aligned} k^{k} \omega_{k} \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} &\leq k^{k} \omega_{k} \left(\frac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma) \right)^{k-1} \\ &= k \omega_{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^{k-1} \\ &\leq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^{k}. \quad QED \end{aligned}$$

.Remark

The conclusion of Corollary is sharp in the following sense: Assume that Σ is totally geodesic in the Poincaré ball model B^n . Since the Euclidean projection of Σ onto the flat hypersurface containing $\partial \Sigma$ is volume-decreasing, we have the reverse isoperimetric inequality

$$k^k \omega_k \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \ge \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^k.$$

Moreover equality holds if and only if Σ is a *k*-dimensional unit ball B^k in Euclidean space.

From the linear isoperimetric inequality and the assumption that $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \ge \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, it follows that

$$\begin{aligned} k^{k} \omega_{k} \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} &\leq k^{k} \omega_{k} \left(\frac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma) \right)^{k-1} \\ &= k \omega_{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^{k-1} \\ &\leq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^{k}. \quad QED \end{aligned}$$

.Remark

The conclusion of Corollary is sharp in the following sense: Assume that Σ is totally geodesic in the Poincaré ball model B^n . Since the Euclidean projection of Σ onto the flat hypersurface containing $\partial \Sigma$ is volume-decreasing, we have the reverse isoperimetric inequality

$$k^k \omega_k \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \ge \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^k.$$

Moreover equality holds if and only if Σ is a *k*-dimensional unit ball B^k in Euclidean space.

Proof of Theorem

• Step1:

Let r(x) and $\rho(x)$ be the Euclidean and hyperbolic distance from the origin to $x \in B^n$, respectively. Recall that the distance functions r and ρ satisfy that

$$ho = \ln rac{1+r}{1-r}$$
 and $r = anh rac{
ho}{2} = rac{\sinh
ho}{1+\cosh
ho}$

Denote by B_R the Euclidean ball of radius R centered at the origin for 0 < R < 1. Note that the Euclidean ball B_R can be thought of as the hyperbolic ball B_{R^*} of radius R^* in the Poincaré ball model B^n , where $R^* = \ln \frac{1+R}{1-R}$.

Proof of Theorem

• Step1:

Let r(x) and $\rho(x)$ be the Euclidean and hyperbolic distance from the origin to $x \in B^n$, respectively. Recall that the distance functions r and ρ satisfy that

$$ho = \ln rac{1+r}{1-r}$$
 and $r = anh rac{
ho}{2} = rac{\sinh
ho}{1+\cosh
ho}.$

Denote by B_R the Euclidean ball of radius R centered at the origin for 0 < R < 1. Note that the Euclidean ball B_R can be thought of as the hyperbolic ball B_{R^*} of radius R^* in the Poincaré ball model B^n , where $R^* = \ln \frac{1+R}{1-R}$.

Proof of Theorem

• Step1:

Let r(x) and $\rho(x)$ be the Euclidean and hyperbolic distance from the origin to $x \in B^n$, respectively. Recall that the distance functions r and ρ satisfy that

$$ho = \ln rac{1+r}{1-r}$$
 and $r = anh rac{
ho}{2} = rac{\sinh
ho}{1+\cosh
ho}.$

Denote by B_R the Euclidean ball of radius R centered at the origin for 0 < R < 1. Note that the Euclidean ball B_R can be thought of as the hyperbolic ball B_{R^*} of radius R^* in the Poincaré ball model B^n , where $R^* = \ln \frac{1+R}{1-R}$.

• We now consider two kinds of the intersection of Σ with the Euclidean ball B_R and the hyperbolic ball B_{R^*} as following.

 Σ_R : the intersection $\Sigma \cap B_R$ (possibly empty) which has the volume form $dV_{\mathbb{R}}$ induced from the Euclidean metric

 Σ_{R^*} : the intersection $\Sigma \cap B_{R^*}$ which has the volume form $dV_{\mathbb{H}}$ induced from the hyperbolic metric.

Since

$$dV_{\mathbb{R}} = \left(\frac{1-r^2}{2}\right)^k dV_{\mathbb{H}},$$

the Euclidean volume $\mathrm{Vol}_\mathbb{R}(\Sigma_R)$ can be computed as

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) &= \int_{\Sigma_{R}} dV_{\mathbb{R}} \\ &= \int_{\Sigma_{R}} \left(\frac{1 - r^{2}}{2} \right)^{k} dV_{\mathbb{H}} \\ &= \int_{\widetilde{\Sigma}_{R^{*}}} \frac{1}{(1 + \cosh \rho)^{k}} dV_{\mathbb{H}}, \end{aligned}$$

We now consider two kinds of the intersection of Σ with the Euclidean ball B_R and the hyperbolic ball B_{R*} as following.
 Σ_R: the intersection Σ ∩ B_R (possibly empty) which has the volume form dV_R induced from the Euclidean metric

 Σ_{R^*} : the intersection $\Sigma \cap B_{R^*}$ which has the volume form $dV_{\mathbb{H}}$ induced from the hyperbolic metric. Since

$$dV_{\mathbb{R}} = \left(\frac{1-r^2}{2}\right)^k dV_{\mathbb{H}},$$

the Euclidean volume $\operatorname{Vol}_{\mathbb{R}}(\Sigma_R)$ can be computed as

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) &= \int_{\Sigma_{R}} dV_{\mathbb{R}} \\ &= \int_{\Sigma_{R}} \left(\frac{1 - r^{2}}{2} \right)^{k} dV_{\mathbb{H}} \\ &= \int_{\widetilde{\Sigma}_{R^{*}}} \frac{1}{(1 + \cosh \rho)^{k}} dV_{\mathbb{H}}, \end{aligned}$$

• We now consider two kinds of the intersection of Σ with the Euclidean ball B_R and the hyperbolic ball B_{R^*} as following. Σ_R : the intersection $\Sigma \cap B_R$ (possibly empty) which has the volume form $dV_{\mathbb{R}}$ induced from the Euclidean metric $\widetilde{\Sigma}_{R^*}$: the intersection $\Sigma \cap B_{R^*}$ which has the volume form $dV_{\mathbb{H}}$ induced from the hyperbolic metric. Since

$$dV_{\mathbb{R}} = \left(\frac{1-r^2}{2}\right)^k dV_{\mathbb{H}},$$

the Euclidean volume $\operatorname{Vol}_{\mathbb{R}}(\Sigma_R)$ can be computed as

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) &= \int_{\Sigma_{R}} dV_{\mathbb{R}} \\ &= \int_{\Sigma_{R}} \left(\frac{1 - r^{2}}{2} \right)^{k} dV_{\mathbb{H}} \\ &= \int_{\widetilde{\Sigma}_{R^{*}}} \frac{1}{(1 + \cosh \rho)^{k}} dV_{\mathbb{H}}, \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• We now consider two kinds of the intersection of Σ with the Euclidean ball B_R and the hyperbolic ball B_{R^*} as following. Σ_R : the intersection $\Sigma \cap B_R$ (possibly empty) which has the volume form $dV_{\mathbb{R}}$ induced from the Euclidean metric $\widetilde{\Sigma}_{R^*}$: the intersection $\Sigma \cap B_{R^*}$ which has the volume form $dV_{\mathbb{H}}$ induced from the hyperbolic metric. Since

$$dV_{\mathbb{R}} = \left(\frac{1-r^2}{2}\right)^k dV_{\mathbb{H}},$$

the Euclidean volume $\operatorname{Vol}_{\mathbb{R}}(\Sigma_R)$ can be computed as

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) &= \int_{\Sigma_{R}} dV_{\mathbb{R}} \\ &= \int_{\Sigma_{R}} \left(\frac{1-r^{2}}{2}\right)^{k} dV_{\mathbb{H}} \\ &= \int_{\widetilde{\Sigma}_{R^{*}}} \frac{1}{(1+\cosh\rho)^{k}} dV_{\mathbb{H}}, \end{aligned}$$
• We now consider two kinds of the intersection of Σ with the Euclidean ball B_R and the hyperbolic ball B_{R^*} as following. Σ_R : the intersection $\Sigma \cap B_R$ (possibly empty) which has the volume form $dV_{\mathbb{R}}$ induced from the Euclidean metric $\widetilde{\Sigma}_{R^*}$: the intersection $\Sigma \cap B_{R^*}$ which has the volume form $dV_{\mathbb{H}}$ induced from the hyperbolic metric. Since

$$dV_{\mathbb{R}} = \left(\frac{1-r^2}{2}\right)^k dV_{\mathbb{H}},$$

the Euclidean volume $\operatorname{Vol}_{\mathbb{R}}(\Sigma_R)$ can be computed as

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) &= \int_{\Sigma_{R}} dV_{\mathbb{R}} \\ &= \int_{\Sigma_{R}} \left(\frac{1-r^{2}}{2}\right)^{k} dV_{\mathbb{H}} \\ &= \int_{\widetilde{\Sigma}_{R^{*}}} \frac{1}{(1+\cosh\rho)^{k}} dV_{\mathbb{H}} \end{aligned}$$

• Step2: Analyze a very special function of distance

• Let Σ be a *k*-dimensional minimal submanifold in \mathbb{H}^n . Then the distance ρ satisfies that

$$\triangle_{\Sigma}\rho = \operatorname{coth}\rho(k - |\nabla_{\Sigma}\rho|^2).$$

• Let f be a smooth function in ρ on Σ .

$$\begin{split} \Delta_{\Sigma} f &= \operatorname{div}(\nabla_{\Sigma} f) \\ &= f'' |\nabla_{\Sigma} \rho|^2 + f' \Delta_{\Sigma} \rho \\ &= f'' |\nabla_{\Sigma} \rho|^2 + f' \operatorname{coth} \rho (k - |\nabla_{\Sigma} \rho|^2) \\ &= kf' \operatorname{coth} \rho - |\nabla_{\Sigma} \rho|^2 (f' \operatorname{coth} \rho - f''). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Step2: Analyze a very special function of distance

 Let Σ be a k-dimensional minimal submanifold in ℍⁿ. Then the distance ρ satisfies that

$$\triangle_{\Sigma}\rho = \operatorname{coth} \rho(k - |\nabla_{\Sigma}\rho|^2).$$

• Let f be a smooth function in ρ on Σ .

$$\begin{split} \Delta_{\Sigma} f &= \operatorname{div}(\nabla_{\Sigma} f) \\ &= f'' |\nabla_{\Sigma} \rho|^2 + f' \Delta_{\Sigma} \rho \\ &= f'' |\nabla_{\Sigma} \rho|^2 + f' \operatorname{coth} \rho (k - |\nabla_{\Sigma} \rho|^2) \\ &= kf' \operatorname{coth} \rho - |\nabla_{\Sigma} \rho|^2 (f' \operatorname{coth} \rho - f''). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Step2: Analyze a very special function of distance

 Let Σ be a k-dimensional minimal submanifold in ℍⁿ. Then the distance ρ satisfies that

$$\triangle_{\Sigma}\rho = \operatorname{coth}\rho(k - |\nabla_{\Sigma}\rho|^2).$$

• Let f be a smooth function in ρ on Σ .

$$\begin{split} \triangle_{\Sigma} f &= \operatorname{div}(\nabla_{\Sigma} f) \\ &= f'' |\nabla_{\Sigma} \rho|^2 + f' \triangle_{\Sigma} \rho \\ &= f'' |\nabla_{\Sigma} \rho|^2 + f' \operatorname{coth} \rho (k - |\nabla_{\Sigma} \rho|^2) \\ &= kf' \operatorname{coth} \rho - |\nabla_{\Sigma} \rho|^2 (f' \operatorname{coth} \rho - f''). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Choose a nice function of distance f on $\Sigma \subset B^n$ by

$$f=-\frac{1}{k(k-1)}\cdot\frac{1}{(1+\cosh\rho)^{k-1}}.$$

Then

$$\triangle_{\Sigma} f \geqslant \frac{1}{(1 + \cosh \rho)^k}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Choose a nice function of distance f on $\Sigma \subset B^n$ by

$$f = -\frac{1}{k(k-1)} \cdot \frac{1}{(1 + \cosh \rho)^{k-1}}.$$

Then

$$\triangle_{\Sigma} f \geqslant \frac{1}{(1 + \cosh \rho)^k}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Combining the above relations and using divergence theorem, we get

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) &= \int_{\widetilde{\Sigma}_{R^{*}}} \frac{1}{(1 + \cosh \rho)^{k}} dV_{\mathbb{H}} \\ &\leqslant \int_{\widetilde{\Sigma}_{R^{*}}} kf' \operatorname{coth} \rho - (f' \operatorname{coth} \rho - f'') dV_{\mathbb{H}} \\ &+ \int_{\widetilde{\Sigma}_{R^{*}}} (1 - |\nabla_{\Sigma}\rho|^{2}) (f' \operatorname{coth} \rho - f'') dV_{\mathbb{H}} \\ &= \int_{\widetilde{\Sigma}_{R^{*}}} \Delta_{\Sigma} f dV_{\mathbb{H}} \\ &= \int_{\partial \widetilde{\Sigma}_{R^{*}}} f' \frac{\partial \rho}{\partial \nu} d\sigma_{\mathbb{H}}, \end{aligned}$$

where $d\sigma_{\mathbb{H}}$ denotes the volume form of the boundary $\partial \widetilde{\Sigma}_{R^*}$ induced from the volume form $dV_{\mathbb{H}}$ of $\widetilde{\Sigma}_{R^*}$ and ν denotes the outward unit conormal vector.

Use

$$f' = rac{1}{k} rac{\sinh
ho}{(1 + \cosh
ho)^k} \qquad , \qquad rac{\partial
ho}{\partial
u} \leqslant 1,$$

and

$$d\sigma_{\mathbb{H}} = \left(rac{\sinh
ho}{r}
ight)^{k-1} d\sigma_{\mathbb{R}},$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

where $d\sigma_{\mathbb{R}}$ denotes the volume form of the boundary $\partial \Sigma_{R}$ in Euclidean space.

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) &\leqslant \int_{\partial \widetilde{\Sigma}_{R^{*}}} f' \frac{\partial \rho}{\partial \nu} d\sigma_{\mathbb{H}} \\ &\leqslant \int_{\partial \widetilde{\Sigma}_{R^{*}}} \frac{1}{k} \frac{\sinh \rho}{(1 + \cosh \rho)^{k}} d\sigma_{\mathbb{H}} \\ &= \int_{\partial \Sigma_{R}} \frac{1}{k} \left(\frac{\sinh \rho}{1 + \cosh \rho} \right)^{k} \frac{d\sigma_{\mathbb{R}}}{r^{k-1}} \\ &= \int_{\partial \Sigma_{R}} \frac{r}{k} d\sigma_{\mathbb{R}} \\ &= \frac{R}{k} \operatorname{Vol}_{\mathbb{R}}(\partial \Sigma_{R}). \end{aligned}$$

Therefore, letting *R* tend to 1, we obtain

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) \leqslant \frac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma).$$

<□ > < @ > < E > < E > E のQ @

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) &\leqslant \int_{\partial \widetilde{\Sigma}_{R^{*}}} f' \frac{\partial \rho}{\partial \nu} d\sigma_{\mathbb{H}} \\ &\leqslant \int_{\partial \widetilde{\Sigma}_{R^{*}}} \frac{1}{k} \frac{\sinh \rho}{(1 + \cosh \rho)^{k}} d\sigma_{\mathbb{H}} \\ &= \int_{\partial \Sigma_{R}} \frac{1}{k} \left(\frac{\sinh \rho}{1 + \cosh \rho} \right)^{k} \frac{d\sigma_{\mathbb{R}}}{r^{k-1}} \\ &= \int_{\partial \Sigma_{R}} \frac{r}{k} d\sigma_{\mathbb{R}} \\ &= \frac{R}{k} \operatorname{Vol}_{\mathbb{R}}(\partial \Sigma_{R}). \end{aligned}$$

Therefore, letting R tend to 1, we obtain

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) \leqslant \frac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma).$$

• Step3: Equality case

It follows from the above inequality that for 0 < R < 1

$$\frac{R}{k} \operatorname{Vol}_{\mathbb{R}}(\partial \Sigma_{R}) - \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) \ge \int_{\widetilde{\Sigma}_{R^{*}}} (1 - |\nabla_{\Sigma}\rho|^{2}) \frac{\sinh^{2}\rho}{(1 + \cosh\rho)^{k+1}} dV_{\mathbb{H}}.$$

Thus equality holds in the above inequality if and only if Σ is a cone in B^n , which is equivalent to that Σ is totally geodesic in B^n and contains the origin. Therefore equality holds if and only if Σ is a *k*-dimensional unit ball B^k centered at the origin in B^n .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Step3: Equality case

It follows from the above inequality that for 0 < R < 1

$$\frac{R}{k} \operatorname{Vol}_{\mathbb{R}}(\partial \Sigma_{R}) - \operatorname{Vol}_{\mathbb{R}}(\Sigma_{R}) \ge \int_{\widetilde{\Sigma}_{R^{*}}} (1 - |\nabla_{\Sigma} \rho|^{2}) \frac{\sinh^{2} \rho}{(1 + \cosh \rho)^{k+1}} dV_{\mathbb{H}}.$$

Thus equality holds in the above inequality if and only if Σ is a cone in B^n , which is equivalent to that Σ is totally geodesic in B^n and contains the origin. Therefore equality holds if and only if Σ is a *k*-dimensional unit ball B^k centered at the origin in B^n .

A sharp lower bound for $\mathrm{Vol}_\mathbb{R}(\Sigma)$

(Fraser and Schoen, 2011)
 If Σ is a minimal surface in the unit ball Bⁿ ⊂ ℝⁿ with (nonempty)
 boundary ∂Σ ⊂ ∂Bⁿ, and meeting ∂Bⁿ orthogonally along ∂Σ, then

Area $(\Sigma) \ge \pi$.

(Brendle, 2012)
 If Σ is a k-dimensional minimal submanifold in the unit ball Bⁿ and if Σ meets the boundary ∂Bⁿ orthogonally, then

 $\operatorname{Vol}(\Sigma) \geqslant \operatorname{Vol}(B^k) = \omega_k.$

A sharp lower bound for $\mathrm{Vol}_\mathbb{R}(\Sigma)$

(Fraser and Schoen, 2011)
 If Σ is a minimal surface in the unit ball Bⁿ ⊂ ℝⁿ with (nonempty)
 boundary ∂Σ ⊂ ∂Bⁿ, and meeting ∂Bⁿ orthogonally along ∂Σ, then

$\operatorname{Area}(\Sigma) \ge \pi.$

(Brendle, 2012)
 If Σ is a k-dimensional minimal submanifold in the unit ball Bⁿ and if Σ meets the boundary ∂Bⁿ orthogonally, then

 $\operatorname{Vol}(\Sigma) \geqslant \operatorname{Vol}(B^k) = \omega_k.$

A sharp lower bound for $\operatorname{Vol}_{\mathbb{R}}(\Sigma)$

(Fraser and Schoen, 2011)
 If Σ is a minimal surface in the unit ball Bⁿ ⊂ ℝⁿ with (nonempty)
 boundary ∂Σ ⊂ ∂Bⁿ, and meeting ∂Bⁿ orthogonally along ∂Σ, then

 $\operatorname{Area}(\Sigma) \ge \pi.$

(Brendle, 2012)
 If Σ is a k-dimensional minimal submanifold in the unit ball Bⁿ and if Σ meets the boundary ∂Bⁿ orthogonally, then

 $\operatorname{Vol}(\Sigma) \ge \operatorname{Vol}(B^k) = \omega_k.$

Question

Do we have an analogue of the above theorems for complete proper minimal submanifolds in B^n ?

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in the Poincaré ball model B^n . If Σ contains the origin in B^n , then

 $\operatorname{Vol}_{\mathbb{R}}(\Sigma) \ge \omega_k = \operatorname{Vol}_{\mathbb{R}}(B^k),$

where equality holds if and only if Σ is a k-dimensional unit ball B^k in B^n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Do we have an analogue of the above theorems for complete proper minimal submanifolds in B^n ?

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in the Poincaré ball model B^n . If Σ contains the origin in B^n , then

 $\operatorname{Vol}_{\mathbb{R}}(\Sigma) \ge \omega_k = \operatorname{Vol}_{\mathbb{R}}(B^k),$

where equality holds if and only if Σ is a k-dimensional unit ball B^k in B^n .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Containing the origin implies the isoperimetric inequality

Corollary

Let Σ be a *k*-dimensional complete proper minimal submanifold containing the origin in the Poincaré ball model B^n . Then

 $k^k \omega_k \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \leq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^k$,

where equality holds if and only if Σ is a *k*-dimensional unit ball B^k in B^n . **Proof**:

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) &\geq k \operatorname{Vol}_{\mathbb{R}}(\Sigma) \\ &\geq k \operatorname{Vol}_{\mathbb{R}}(B^{k}) \\ &= \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) \end{aligned}$$

Since $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \ge \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, we get the conclusion. QED

Containing the origin implies the isoperimetric inequality

Corollary

Let Σ be a *k*-dimensional complete proper minimal submanifold containing the origin in the Poincaré ball model B^n . Then

 $k^k \omega_k \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \leqslant \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^k$,

where equality holds if and only if Σ is a *k*-dimensional unit ball B^k in B^n . Proof:

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) &\geq k \operatorname{Vol}_{\mathbb{R}}(\Sigma) \\ &\geq k \operatorname{Vol}_{\mathbb{R}}(B^{k}) \\ &= \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) \end{aligned}$$

Since $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \ge \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, we get the conclusion. QED

Containing the origin implies the isoperimetric inequality

Corollary

Let Σ be a *k*-dimensional complete proper minimal submanifold containing the origin in the Poincaré ball model B^n . Then

 $k^k \omega_k \operatorname{Vol}_{\mathbb{R}}(\Sigma)^{k-1} \leq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \Sigma)^k$,

where equality holds if and only if Σ is a *k*-dimensional unit ball B^k in B^n . **Proof**:

$$\begin{aligned} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) &\geq k\operatorname{Vol}_{\mathbb{R}}(\Sigma) \\ &\geq k\operatorname{Vol}_{\mathbb{R}}(B^{k}) \\ &= \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) \end{aligned}$$

Since $\operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\Sigma) \ge \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) = k\omega_k$, we get the conclusion. QED

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Monotonicity implies the sharp lower bound for $\operatorname{Vol}_{\mathbb{R}}(\Sigma)$

Theorem

Let Σ be a k-dimensional complete minimal submanifold in B^n . Then the function $\frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma \cap B_r)}{r^k}$ is nondecreasing in r for 0 < r < 1. In other words,

$$\frac{d}{dr}\left(\frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma\cap B_r)}{r^k}\right) \geqslant 0,$$

which is equivalent to

$$\frac{d}{d\rho}\left(\frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma\cap B_r)}{r^k}\right) \geqslant 0.$$

Recall that the density $\Theta(\Sigma, p)$ of a k-dimensional submanifold Σ in a Riemannian manifold M at a point $p \in M$ is defined to be

$$\Theta(\Sigma, \boldsymbol{p}) = \lim_{\varepsilon \to 0} \frac{\operatorname{Vol}(\Sigma \cap B_{\varepsilon}(\boldsymbol{p}))}{\omega_k \varepsilon^k},$$

where $B_{\varepsilon}(p)$ is the geodesic ball of M with radius ε and center p. As a consequence of monotonicity theorem, we have

Corollary

Let Σ be a *k*-dimensional complete proper minimal submanifold containing the origin in the Poincaré ball model B^n . Then

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) \ge \omega_k = \operatorname{Vol}_{\mathbb{R}}(B^k).$$

Proof.

Since the function $\frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma_r)}{r^k}$ is nondecreasing in r by monotonicity,

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) = \lim_{r \to 1^{-}} \frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma_{r})}{r^{k}} \ge \lim_{r \to 0^{+}} \frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma_{r})}{r^{k}} = \omega_{k} \Theta(\Sigma, O) \ge \omega_{k}.$$

Recall that the density $\Theta(\Sigma, p)$ of a k-dimensional submanifold Σ in a Riemannian manifold M at a point $p \in M$ is defined to be

$$\Theta(\Sigma, p) = \lim_{\varepsilon \to 0} \frac{\operatorname{Vol}(\Sigma \cap B_{\varepsilon}(p))}{\omega_k \varepsilon^k},$$

where $B_{\varepsilon}(p)$ is the geodesic ball of M with radius ε and center p. As a consequence of monotonicity theorem, we have

Corollary

Let Σ be a *k*-dimensional complete proper minimal submanifold containing the origin in the Poincaré ball model B^n . Then

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) \ge \omega_k = \operatorname{Vol}_{\mathbb{R}}(B^k).$$

Proof.

Since the function $\frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma_r)}{r^k}$ is nondecreasing in *r* by monotonicity,

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) = \lim_{r \to 1-} \frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma_r)}{r^k} \ge \lim_{r \to 0+} \frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma_r)}{r^k} = \omega_k \Theta(\Sigma, O) \ge \omega_k.$$

Recall that the density $\Theta(\Sigma, p)$ of a k-dimensional submanifold Σ in a Riemannian manifold M at a point $p \in M$ is defined to be

$$\Theta(\Sigma, p) = \lim_{\varepsilon \to 0} \frac{\operatorname{Vol}(\Sigma \cap B_{\varepsilon}(p))}{\omega_k \varepsilon^k},$$

where $B_{\varepsilon}(p)$ is the geodesic ball of M with radius ε and center p. As a consequence of monotonicity theorem, we have

Corollary

Let Σ be a *k*-dimensional complete proper minimal submanifold containing the origin in the Poincaré ball model B^n . Then

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) \ge \omega_k = \operatorname{Vol}_{\mathbb{R}}(B^k).$$

Proof.

Since the function $\frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma_r)}{r^k}$ is nondecreasing in r by monotonicity,

$$\operatorname{Vol}_{\mathbb{R}}(\Sigma) = \lim_{r \to 1-} \frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma_r)}{r^k} \ge \lim_{r \to 0+} \frac{\operatorname{Vol}_{\mathbb{R}}(\Sigma_r)}{r^k} = \omega_k \Theta(\Sigma, \mathcal{O}) \ge \omega_k.$$

Möbius volume

Definition

Let Γ be a compact submanifold of \mathbb{S}^{n-1} . Let $\text{M\"ob}(\mathbb{S}^{n-1})$ be the group of all Möbius transformations of \mathbb{S}^{n-1} . The Möbius volume $\text{Vol}_{M}(\Gamma)$ of Γ is defined to be

 $\operatorname{Vol}_{\mathrm{M}}(\Gamma) = \sup \{ \operatorname{Vol}_{\mathbb{R}}(g(\Gamma)) \ g \in \operatorname{M\"ob}(\mathbb{S}^{n-1}) \}.$

• (Min 2010) Let Γ be a *k*-dimensional compact submanifold of \mathbb{S}^{n-1} . Then

 $\operatorname{Vol}_{\mathrm{M}}(\Gamma) \geq \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k}),$

where equality holds if Γ is a *k*-dimensional unit sphere \mathbb{S}^k .

Möbius volume

Definition

Let Γ be a compact submanifold of \mathbb{S}^{n-1} . Let $\text{M\"ob}(\mathbb{S}^{n-1})$ be the group of all Möbius transformations of \mathbb{S}^{n-1} . The Möbius volume $\text{Vol}_{M}(\Gamma)$ of Γ is defined to be

 $\operatorname{Vol}_{\mathrm{M}}(\Gamma) = \sup \{ \operatorname{Vol}_{\mathbb{R}}(g(\Gamma)) \ g \in \operatorname{M\"ob}(\mathbb{S}^{n-1}) \}.$

(Min 2010)
 Let Γ be a k-dimensional compact submanifold of Sⁿ⁻¹. Then
 Vol₂ (Γ) > Vol₂ (S^k)

where equality holds if Γ is a *k*-dimensional unit sphere \mathbb{S}^k .

Möbius volume

Definition

Let Γ be a compact submanifold of \mathbb{S}^{n-1} . Let $\mathsf{M\"ob}(\mathbb{S}^{n-1})$ be the group of all Möbius transformations of \mathbb{S}^{n-1} . The Möbius volume $\mathrm{Vol}_{\mathrm{M}}(\Gamma)$ of Γ is defined to be

$$\operatorname{Vol}_{\mathrm{M}}(\Gamma) = \sup \{ \operatorname{Vol}_{\mathbb{R}}(g(\Gamma)) \ g \in \operatorname{M\"ob}(\mathbb{S}^{n-1}) \}.$$

(Min 2010)
 Let Γ be a k-dimensional compact submanifold of Sⁿ⁻¹. Then

$$\operatorname{Vol}_{\mathrm{M}}(\Gamma) \geq \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k}),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where equality holds if Γ is a *k*-dimensional unit sphere \mathbb{S}^k .

Better lower bound for the $\operatorname{Vol}_{\operatorname{M}}(\partial_{\infty}\Sigma)$

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in B^n . Then

$$\operatorname{Vol}_{\mathrm{M}}(\mathfrak{d}_{\infty}\Sigma) \geqslant \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) \cdot \max_{p \in \Sigma} \Theta(\Sigma, p).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Since Σ is proper in B^n , $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is finite. Moreover the maximum is

attained in Σ because the density $\Theta(\Sigma, p)$ is integer-valued there. Now we may assume that $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is attained at $q \in \Sigma$. Take an isometry φ of hyperbolic space \mathbb{H}^n such that $\varphi(q) = O$. Since the group of all isometries of \mathbb{H}^n is isomorphic to $\mathsf{M\"ob}(\mathbb{S}^{n-1})$, we may consider φ as an element of $\mathsf{M}\"obs(\mathbb{S}^{n-1})$. Then

$$\begin{split} \text{Vol}_{\mathcal{M}}(\partial_{\infty}\Sigma) &\geq \text{Vol}_{\mathbb{R}}(\partial_{\infty}\varphi(\Sigma)) \\ &\geq k \text{Vol}_{\mathbb{R}}(\varphi(\Sigma)) \\ &\geq k \omega_{k} \Theta(\varphi(\Sigma), \mathcal{O}) \\ &= \text{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1})\Theta(\Sigma, q) \end{split}$$

where we used the invariance of the density under an isometry of hyperbolic space in the last equality. This completes the proof.

Remark

Since $\max_{p \in \Sigma} \Theta(\Sigma, p) \ge 1$, this theorem gives another proof of theorem by Min for $\Gamma = \partial_{\infty} \Sigma$.

Since Σ is proper in B^n , $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is finite. Moreover the maximum is attained in Σ because the density $\Theta(\Sigma, p)$ is integer-valued there. Now we may assume that $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is attained at $q \in \Sigma$. Take an isometry φ of hyperbolic space \mathbb{H}^n such that $\varphi(q) = O$. Since the group of all isometries of \mathbb{H}^n is isomorphic to $\mathsf{M\"ob}(\mathbb{S}^{n-1})$, we may consider φ as an element of $\mathsf{M\"ob}(\mathbb{S}^{n-1})$. Then

$$\begin{split} \operatorname{fol}_{\mathrm{M}}(\partial_{\infty}\Sigma) &\geq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\varphi(\Sigma)) \\ &\geq k\operatorname{Vol}_{\mathbb{R}}(\varphi(\Sigma)) \\ &\geq k\omega_{k}\Theta(\varphi(\Sigma), O) \\ &= \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1})\Theta(\Sigma, q), \end{split}$$

where we used the invariance of the density under an isometry of hyperbolic space in the last equality. This completes the proof.

Remark

Since $\max_{p \in \Sigma} \Theta(\Sigma, p) \ge 1$, this theorem gives another proof of theorem by Min for $\Gamma = \partial_{\infty} \Sigma$.

Since Σ is proper in B^n , $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is finite. Moreover the maximum is attained in Σ because the density $\Theta(\Sigma, p)$ is integer-valued there. Now we may assume that $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is attained at $q \in \Sigma$. Take an isometry φ of hyperbolic space \mathbb{H}^n such that $\varphi(q) = O$. Since the group of all isometries of \mathbb{H}^n is isomorphic to $\mathsf{M\"{o}b}(\mathbb{S}^{n-1})$, we may consider φ as an element of $\mathsf{M\"{o}b}(\mathbb{S}^{n-1})$. Then

$$\begin{aligned} \operatorname{Vol}_{\mathrm{M}}(\partial_{\infty}\Sigma) &\geq \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\varphi(\Sigma)) \\ &\geq k \operatorname{Vol}_{\mathbb{R}}(\varphi(\Sigma)) \\ &\geq k \omega_{k} \Theta(\varphi(\Sigma), O) \\ &= \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) \Theta(\Sigma, q), \end{aligned}$$

where we used the invariance of the density under an isometry of hyperbolic space in the last equality. This completes the proof.

Remark

Since $\max_{p \in \Sigma} \Theta(\Sigma, p) \ge 1$, this theorem gives another proof of theorem by Min for $\Gamma = \partial_{\infty} \Sigma$.

Since Σ is proper in B^n , $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is finite. Moreover the maximum is attained in Σ because the density $\Theta(\Sigma, p)$ is integer-valued there. Now we may assume that $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is attained at $q \in \Sigma$. Take an isometry φ of hyperbolic space \mathbb{H}^n such that $\varphi(q) = O$. Since the group of all isometries of \mathbb{H}^n is isomorphic to $\mathsf{M\"ob}(\mathbb{S}^{n-1})$, we may consider φ as an element of $\mathsf{M\"ob}(\mathbb{S}^{n-1})$. Then

$$egin{aligned} \operatorname{Vol}_{\mathrm{M}}(\mathfrak{d}_{\infty}\Sigma) &\geq \operatorname{Vol}_{\mathbb{R}}(\mathfrak{d}_{\infty}\varphi(\Sigma)) \ &\geq k\operatorname{Vol}_{\mathbb{R}}(\varphi(\Sigma)) \ &\geq k\omega_k\Theta(\varphi(\Sigma), O) \ &= \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1})\Theta(\Sigma, q) \end{aligned}$$

,

where we used the invariance of the density under an isometry of hyperbolic space in the last equality. This completes the proof.

Remark

Since $\max_{p \in \Sigma} \Theta(\Sigma, p) \ge 1$, this theorem gives another proof of theorem by Min for $\Gamma = \partial_{\infty} \Sigma$.

Since Σ is proper in B^n , $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is finite. Moreover the maximum is attained in Σ because the density $\Theta(\Sigma, p)$ is integer-valued there. Now we may assume that $\max_{p \in \Sigma} \Theta(\Sigma, p)$ is attained at $q \in \Sigma$. Take an isometry φ of hyperbolic space \mathbb{H}^n such that $\varphi(q) = O$. Since the group of all isometries of \mathbb{H}^n is isomorphic to $\mathsf{M\"ob}(\mathbb{S}^{n-1})$, we may consider φ as an element of $\mathsf{M\"ob}(\mathbb{S}^{n-1})$. Then

$$\begin{split} \operatorname{Vol}_{\mathrm{M}}(\partial_{\infty}\Sigma) &\geqslant \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty}\varphi(\Sigma)) \\ &\geqslant k \operatorname{Vol}_{\mathbb{R}}(\varphi(\Sigma)) \\ &\geqslant k \omega_{k} \Theta(\varphi(\Sigma), O) \\ &= \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) \Theta(\Sigma, q), \end{split}$$

where we used the invariance of the density under an isometry of hyperbolic space in the last equality. This completes the proof.

Remark

Since $\max_{p \in \Sigma} \Theta(\Sigma, p) \ge 1$, this theorem gives another proof of theorem by Min for $\Gamma = \partial_{\infty} \Sigma$.

Definition

Let Σ be a submanifold in the Poincaré ball model B^n . Let $M\"{o}b(B^n)$ be the group of all Möbius transformations of B^n . The Möbius volume $\operatorname{Vol}_{M}(\Sigma)$ of Σ is defined to be

$$\operatorname{Vol}_{\operatorname{M}}(\Sigma) = \sup \{ \operatorname{Vol}_{\mathbb{R}}(g(\Sigma)) \ g \in \operatorname{M\"ob}(B^n) \}.$$

Using this concept, we obtain an isoperimetric inequality for any complete proper minimal submanifold in hyperbolic space with no assumption on Σ unlike the previous results.

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in B^n . Then

 $k^k \omega_k \operatorname{Vol}_{\mathrm{M}}(\Sigma)^{k-1} \leqslant \operatorname{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma)^k.$

Definition

Let Σ be a submanifold in the Poincaré ball model B^n . Let $M\"{o}b(B^n)$ be the group of all Möbius transformations of B^n . The Möbius volume $Vol_M(\Sigma)$ of Σ is defined to be

$$\operatorname{Vol}_{\mathrm{M}}(\Sigma) = \sup \{ \operatorname{Vol}_{\mathbb{R}}(g(\Sigma)) \ g \in \operatorname{M\"ob}(B^n) \}.$$

Using this concept, we obtain an isoperimetric inequality for any complete proper minimal submanifold in hyperbolic space with no assumption on Σ unlike the previous results.

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in B^n . Then

 $k^k \omega_k \operatorname{Vol}_{\mathrm{M}}(\Sigma)^{k-1} \leq \operatorname{Vol}_{\mathrm{M}}(\mathfrak{d}_{\infty}\Sigma)^k.$

Definition

Let Σ be a submanifold in the Poincaré ball model B^n . Let $M\"{o}b(B^n)$ be the group of all Möbius transformations of B^n . The Möbius volume $\operatorname{Vol}_{M}(\Sigma)$ of Σ is defined to be

$$\operatorname{Vol}_{\operatorname{M}}(\Sigma) = \sup \{ \operatorname{Vol}_{\mathbb{R}}(g(\Sigma)) \ g \in \operatorname{M\"ob}(B^n) \}.$$

Using this concept, we obtain an isoperimetric inequality for any complete proper minimal submanifold in hyperbolic space with no assumption on Σ unlike the previous results.

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in B^n . Then

 $k^k \omega_k \operatorname{Vol}_{\mathrm{M}}(\Sigma)^{k-1} \leqslant \operatorname{Vol}_{\mathrm{M}}(\mathfrak{d}_{\infty}\Sigma)^k.$

- ロ ト - 4 回 ト - 4 □ - 4
Definition

Let Σ be a submanifold in the Poincaré ball model B^n . Let $M\"{o}b(B^n)$ be the group of all Möbius transformations of B^n . The Möbius volume $\operatorname{Vol}_{M}(\Sigma)$ of Σ is defined to be

$$\operatorname{Vol}_{\operatorname{M}}(\Sigma) = \sup \{ \operatorname{Vol}_{\mathbb{R}}(g(\Sigma)) \ g \in \operatorname{M\"ob}(B^n) \}.$$

Using this concept, we obtain an isoperimetric inequality for any complete proper minimal submanifold in hyperbolic space with no assumption on Σ unlike the previous results.

Theorem

Let Σ be a k-dimensional complete proper minimal submanifold in B^n . Then

 $k^{k}\omega_{k}\mathrm{Vol}_{\mathrm{M}}(\Sigma)^{k-1} \leqslant \mathrm{Vol}_{\mathrm{M}}(\mathfrak{d}_{\infty}\Sigma)^{k}.$

- ロ ト - 4 回 ト - 4 □ - 4

Proof

From the linear isoperimetric inequality, it follows that for any isometry φ of \mathbb{H}^n ,

$$\operatorname{Vol}_{\mathbb{R}}(\varphi(\Sigma)) \leqslant \frac{1}{k} \operatorname{Vol}_{\mathbb{R}}(\partial_{\infty} \varphi(\Sigma)).$$

Therefore by the definition of the Möbius volume

$$\operatorname{Vol}_{\mathrm{M}}(\Sigma) \leqslant \frac{1}{k} \operatorname{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma).$$

It follows from the previous theorem that

$$\operatorname{Vol}_{\mathrm{M}}(\mathfrak{d}_{\infty}\Sigma) \geqslant \operatorname{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}).$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Proof

Therefore

$$\begin{split} k^{k} \omega_{k} \mathrm{Vol}_{\mathrm{M}}(\Sigma)^{k-1} &\leqslant k^{k} \omega_{k} \left(\frac{1}{k} \mathrm{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma) \right)^{k-1} \\ &= k \omega_{k} \mathrm{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma)^{k-1} \\ &= \mathrm{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) \mathrm{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma)^{k-1} \\ &\leqslant \mathrm{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma)^{k}, \end{split}$$

which completes the proof.

Remark

We see that if Σ is a *k*-dimensional complete totally geodesic submanifold in B^n , then equality holds in the inequality. However we do not know whether the converse is true.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof

Therefore

$$\begin{split} k^{k} \omega_{k} \mathrm{Vol}_{\mathrm{M}}(\Sigma)^{k-1} &\leqslant k^{k} \omega_{k} \left(\frac{1}{k} \mathrm{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma) \right)^{k-1} \\ &= k \omega_{k} \mathrm{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma)^{k-1} \\ &= \mathrm{Vol}_{\mathbb{R}}(\mathbb{S}^{k-1}) \mathrm{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma)^{k-1} \\ &\leqslant \mathrm{Vol}_{\mathrm{M}}(\partial_{\infty} \Sigma)^{k}, \end{split}$$

which completes the proof.

Remark

We see that if Σ is a *k*-dimensional complete totally geodesic submanifold in B^n , then equality holds in the inequality. However we do not know whether the converse is true.

Thank you.