Optimizing the first eigenvalue of some quasilinear operators with respect to the boundary conditions *

Nunzia Gavitone

Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Università degli studi di Napoli Federico II

Geometric and Analytic Inequalities

BIRS 2016 July 11-15

^{*}Joint work with F. Della Pietra (Napoli Federico II) e H. Kovařík (Brescia)

• Let $\Omega \subset \mathbb{R}^n$, $n \geqslant 1$, be a domain with $C^{1,\varepsilon}$ boundary;

- Let $\Omega \subset \mathbb{R}^n$, $n \geqslant 1$, be a domain with $C^{1,arepsilon}$ boundary;
- $\bullet \ \sigma: \partial\Omega \to [0,+\infty[,\ \sigma\in L^1(\partial\Omega);$

- Let $\Omega \subset \mathbb{R}^n$, $n \geqslant 1$, be a domain with $C^{1,\varepsilon}$ boundary;
- $\sigma: \partial\Omega \to [0, +\infty[, \sigma \in L^1(\partial\Omega);$
- 1 ;

- Let $\Omega \subset \mathbb{R}^n$, $n \geqslant 1$, be a domain with $C^{1,\varepsilon}$ boundary;
- $\sigma: \partial\Omega \to [0, +\infty[, \sigma \in L^1(\partial\Omega);$
- 1 ;

$$Q[\sigma, u] := \frac{\int_{\Omega} |\nabla u|^p dx + \int_{\partial \Omega} \sigma(x) |u|^p d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^p dx}, \ u \in W^{1,p}(\Omega), \ u \neq 0$$

- Let $\Omega \subset \mathbb{R}^n$, $n \geqslant 1$, be a domain with $C^{1,\varepsilon}$ boundary;
- $\sigma: \partial\Omega \to [0, +\infty[, \sigma \in L^1(\partial\Omega);$
- 1 ;

$$\ell_{1}(\sigma,\Omega) = \inf \left\{ \mathcal{Q}[\sigma,u] := \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x) |u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}, \ u \in W^{1,p}(\Omega), \ u \neq 0 \right\}$$

- Let $\Omega \subset \mathbb{R}^n$, $n \geqslant 1$, be a domain with $C^{1,\varepsilon}$ boundary;
- $\sigma: \partial\Omega \to [0, +\infty[, \sigma \in L^1(\partial\Omega);$
- 1 ;

$$\ell_{1}(\sigma,\Omega) = \inf \left\{ \mathcal{Q}[\sigma,u] := \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x) |u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}, \ u \in W^{1,p}(\Omega), \ u \neq 0 \right\}$$

Question

To optimize $\ell_1(\sigma,\Omega)$ with respect to the function σ .

- Let $\Omega \subset \mathbb{R}^n$, $n \geqslant 1$, be a domain with $C^{1,\varepsilon}$ boundary;
- $\sigma: \partial\Omega \to [0, +\infty[, \sigma \in L^1(\partial\Omega);$
- 1 ;

$$\ell_{1}(\sigma,\Omega) = \inf \left\{ \mathcal{Q}[\sigma,u] := \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x) |u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}, \ u \in W^{1,p}(\Omega), \ u \neq 0 \right\}$$

Question

To optimize $\ell_1(\sigma,\Omega)$ with respect to the function σ . More precisely, to study the existence and the properties of σ which minimize or maximize $\ell_1(\sigma,\Omega)$, under the constraint

$$\int_{\partial\Omega}\sigma d\mathcal{H}^{n-1}=m>0.$$

Let $\sigma \in L^1(\partial\Omega)$, $\sigma \geqslant 0$, fixed. If $v \in W^{1,p}(\Omega)$ is a minimum, that is,

$$\ell_{1}(\sigma,\Omega) = Q[\sigma,v] = \min_{u \in W^{1,p}} Q[\sigma,u]$$

Let $\sigma \in L^1(\partial\Omega)$, $\sigma \geqslant 0$, fixed. If $v \in W^{1,p}(\Omega)$ is a minimum, that is,

$$\ell_1(\sigma, \Omega) = Q[\sigma, v] = \min_{u \in W^{1,p}} Q[\sigma, u]$$

then v satisfies the following

Eigenvalue problem with Robin boundary conditions

$$(P) \quad \left\{ \begin{array}{rcl} -\Delta_p v & = & \ell_1(\sigma,\Omega) |v|^{p-2} v & \text{in } \Omega, \\ |\nabla v|^{p-2} \frac{\partial v}{\partial \nu} & = & -\sigma(x) |v|^{p-2} v & \text{on } \partial \Omega, \end{array} \right.$$

Let $\sigma \in L^1(\partial\Omega)$, $\sigma \geqslant 0$, fixed. If $v \in W^{1,p}(\Omega)$ is a minimum, that is,

$$\ell_1(\sigma, \Omega) = Q[\sigma, v] = \min_{u \in W^{1,p}} Q[\sigma, u]$$

then v satisfies the following

Eigenvalue problem with Robin boundary conditions

$$(P) \quad \left\{ \begin{array}{rcl} -\Delta_{\rho} v & = & \ell_{1}(\sigma,\Omega) |v|^{\rho-2} v & \text{in } \Omega, \\ |\nabla v|^{\rho-2} \frac{\partial v}{\partial \nu} & = & -\sigma(x) |v|^{\rho-2} v & \text{on } \partial \Omega, \end{array} \right.$$

$$\sigma \equiv +\infty$$
 $\ell_1 = \Lambda_1^D(\Omega)$ is the first Dirichlet eigenvalue

Let $\sigma \in L^1(\partial\Omega)$, $\sigma \geqslant 0$, fixed. If $v \in W^{1,p}(\Omega)$ is a minimum, that is,

$$\ell_1(\sigma, \Omega) = Q[\sigma, v] = \min_{u \in W^{1,p}} Q[\sigma, u]$$

then v satisfies the following

Eigenvalue problem with Robin boundary conditions

$$(P) \quad \left\{ \begin{array}{rcl} -\Delta_{p}v & = & \ell_{1}(\sigma,\Omega)|v|^{p-2}v & \text{in } \Omega, \\ |\nabla v|^{p-2}\frac{\partial v}{\partial \nu} & = & -\sigma(x)|v|^{p-2}v & \text{on } \partial\Omega, \end{array} \right.$$

$$\sigma \equiv +\infty$$
 $\ell_1 = \Lambda_1^D(\Omega)$ is the first Dirichlet eigenvalue $\sigma \equiv 0$ is the first Neumann eigenvalue: $\ell_1(0,\Omega) = 0$

Let $\sigma \in L^1(\partial\Omega)$, $\sigma \geqslant 0$, fixed. If $v \in W^{1,p}(\Omega)$ is a minimum, that is,

$$\ell_1(\sigma, \Omega) = Q[\sigma, v] = \min_{u \in W^{1,p}} Q[\sigma, u]$$

then v satisfies the following

Eigenvalue problem with Robin boundary conditions

$$(P) \quad \left\{ \begin{array}{rcl} -\Delta_{p}v & = & \ell_{1}(\sigma,\Omega)|v|^{p-2}v & \text{in } \Omega, \\ |\nabla v|^{p-2}\frac{\partial v}{\partial \nu} & = & -\sigma(x)|v|^{p-2}v & \text{on } \partial\Omega, \end{array} \right.$$

Proposition (Della Pietra-G.-Kovařík 2015)

For every $\sigma \in L^1(\partial\Omega)$, with $\sigma \geqslant 0$, then:

• there exists a minimizer $v \in W^{1,p}(\Omega)$ of $Q[\sigma, \cdot]$, solution to (P);

Let $\sigma \in L^1(\partial\Omega)$, $\sigma \geqslant 0$, fixed. If $v \in W^{1,p}(\Omega)$ is a minimum, that is,

$$\ell_1(\sigma, \Omega) = Q[\sigma, v] = \min_{u \in W^{1,p}} Q[\sigma, u]$$

then v satisfies the following

Eigenvalue problem with Robin boundary conditions

$$(P) \quad \left\{ \begin{array}{rcl} -\Delta_{p}v & = & \ell_{1}(\sigma,\Omega)|v|^{p-2}v & \text{in } \Omega, \\ |\nabla v|^{p-2}\frac{\partial v}{\partial \nu} & = & -\sigma(x)|v|^{p-2}v & \text{on } \partial\Omega, \end{array} \right.$$

Proposition (Della Pietra-G.-Kovařík 2015)

For every $\sigma \in L^1(\partial\Omega)$, with $\sigma \geqslant 0$, then:

- there exists a minimizer $v \in W^{1,p}(\Omega)$ of $Q[\sigma, \cdot]$, solution to (P);
- if $\sigma > 0$ on $\Gamma \subseteq \partial \Omega$ and $\mathcal{H}^{n-1}(\Gamma) > 0$, then $\ell_1(\sigma, \Omega) > 0$;

Let $\sigma \in L^1(\partial\Omega)$, $\sigma \geqslant 0$, fixed. If $v \in W^{1,p}(\Omega)$ is a minimum, that is,

$$\ell_1(\sigma, \Omega) = Q[\sigma, v] = \min_{u \in W^{1,p}} Q[\sigma, u]$$

then v satisfies the following

Eigenvalue problem with Robin boundary conditions

$$(P) \quad \left\{ \begin{array}{rcl} -\Delta_{\rho} v & = & \ell_{1}(\sigma,\Omega) |v|^{\rho-2} v & \text{in } \Omega, \\ |\nabla v|^{\rho-2} \frac{\partial v}{\partial \nu} & = & -\sigma(x) |v|^{\rho-2} v & \text{on } \partial \Omega, \end{array} \right.$$

Proposition (Della Pietra-G.-Kovařík 2015)

For every $\sigma \in L^1(\partial\Omega)$, with $\sigma \geqslant 0$, then:

- there exists a minimizer $v \in W^{1,p}(\Omega)$ of $\mathcal{Q}[\sigma, \cdot]$, solution to (P);
- if $\sigma > 0$ on $\Gamma \subseteq \partial \Omega$ and $\mathcal{H}^{n-1}(\Gamma) > 0$, then $\ell_1(\sigma, \Omega) > 0$;
- $\ell_1(\sigma,\Omega)$ is simple, and v has costant sign in Ω .

$$\ell_1(\sigma,\Omega) = \min \left\{ \frac{\displaystyle \int_{\Omega} |\nabla u|^p dx + \int_{\partial \Omega} \sigma(x) |u|^p d\mathcal{H}^{n-1}}{\displaystyle \int_{\Omega} |u|^p dx}, \ u \in W^{1,p}(\Omega), \ u \neq 0 \right\}.$$

$$\ell_1(\sigma,\Omega) = \min \left\{ \frac{\displaystyle \int_{\Omega} |\nabla u|^p dx + \int_{\partial \Omega} \sigma(x) |u|^p d\mathcal{H}^{n-1}}{\displaystyle \int_{\Omega} |u|^p dx}, \ u \in W^{1,p}(\Omega), \ u \neq 0 \right\}.$$

Optimization problems for $\ell_1(\sigma,\Omega)$

$$\ell_{1}(\sigma,\Omega) = \min \left\{ \frac{\displaystyle \int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x) |u|^{p} d\mathcal{H}^{n-1}}{\displaystyle \int_{\Omega} |u|^{p} dx}, \ u \in W^{1,p}(\Omega), \ u \neq 0 \right\}.$$

Optimization problems for $\ell_1(\sigma,\Omega)$

• with respect to Ω , where $\Omega \subset \mathbb{R}^n$ is a domain with fixed volume;

$$\ell_{1}(\sigma,\Omega) = \min \left\{ \frac{\displaystyle\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x) |u|^{p} d\mathcal{H}^{n-1}}{\displaystyle\int_{\Omega} |u|^{p} dx}, \ u \in W^{1,p}(\Omega), \ u \neq 0 \right\}.$$

Optimization problems for $\ell_1(\sigma,\Omega)$

- with respect to Ω , where $\Omega \subset \mathbb{R}^n$ is a domain with fixed volume;
- with respect to σ , where $\sigma \in L^1(\Omega)$, $\sigma \geqslant 0$ with fixed mass.

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma}, \Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma},\Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Faber-Krahn inequality:

$$\ell_1(\bar{\sigma},\Omega) \geqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma}, \Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Faber-Krahn inequality:

$$\ell_1(\bar{\sigma},\Omega) \geqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

$$\bar{\sigma} = +\infty$$
 ℓ_1 first Dirichlet eigenvalue

$$\bar{\sigma} = 0$$
 Neumann problem, $\ell_1(0, \Omega) = 0$

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma},\Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Faber-Krahn inequality:

$$\ell_1(\bar{\sigma},\Omega) \geqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

$$0 < \bar{\sigma} < +\infty$$
:

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma},\Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Faber-Krahn inequality:

$$\ell_1(\bar{\sigma},\Omega) \geqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

 $0 < \bar{\sigma} < +\infty$:

Bossel 1986: case p = 2, n = 2, Ω smooth Daners 2006: case p = 2, $n \ge 2$, Ω Lipschitz

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma},\Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p \, dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Faber-Krahn inequality:

$$\ell_1(\bar{\sigma},\Omega) \geqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

$0 < \bar{\sigma} < +\infty$:

Bossel 1986: case p = 2, n = 2, Ω smooth

Daners 2006: case p = 2, $n \ge 2$, Ω Lipschitz

Dai-Fu 2011, $1 , <math>\Omega$ smooth

Bucur-Daners 2010 $1 , <math>\Omega$ Lipschitz

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma},\Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p \, dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Faber-Krahn inequality:

$$\ell_1(\bar{\sigma},\Omega) \geqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

$0 < \bar{\sigma} < +\infty$:

Bossel 1986: case p = 2, n = 2, Ω smooth

Daners 2006: case p = 2, $n \ge 2$, Ω Lipschitz

Dai-Fu 2011, $1 , <math>\Omega$ smooth

Bucur-Daners 2010 $1 , <math>\Omega$ Lipschitz

Bucur-Giacomini, 2010, 2015, p = 2, Ω not smooth, SBV setting

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma},\Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p \, dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Faber-Krahn inequality:

$$\ell_1(\bar{\sigma},\Omega) \geqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

$0 < \bar{\sigma} < +\infty$:

Bossel 1986: case p = 2, n = 2, Ω smooth

Daners 2006: case p = 2, $n \ge 2$, Ω Lipschitz

Dai-Fu 2011, $1 , <math>\Omega$ smooth

Bucur-Daners 2010 $1 , <math>\Omega$ Lipschitz

Bucur-Giacomini, 2010, 2015, p = 2, Ω not smooth, SBV setting

Della Pietra-G., 2014, 1 , anisotropic operators

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma}, \Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma}, \Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\int_{\Omega} |v|^p dx}$$

Is the eigenvalue $\ell_1(\bar{\sigma}, \Omega)$, under the volume constraint on Ω , bounded from above?

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma}, \Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Is the eigenvalue $\ell_1(\bar{\sigma}, \Omega)$, under the volume constraint on Ω , bounded from above?

• the first Dirichlet eigenvalue ($\bar{\sigma} = +\infty$) is not bounded from above

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_{1}(\bar{\sigma},\Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^{p} dx + \bar{\sigma} \int_{\partial \Omega} |v|^{p} dH^{n-1}}{\displaystyle\int_{\Omega} |v|^{p} dx}$$

Is the eigenvalue $\ell_1(\bar{\sigma},\Omega)$, under the volume constraint on Ω , bounded from above?

• the first Dirichlet eigenvalue ($\bar{\sigma} = +\infty$) is not bounded from above

$$\Lambda_1^D(\Omega)\geqslant rac{C}{R_c^D}, \qquad \Omega \ {
m convex}, \ R_\Omega \ {
m inradius of} \ \Omega.$$

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma}, \Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Is the eigenvalue $\ell_1(\bar{\sigma}, \Omega)$, under the volume constraint on Ω , bounded from above?

- the first Dirichlet eigenvalue ($\bar{\sigma} = +\infty$) is not bounded from above
- the first nontrivial Neumann eigenvalue is bounded from above

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma},\Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p \, dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Is the eigenvalue $\ell_1(\bar{\sigma}, \Omega)$, under the volume constraint on Ω , bounded from above?

- the first Dirichlet eigenvalue ($\bar{\sigma} = +\infty$) is not bounded from above
- the first nontrivial Neumann eigenvalue is bounded from above

$$p = 2$$
 $\mu(\Omega) \leqslant \mu(B),$ $|\Omega| = |B|$

(Szegő 1954 - Weinberger 1956)

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_{1}(\bar{\sigma},\Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^{p} dx + \bar{\sigma} \int_{\partial \Omega} |v|^{p} dH^{n-1}}{\displaystyle\int_{\Omega} |v|^{p} dx}$$

Is the eigenvalue $\ell_1(\bar{\sigma}, \Omega)$, under the volume constraint on Ω , bounded from above?

- the first Dirichlet eigenvalue ($\bar{\sigma} = +\infty$) is not bounded from above
- the first nontrivial Neumann eigenvalue is bounded from above

$$p = 2$$
 $\mu(\Omega) \leqslant \mu(B),$ $|\Omega| = |B|$

(Szegő 1954 - Weinberger 1956)

$$1 $\mu(\Omega) \leqslant \Lambda_1^D(B), \quad |\Omega| = |B|, \ \Omega \ {
m convex}$$$

(Brasco-Nitsch-Trombetti 2015)

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma}, \Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Is the eigenvalue $\ell_1(\bar{\sigma}, \Omega)$, under the volume constraint on Ω , bounded from above?

- the first Dirichlet eigenvalue ($\bar{\sigma} = +\infty$) is not bounded from above
- the first nontrivial Neumann eigenvalue is bounded from above
- the first Robin eigenvalue, (0 $< \bar{\sigma} < +\infty$) is not bounded from above

If $\sigma(x) = \bar{\sigma} \in [0, +\infty[$ is a fixed constant, then

$$\ell_1(\bar{\sigma}, \Omega) = \min_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\displaystyle\int_{\Omega} |\nabla v|^p dx + \bar{\sigma} \int_{\partial \Omega} |v|^p dH^{n-1}}{\displaystyle\int_{\Omega} |v|^p dx}$$

Is the eigenvalue $\ell_1(\bar{\sigma}, \Omega)$, under the volume constraint on Ω , bounded from above?

- the first Dirichlet eigenvalue ($\bar{\sigma} = +\infty$) is not bounded from above
- the first nontrivial Neumann eigenvalue is bounded from above
- the first Robin eigenvalue, $(0 < \bar{\sigma} < +\infty)$ is not bounded from above

$$\ell_1(\bar{\sigma},\Omega) \geqslant \left(\frac{p-1}{p}\right)^p \frac{\bar{\sigma}}{R_{\Omega}\left(1+\bar{\sigma}^{\frac{1}{p-1}}R_{\Omega}\right)^{p-1}},$$

 $(Ω convex, R_Ω inradius of Ω, Kovařík 2012 <math>(p = 2)$, Della Pietra-G., 2014)

$$\bar{\sigma} < 0$$
: case $p = 2$

Conjecture (Bareket 1977)

$$\ell_1(\bar{\sigma},\Omega)\leqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

$$\bar{\sigma} < 0$$
: case $p = 2$

Conjecture (Bareket 1977)

$$\ell_1(\bar{\sigma},\Omega) \leqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

In general, the conjecture is false: $\forall n \geqslant 2$ there exist $\bar{\sigma} \colon |\bar{\sigma}| >> 1$ and a spherical shell G, |G| = |B| such that

$$\ell_1(\bar{\sigma}, G) > \ell_1(\bar{\sigma}, B)$$
 (Freitas - Krejčiřík 2015);

$$\bar{\sigma} < 0$$
: case $p = 2$

Conjecture (Bareket 1977)

$$\ell_1(\bar{\sigma},\Omega) \leqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

In general, the conjecture is false: $\forall n \geqslant 2$ there exist $\bar{\sigma}$: $|\bar{\sigma}| >> 1$ and a spherical shell G, |G| = |B| such that

$$\ell_1(\bar{\sigma}, G) > \ell_1(\bar{\sigma}, B)$$
 (Freitas - Krejčiřík 2015);

the conjecture is true if n=2 and $|\bar{\sigma}|$ is small enough (Freitas - Krejčiřík 2015);

$$\bar{\sigma} < 0$$
: case $p = 2$

Conjecture (Bareket 1977)

$$\ell_1(\bar{\sigma},\Omega) \leqslant \ell_1(\bar{\sigma},B),$$

where B is a ball with $|B| = |\Omega|$.

In general, the conjecture is false: $\forall n \geqslant 2$ there exist $\bar{\sigma} \colon |\bar{\sigma}| >> 1$ and a spherical shell G, |G| = |B| such that

$$\ell_1(\bar{\sigma}, G) > \ell_1(\bar{\sigma}, B)$$
 (Freitas - Krejčiřík 2015);

the conjecture is true if n=2 and $|\bar{\sigma}|$ is small enough (Freitas - Krejčiřík 2015); however, the ball is a local maximum (Ferone - Nitsch - Trombetti 2015)

4/18

$$\ell_1(\sigma,\Omega) = \min_{\substack{u \in W^{1,\rho}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\displaystyle\int_{\Omega} |\nabla u|^p dx + \int_{\partial\Omega} \sigma(x)|u|^p d\mathcal{H}^{n-1}}{\displaystyle\int_{\Omega} |u|^p dx}.$$

$$\ell_{\mathbf{1}}(\sigma,\Omega) = \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\displaystyle\int_{\Omega} |\nabla u|^p dx + \int_{\partial\Omega} \sigma(x)|u|^p d\mathcal{H}^{n-1}}{\displaystyle\int_{\Omega} |u|^p dx}.$$

$$\Sigma_{m}(\partial\Omega) = \left\{ \sigma \in L^{1}(\partial\Omega) \colon \sigma \geqslant 0, \int_{\partial\Omega} \sigma \, d\mathcal{H}^{n-1} = m \right\}.$$

$$\ell_{1}(\sigma,\Omega) = \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x)|u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}.$$

$$\Sigma_m(\partial\Omega) = \left\{ \sigma \in L^1(\partial\Omega) \colon \sigma \geqslant 0, \, \int_{\partial\Omega} \sigma \, d\mathcal{H}^{n-1} = m \right\}.$$

Question

To optimize $\ell_1(\sigma, \Omega)$ with respect to $\sigma \in \Sigma_m$:

$$\inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega), \qquad \qquad \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

$$\begin{split} \boldsymbol{\ell_1}(\sigma,\Omega) &= \min_{\substack{u \in \mathcal{W}^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\displaystyle\int_{\Omega} |\nabla u|^p dx + \int_{\partial\Omega} \sigma(x)|u|^p d\mathcal{H}^{n-1}}{\displaystyle\int_{\Omega} |u|^p dx}. \\ & \Sigma_m(\partial\Omega) = \left\{ \sigma \in L^1(\partial\Omega) \colon \sigma \geqslant 0, \, \int_{\partial\Omega} \sigma \, d\mathcal{H}^{n-1} = m \right\}. \end{split}$$

Question

To optimize $\ell_1(\sigma, \Omega)$ with respect to $\sigma \in \Sigma_m$:

$$\inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega), \qquad \qquad \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

p=2 Kovařík, J. Geom. Anal. 2012

$$\ell_{1}(\sigma,\Omega) = \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x)|u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}.$$

$$\Sigma_m(\partial\Omega) = \left\{ \sigma \in L^1(\partial\Omega) \colon \sigma \geqslant 0, \, \int_{\partial\Omega} \sigma \, d\mathcal{H}^{n-1} = m \right\}.$$

Question

To optimize $\ell_1(\sigma, \Omega)$ with respect to $\sigma \in \Sigma_m$:

$$\inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega), \qquad \qquad \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

p=2 Kovařík, J. Geom. Anal. 2012 1 Della Pietra-G.-Kovařík, 2015

$$\ell_{1}(\sigma,\Omega) = \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x)|u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}.$$

Upper bound for $\ell_1(\sigma,\Omega)$

$$\ell_{1}(\sigma,\Omega) = \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x)|u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}.$$

Upper bound for $\ell_1(\sigma, \Omega)$

Choosing as test function respectively:

ullet the first Dirichlet eigenfunction of $-\Delta_{
ho}$

$$\ell_{1}(\sigma,\Omega) = \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x)|u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}.$$

Upper bound for $\ell_1(\sigma, \Omega)$

Choosing as test function respectively:

• the first Dirichlet eigenfunction of $-\Delta_p \longrightarrow \ell_1(\sigma,\Omega) \leqslant \Lambda_1^D(\Omega)$

$$\ell_{1}(\sigma,\Omega) = \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x)|u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}.$$

Upper bound for $\ell_1(\sigma, \Omega)$

Choosing as test function respectively:

- the first Dirichlet eigenfunction of $-\Delta_p \longrightarrow \ell_1(\sigma,\Omega) \leqslant \Lambda_1^D(\Omega)$
- *u* ≡ 1

$$\ell_{1}(\sigma,\Omega) = \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x)|u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}$$

Upper bound for $\ell_1(\sigma, \Omega)$

Choosing as test function respectively:

- the first Dirichlet eigenfunction of $-\Delta_p \longrightarrow \ell_1(\sigma,\Omega) \leqslant \Lambda_1^D(\Omega)$
- $u \equiv 1$ \rightsquigarrow $\ell_1(\sigma, \Omega) \leqslant \frac{m}{|\Omega|}$

$$\ell_{1}(\sigma,\Omega) = \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u], \quad \mathcal{Q}[\sigma,u] = \frac{\int_{\Omega} |\nabla u|^{p} dx + \int_{\partial\Omega} \sigma(x)|u|^{p} d\mathcal{H}^{n-1}}{\int_{\Omega} |u|^{p} dx}$$

Upper bound for $\ell_1(\sigma, \Omega)$

Choosing as test function respectively:

- the first Dirichlet eigenfunction of $-\Delta_p \longrightarrow \ell_1(\sigma,\Omega) \leqslant \Lambda_1^D(\Omega)$
- $u \equiv 1$ \rightsquigarrow $\ell_1(\sigma, \Omega) \leqslant \frac{m}{|\Omega|}$

then
$$\ell_1(\sigma,\Omega) \leqslant \min \left\{ \Lambda_1^D(\Omega), \frac{m}{|\Omega|} \right\},$$

where
$$\Lambda_1^D(\Omega) = \min_{u \in W_0^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} |u|^p dx}$$

is the first Dirichlet eigenvalue of $-\Delta_{\rho}$ in Ω .

$$\Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

$$\Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Theorem (Della Pietra-G.-Kovařík 2015)

Let $n \ge 1$. For any m > 0,

• $\Lambda(m,\Omega)$ is a maximum.

$$\Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Theorem (Della Pietra-G.-Kovařík 2015)

Let $n \ge 1$. For any m > 0,

- $\Lambda(m,\Omega)$ is a maximum.
- There exists a unique function $\sigma_m \in \Sigma_m(\partial\Omega)$ such that

$$\Lambda(m,\Omega) = \ell_1(\sigma_m,\Omega).$$

$$\Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Theorem (Della Pietra-G.-Kovařík 2015)

Let $n \ge 1$. For any m > 0,

- $\Lambda(m,\Omega)$ is a maximum.
- There exists a unique function $\sigma_m \in \Sigma_m(\partial\Omega)$ such that

$$\Lambda(m,\Omega)=\ell_1(\sigma_m,\Omega).$$

• σ_m can be explicitly characterized.

$$\Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proposition

Let p>1, m>0, $\hat{\sigma}\in \Sigma_m(\partial\Omega).$ If $\hat{u}\in W^{1,p}(\Omega)$ is such that

$$\ell_1(\hat{\sigma},\Omega) = \mathcal{Q}[\hat{\sigma},\hat{u}] = \frac{\int_{\Omega} |\nabla \hat{u}|^p dx + \int_{\partial \Omega} \hat{\sigma} |\hat{u}|^p d\mathcal{H}^{n-1}}{\int_{\Omega} |\hat{u}|^p dx},$$

and \hat{u} is constant on $\partial \Omega$, then

$$\Lambda(m,\Omega) = \ell_1(\hat{\sigma},\Omega).$$

$$\Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proof

Let $\hat{\sigma} \in \Sigma_m(\partial \Omega)$ be such that $\ell_1(\hat{\sigma}) = \mathcal{Q}[\hat{\sigma}, \hat{u}]$, with \hat{u} constant on $\partial \Omega$.

$$\Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proof

Let $\hat{\sigma} \in \Sigma_m(\partial \Omega)$ be such that $\ell_1(\hat{\sigma}) = \mathcal{Q}[\hat{\sigma}, \hat{u}]$, with \hat{u} constant on $\partial \Omega$.

$$\Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proof

Let $\hat{\sigma} \in \Sigma_m(\partial\Omega)$ be such that $\ell_1(\hat{\sigma}) = \mathcal{Q}[\hat{\sigma}, \hat{u}]$, with \hat{u} constant on $\partial\Omega$. Then for every $\sigma \in \Sigma_m(\partial\Omega)$ we have:

$$\begin{split} \ell_{1}(\sigma,\Omega) &= \min_{\substack{u \in W^{1,p}(\Omega) \\ u \neq 0}} \mathcal{Q}[\sigma,u] \leqslant \mathcal{Q}[\sigma,\hat{u}] = \frac{\displaystyle\int_{\Omega} |\nabla \hat{u}|^{p} dx + \int_{\partial \Omega} \sigma(x) \hat{u}^{p} d\mathcal{H}^{n-1}}{\displaystyle\int_{\Omega} \hat{u}^{p} dx} \\ &= \frac{\displaystyle\int_{\Omega} |\nabla \hat{u}|^{p} dx + m |\hat{u}|_{\partial \Omega}^{p}}{\displaystyle\int_{\Omega} \hat{u}^{p} dx} = \mathcal{Q}[\hat{\sigma},\hat{u}] = \ell_{1}(\hat{\sigma},\Omega). \end{split}$$

Hence $\Lambda(m,\Omega) = \ell_1(\hat{\sigma},\Omega)$.

To prove the existence of $\hat{\sigma}$ for every fixed $\xi \in [0, \Lambda_1^D(\Omega)]$, let $u_{\xi} \in W_0^{1,p}(\Omega)$ be the unique positive function in Ω which solves

$$\begin{cases} -\Delta_\rho u_\xi &= \left(\xi^{\frac{1}{\rho-1}} u_\xi + 1\right)^{\rho-1} & \text{in } \Omega, \\ u_\xi &= 0 & \text{on } \partial\Omega. \end{cases}$$

To prove the existence of $\hat{\sigma}$ for every fixed $\xi \in [0, \Lambda_1^D(\Omega)[$, let $u_{\xi} \in W_0^{1,p}(\Omega)$ be the unique positive function in Ω which solves

$$\begin{cases} -\Delta_p u_\xi &= \left(\xi^{\frac{1}{p-1}} u_\xi + 1\right)^{p-1} & \text{in } \Omega, \\ u_\xi &= 0 & \text{on } \partial\Omega. \end{cases}$$

Let $F: [0, \Lambda_1^D(\Omega)[\to [0, +\infty[$ be the following function $F(\xi) = \xi \int_{\Omega} \left(\xi^{\frac{1}{p-1}} u_{\xi} + 1 \right)^{p-1} dx.$

To prove the existence of $\hat{\sigma}$ for every fixed $\xi \in [0, \Lambda_1^D(\Omega)[$, let $u_{\xi} \in W_0^{1,p}(\Omega)$ be the unique positive function in Ω which solves

$$\begin{cases} -\Delta_{p}u_{\xi} &= \left(\xi^{\frac{1}{p-1}}u_{\xi}+1\right)^{p-1} & \text{in } \Omega, \\ u_{\xi} &= 0 & \text{on } \partial\Omega. \end{cases}$$

Let $F: [0, \Lambda_1^D(\Omega)] \rightarrow [0, +\infty[$ be the following function

$$F(\xi) = \xi \int_{\Omega} \left(\xi^{\frac{1}{p-1}} u_{\xi} + 1 \right)^{p-1} dx.$$

Lemma

The function F is strictly increasing, and $F(\xi) \to +\infty$ for $\xi \to \Lambda^D_1(\Omega)$

To prove the existence of $\hat{\sigma}$ for every fixed $\xi \in [0, \Lambda_1^D(\Omega)[$, let $u_{\xi} \in W_0^{1,p}(\Omega)$ be the unique positive function in Ω which solves

$$\begin{cases} -\Delta_p u_\xi &= \left(\xi^{\frac{1}{p-1}} u_\xi + 1\right)^{p-1} & \text{in } \Omega, \\ u_\xi &= 0 & \text{on } \partial\Omega. \end{cases}$$

Let $F: [0, \Lambda_1^D(\Omega)[\to [0, +\infty[$ be the following function

$$F(\xi) = \xi \int_{\Omega} \left(\xi^{\frac{1}{p-1}} u_{\xi} + 1 \right)^{p-1} dx.$$

Lemma

The function F is strictly increasing, and $F(\xi) \to +\infty$ for $\xi \to \Lambda^D_1(\Omega)$

Hence we can define $\xi : [0, \infty[\to [0, \Lambda_1^D(\Omega)[$ as follows:

$$\xi(m) = \xi_m := F^{-1}(m).$$

For any m>0 there exists a unique $u_{\xi_m}>0$ which solves (P_{aux}) for $\xi=\xi_m$.

$$\begin{cases} -\Delta_{p}u_{\xi} &= \left(\xi^{\frac{1}{p-1}}u_{\xi}+1\right)^{p-1} & \text{in } \Omega, \\ u_{\xi} &= 0 & \text{on } \partial\Omega. \end{cases}$$

$$\begin{cases} -\Delta_{p}u_{\xi} &= \left(\xi^{\frac{1}{p-1}}u_{\xi}+1\right)^{p-1} & \text{in } \Omega, \\ u_{\xi} &= 0 & \text{on } \partial\Omega. \end{cases}$$

Theorem (Della Pietra-G.-Kovařík 2015)

For any m>0, the value $\Lambda(m,\Omega)=\sup_{\sigma\in\Sigma_m(\partial\Omega)}\ell_1(\sigma,\Omega)$ is achieved and

$$\Lambda(m,\Omega) = \ell_1(\sigma_m,\Omega) = \xi_m, \qquad \sigma_m = -\xi_m \left| \nabla u_{\xi_m} \right|^{p-2} \frac{\partial u_{\xi_m}}{\partial \nu}.$$

where u_{ξ_m} is the unique solution to (P_{aux}) with $\xi = \xi_m$ and σ_m is unique.

$$\begin{cases} -\Delta_p u_\xi &= \left(\xi^{\frac{1}{p-1}} u_\xi + 1\right)^{p-1} & \text{in } \Omega, \\ u_\xi &= 0 & \text{on } \partial\Omega. \end{cases}$$

Theorem (Della Pietra-G.-Kovařík 2015)

For any m>0, the value $\Lambda(m,\Omega)=\sup_{\sigma\in\Sigma_m(\partial\Omega)}\ell_1(\sigma,\Omega)$ is achieved and

$$\Lambda(m,\Omega) = \ell_1(\sigma_m,\Omega) = \xi_m, \qquad \sigma_m = -\xi_m \left| \nabla u_{\xi_m} \right|^{p-2} \frac{\partial u_{\xi_m}}{\partial \nu}.$$

where u_{ξ_m} is the unique solution to (P_{aux}) with $\xi = \xi_m$ and σ_m is unique.

If Ω is a ball, then the unique positive solution to (P_{aux}) is radial. Then in this case σ_m is constant: $\sigma_m = \frac{m}{|\partial \Omega|}.$

$$\begin{cases} -\Delta_p u_\xi &= \left(\xi^{\frac{1}{p-1}} u_\xi + 1\right)^{p-1} & \text{in } \Omega, \\ u_\xi &= 0 & \text{on } \partial\Omega. \end{cases}$$

Theorem (Della Pietra-G.-Kovařík 2015)

For any m>0, the value $\Lambda(m,\Omega)=\sup_{\sigma\in\Sigma_m(\partial\Omega)}\ell_1(\sigma,\Omega)$ is achieved and

$$\Lambda(m,\Omega) = \ell_1(\sigma_m,\Omega) = \xi_m, \qquad \sigma_m = -\xi_m \left| \nabla u_{\xi_m} \right|^{p-2} \frac{\partial u_{\xi_m}}{\partial \nu}.$$

where u_{ξ_m} is the unique solution to (P_{aux}) with $\xi = \xi_m$ and σ_m is unique.

Proposition

The maximum $\Lambda(m,\Omega)$ verifies the following Faber-Krahn inequality

$$\Lambda(m,\Omega) \geqslant \Lambda(m,B_R),$$

where B_R is a ball such that $|\Omega| = |B_R|$.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

The behavior of $\lambda(m,\Omega)$ depends on p and on the dimension n.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Case $p \leqslant n$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Case $p \leqslant n$

If 1 , then for every <math>m > 0 we have

$$\lambda(m,\Omega)=0$$

and the infimum is not achieved.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Case $p \leqslant n$

If 1 , then for every <math>m > 0 we have

$$\lambda(m,\Omega)=0$$

and the infimum is not achieved.

Case p > n

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Case $p \leqslant n$

Case p > n

Theorem (Della Pietra-G.-Kovařík '15)

If 1 , then for every <math>m > 0 we have

$$\lambda(m,\Omega)=0$$

and the infimum is not achieved.

Theorem (Della Pietra-G.-Kovařík '15)

If p > n, then for every m > 0 we have

$$\lambda(m,\Omega)>0.$$

Moreover, $\lambda(m,\Omega)$ is a minimum iff n=1.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Case $p \leqslant n$

Theorem (Della Pietra-G.-Kovařík '15) If 1 , then for every <math>m > 0 we have

$$\lambda(m,\Omega)=0$$

and the infimum is not achieved.

Case p > n

Theorem (Della Pietra-G.-Kovařík '15) If p > n, then for every m > 0 we have

$$\lambda(m,\Omega)>0.$$

Moreover, $\lambda(m,\Omega)$ is a minimum iff n=1.

If p = 2, $\lambda(m, \Omega) = 0 \ \forall n \geqslant 2$, and for $n = 1 \ \lambda(\sigma, \Omega) > 0$, is achieved.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Case $p \leqslant n$

Theorem (Della Pietra-G.-Kovařík '15)

If 1 , then for every <math>m > 0 we have

$$\lambda(m,\Omega)=0$$

and the infimum is not achieved.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

For $x_0 \in \partial \Omega$ fixed, and $\forall i \in \mathbb{N}$ let

$$\sigma_j(x) = \begin{cases} \alpha_j & \text{if } x \in B_{2^{-j}}(x_0) \cap \partial\Omega, \\ 0 & \text{otherwise,} \end{cases}$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

For $x_0 \in \partial \Omega$ fixed, and $\forall i \in \mathbb{N}$ let

$$\sigma_i(x) = \begin{cases} \alpha_j & \text{if } x \in B_{2^{-j}}(x_0) \cap \partial\Omega, \end{cases}$$

If
$$p < n$$
, let

$$\sigma_{j}(x) = \begin{cases} \alpha_{j} & \text{if } x \in B_{2^{-j}}(x_{0}) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases} \qquad u_{j}(x) = \begin{cases} j|x - x_{0}| & \text{in } B_{\frac{1}{j}}(x_{0}) \cap \Omega, \\ 1 & \text{in } \Omega \backslash B_{\frac{1}{j}}(x_{0}). \end{cases}$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

For $x_0 \in \partial \Omega$ fixed, and $\forall i \in \mathbb{N}$ let

$$\sigma_j(x) = \left\{ egin{array}{ll} lpha_j & ext{if } x \in B_{2^{-j}}(x_0) \cap \partial \Omega, \\ 0 & ext{otherwise}, \end{array}
ight.$$

If
$$p < n$$
, let

$$\sigma_{j}(x) = \begin{cases} \alpha_{j} & \text{if } x \in B_{2^{-j}}(x_{0}) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases} \quad u_{j}(x) = \begin{cases} j|x - x_{0}| & \text{in } B_{\frac{1}{j}}(x_{0}) \cap \Omega, \\ 1 & \text{in } \Omega \setminus B_{\frac{1}{j}}(x_{0}). \end{cases}$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

For $x_0 \in \partial \Omega$ fixed, and $\forall i \in \mathbb{N}$ let

$$\sigma_j(x) = \begin{cases} \alpha_j & \text{if } x \in B_{2^{-j}}(x_0) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases}$$

If
$$p < n$$
, let

$$\sigma_{j}(x) = \begin{cases} \alpha_{j} & \text{if } x \in B_{2^{-j}}(x_{0}) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases} \quad u_{j}(x) = \begin{cases} j|x - x_{0}| & \text{in } B_{\frac{1}{j}}(x_{0}) \cap \Omega, \\ 1 & \text{in } \Omega \setminus B_{\frac{1}{j}}(x_{0}). \end{cases}$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

For $x_0 \in \partial \Omega$ fixed, and $\forall i \in \mathbb{N}$ let

$$\sigma_j(x) = \begin{cases} \alpha_j & \text{if } x \in B_{2^{-j}}(x_0) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases}$$

If
$$p < n$$
, let

$$\sigma_{j}(x) = \begin{cases} \alpha_{j} & \text{if } x \in B_{2^{-j}}(x_{0}) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases} \quad u_{j}(x) = \begin{cases} j|x - x_{0}| & \text{in } B_{\frac{1}{j}}(x_{0}) \cap \Omega, \\ 1 & \text{in } \Omega \setminus B_{\frac{1}{j}}(x_{0}). \end{cases}$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

For $x_0 \in \partial \Omega$ fixed, and $\forall i \in \mathbb{N}$ let

$$\sigma_j(x) = \left\{ egin{array}{ll} lpha_j & ext{if } x \in B_{2^{-j}}(x_0) \cap \partial \Omega, \\ 0 & ext{otherwise}, \end{array}
ight.$$

If
$$p < n$$
, let

$$\sigma_{j}(x) = \begin{cases} \alpha_{j} & \text{if } x \in B_{2^{-j}}(x_{0}) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases} \quad u_{j}(x) = \begin{cases} j|x - x_{0}| & \text{in } B_{\frac{1}{j}}(x_{0}) \cap \Omega, \\ 1 & \text{in } \Omega \setminus B_{\frac{1}{j}}(x_{0}). \end{cases}$$

$$\lambda(\mathit{m},\Omega) = \inf_{\sigma \in \Sigma_{\mathit{m}}(\partial\Omega)} \ell_1(\sigma,\Omega)$$

For $x_0 \in \partial \Omega$ fixed, and $\forall i \in \mathbb{N}$ let

$$\sigma_j(x) = \begin{cases} \alpha_j & \text{if } x \in B_{2^{-j}}(x_0) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases}$$

If
$$p < n$$
, let

$$\sigma_{j}(x) = \begin{cases} \alpha_{j} & \text{if } x \in B_{2^{-j}}(x_{0}) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases} \qquad u_{j}(x) = \begin{cases} j|x - x_{0}| & \text{in } B_{\frac{1}{j}}(x_{0}) \cap \Omega, \\ 1 & \text{in } \Omega \backslash B_{\frac{1}{j}}(x_{0}). \end{cases}$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

For $x_0 \in \partial \Omega$ fixed, and $\forall i \in \mathbb{N}$ let

$$\sigma_j(x) = \begin{cases} \alpha_j & \text{if } x \in B_{2^{-j}}(x_0) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases}$$

If p < n, let

$$\sigma_{j}(x) = \begin{cases} \alpha_{j} & \text{if } x \in B_{2^{-j}}(x_{0}) \cap \partial \Omega, \\ 0 & \text{otherwise,} \end{cases} \quad u_{j}(x) = \begin{cases} j|x - x_{0}| & \text{in } B_{\frac{1}{j}}(x_{0}) \cap \Omega, \\ 1 & \text{in } \Omega \setminus B_{\frac{1}{j}}(x_{0}). \end{cases}$$

where $\alpha_i > 0$ is such that $\|\sigma_i\|_{L^1(\partial\Omega)} = m$

$$0 \leqslant \ell_1(\sigma_j, \Omega) \leqslant$$

$$\leqslant \mathcal{Q}[\sigma_j, u_j] \leqslant \frac{j^p \left| B_{\frac{1}{j}}(x_0) \right| + j^p \, 2^{-jp} \, m}{|\Omega| - |B_{\frac{1}{j}}(x_0)|} \to 0$$

per $i \to \infty$.

$$\lambda(\mathit{m},\Omega) = \inf_{\sigma \in \Sigma_{\mathit{m}}(\partial\Omega)} \ell_1(\sigma,\Omega)$$

For $x_0 \in \partial \Omega$ fixed, and $\forall j \in \mathbb{N}$ let

If
$$p < n$$
, let

$$\sigma_j(x) = \left\{ egin{array}{ll} lpha_j & ext{if } x \in B_{2^{-j}}(x_0) \cap \partial\Omega, \ 0 & ext{otherwise}, \end{array}
ight.$$

$$u_j(x) = \begin{cases} j|x - x_0| & \text{in } B_{\frac{1}{j}}(x_0) \cap \Omega, \\ 1 & \text{in } \Omega \backslash B_{\frac{1}{j}}(x_0). \end{cases}$$

$$0 \leqslant \ell_1(\sigma_j, \Omega) \leqslant$$

$$\leqslant \mathcal{Q}[\sigma_j, u_j] \leqslant \frac{j^p \left| B_{\frac{1}{j}}(x_0) \right| + j^p \, 2^{-jp} \, m}{|\Omega| - |B_{\frac{1}{j}}(x_0)|} \to 0$$

per
$$j \to \infty$$
.

If
$$p = n$$
, $u_j = -\log j / \log(|x - x_0|)$ per $x \sim x_0$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Case p > n

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Case p > n

Theorem (Della Pietra-G.-Kovařík '15)

If
$$p > n$$
, then $\lambda(m, \Omega) > 0$.

Moreover, $\lambda(m,\Omega)$ is a minimum iff n=1.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Case p > n

Theorem (Della Pietra-G.-Kovařík '15)

If
$$p > n$$
, then $\lambda(m, \Omega) > 0$.

Moreover, $\lambda(m,\Omega)$ is a minimum iff n=1.

The previous sequence (σ_j, u_j) does not give any information:

$$\mathcal{Q}[\sigma_j, u_j] \leqslant \frac{j^p \left| B_{\frac{1}{j}}(x_0) \right| + j^p \, 2^{-jp} \, m}{|\Omega| - |B_{\frac{1}{j}}(x_0)|} \to +\infty$$

for $j \to \infty$.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Theorem (Della Pietra-G.-Kovařík '15)

If p > n, then $\lambda(m, \Omega) > 0$.

Moreover, $\lambda(m,\Omega)$ is a minimum iff n=1.

$$\lambda(m,\Omega) > 0$$

Case p > n

Let $\sigma_k \in \Sigma_m(\partial\Omega)$ and $v_k \in W^{1,p}(\Omega)$, with $||v_k||_p = 1$, t.c.

$$\ell_1(\sigma_k, \Omega) = \mathcal{Q}[\sigma_k, v_k] \to 0 \text{ for } k \to +\infty.$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Theorem (Della Pietra-G.-Kovařík '15)

If p > n, then $\lambda(m, \Omega) > 0$.

Moreover, $\lambda(m,\Omega)$ is a minimum iff n=1.

$$\lambda(m,\Omega) > 0$$

Case p > n

Let $\sigma_k \in \Sigma_m(\partial\Omega)$ and $v_k \in W^{1,p}(\Omega)$, with $\|v_k\|_p = 1$, t.c.

$$\ell_1(\sigma_k, \Omega) = \mathcal{Q}[\sigma_k, v_k] \to 0 \quad \text{for } k \to +\infty.$$

Hence
$$\int_{\Omega} |\nabla v_k|^p dx \to 0$$
, $\int_{\partial \Omega} \sigma_k v_k^p d\mathcal{H}^{n-1} \to 0$.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Theorem (Della Pietra-G.-Kovařík '15)

Case p > n If p > n, then $\lambda(m, \Omega) > 0$.

Moreover, $\lambda(m,\Omega)$ is a minimum iff n=1.

$$\lambda(m,\Omega) > 0$$

Let $\sigma_k \in \Sigma_m(\partial\Omega)$ and $v_k \in W^{1,p}(\Omega)$, with $||v_k||_p = 1$, t.c.

$$\ell_1(\sigma_k, \Omega) = \mathcal{Q}[\sigma_k, \nu_k] \to 0 \quad \text{for } k \to +\infty.$$

Hence
$$\int_{\Omega} |\nabla v_k|^p dx \to 0$$
, $\int_{\partial \Omega} \sigma_k v_k^p d\mathcal{H}^{n-1} \to 0$.

Morrey inequality $\Rightarrow v_k \to C = 0$ in $C^{0,\alpha}(\bar{\Omega})$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Theorem (Della Pietra-G.-Kovařík '15)

If p > n, then $\lambda(m, \Omega) > 0$.

Moreover, $\lambda(m,\Omega)$ is a minimum iff n=1.

$$\lambda(m,\Omega) > 0$$

Case p > n

Let $\sigma_k \in \Sigma_m(\partial\Omega)$ and $v_k \in W^{1,p}(\Omega)$, with $||v_k||_p = 1$, t.c.

$$\ell_1(\sigma_k, \Omega) = \mathcal{Q}[\sigma_k, v_k] \to 0 \text{ for } k \to +\infty.$$

Hence
$$\int_{\Omega} |\nabla v_k|^p dx \to 0$$
, $\int_{\partial \Omega} \sigma_k v_k^p d\mathcal{H}^{n-1} \to 0$.

Morrey inequality
$$\Rightarrow v_k \to C = 0$$
 in $C^{0,\alpha}(\bar{\Omega})$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

If n > 1, $\lambda(m, \Omega)$ is not achieved

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

If n > 1, $\lambda(m, \Omega)$ is not achieved

By absurd
$$\exists \bar{\sigma} \in \Sigma_m(\partial \Omega)$$
: $\lambda(m, \bar{\sigma}) = \mathcal{Q}[\bar{\sigma}, \bar{u}],$

where $\bar{u} \in C^{0,\alpha}(\bar{\Omega})$, $\bar{u} \ge 0$ and \bar{u} is not costant on $\partial \Omega$.

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

If n > 1, $\lambda(m, \Omega)$ is not achieved

By absurd
$$\exists \bar{\sigma} \in \Sigma_m(\partial \Omega)$$
: $\lambda(m, \bar{\sigma}) = \mathcal{Q}[\bar{\sigma}, \bar{u}],$

where $\bar{u} \in C^{0,\alpha}(\bar{\Omega})$, $\bar{u} \geqslant 0$ and \bar{u} is not costant on $\partial\Omega$. Let $\bar{u}(x_0) = \min_{\partial\Omega}\bar{u}$. Then

$$\int_{\partial\Omega}\bar{\sigma}\,|\bar{u}|^p\,d\mathcal{H}^{n-1}-m\,\bar{u}(x_0)^p>0.$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

If n > 1, $\lambda(m, \Omega)$ is not achieved

By absurd
$$\exists \bar{\sigma} \in \Sigma_m(\partial \Omega)$$
: $\lambda(m, \bar{\sigma}) = \mathcal{Q}[\bar{\sigma}, \bar{u}],$

where $\bar{u}\in C^{0,\alpha}(\bar{\Omega})$, $\bar{u}\geqslant 0$ and \bar{u} is not costant on $\partial\Omega$. Let $\bar{u}(x_0)=\min_{\partial\Omega}\bar{u}$. Then

$$\int_{\partial\Omega}\bar{\sigma}\,|\bar{u}|^p\,d\mathcal{H}^{n-1}-m\,\bar{u}(x_0)^p>0.$$

$$\mathsf{Let}\{\sigma_j\}_{j\in\mathbb{N}}\subset \Sigma_m(\partial\Omega)\colon \quad \int_{\partial\Omega}\sigma_j\,|\bar{u}|^p\,d\mathcal{H}^{n-1}\to m\,\bar{u}(x_0)^p,$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

If n > 1, $\lambda(m, \Omega)$ is not achieved

By absurd
$$\exists \bar{\sigma} \in \Sigma_m(\partial \Omega)$$
: $\lambda(m, \bar{\sigma}) = \mathcal{Q}[\bar{\sigma}, \bar{u}],$

where $\bar{u}\in C^{0,\alpha}(\bar{\Omega})$, $\bar{u}\geqslant 0$ and \bar{u} is not costant on $\partial\Omega$. Let $\bar{u}(x_0)=\min_{\partial\Omega}\bar{u}$. Then

$$\int_{\partial\Omega}\bar{\sigma}\,|\bar{u}|^p\,d\mathcal{H}^{n-1}-m\,\bar{u}(x_0)^p>0.$$

$$\operatorname{Let}\{\sigma_j\}_{j\in\mathbb{N}}\subset \Sigma_m(\partial\Omega)\colon \int_{\partial\Omega}\sigma_j\,|\bar{u}|^p\,d\mathcal{H}^{n-1}\to m\,\bar{u}(x_0)^p,$$

there exists $k \in \mathbb{N}$: $\int_{\partial \Omega} \sigma_k |\bar{u}|^p d\mathcal{H}^{n-1} < \int_{\partial \Omega} \bar{\sigma} |\bar{u}|^p d\mathcal{H}^{n-1}.$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

If n > 1, $\lambda(m, \Omega)$ is not achieved

By absurd
$$\exists \bar{\sigma} \in \Sigma_m(\partial \Omega)$$
: $\lambda(m, \bar{\sigma}) = \mathcal{Q}[\bar{\sigma}, \bar{u}],$

where $\bar{u} \in C^{0,\alpha}(\bar{\Omega})$, $\bar{u} \geqslant 0$ and \bar{u} is not costant on $\partial\Omega$. Let $\bar{u}(x_0) = \min_{\partial\Omega} \bar{u}$. Then

$$\int_{\partial\Omega}\bar{\sigma}\,|\bar{u}|^p\,d\mathcal{H}^{n-1}-m\,\bar{u}(x_0)^p>0.$$

$$\mathsf{Let}\{\sigma_j\}_{j\in\mathbb{N}}\subset \Sigma_m(\partial\Omega)\colon \quad \int_{\partial\Omega}\sigma_j\,|\bar{u}|^p\,d\mathcal{H}^{n-1}\to m\,\bar{u}(x_0)^p,$$

there exists $k \in \mathbb{N}$: $\int_{\partial \Omega} \sigma_k |\bar{u}|^p d\mathcal{H}^{n-1} < \int_{\partial \Omega} \bar{\sigma} |\bar{u}|^p d\mathcal{H}^{n-1}.$

Hence $Q[\sigma_k, \bar{u}] < \lambda(m, \Omega)$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_{m}(\partial\Omega)} \ell_{1}(\sigma,\Omega)$$

If n > 1, $\lambda(m, \Omega)$ is not achieved

By absurd
$$\exists \bar{\sigma} \in \Sigma_m(\partial \Omega)$$
: $\lambda(m, \bar{\sigma}) = \mathcal{Q}[\bar{\sigma}, \bar{u}],$

where $\bar{u} \in C^{0,\alpha}(\bar{\Omega})$, $\bar{u} \geqslant 0$ and \bar{u} is not costant on $\partial\Omega$. Let $\bar{u}(x_0) = \min_{\partial\Omega} \bar{u}$. Then

$$\int_{\partial\Omega}\bar{\sigma}\,|\bar{u}|^p\,d\mathcal{H}^{n-1}-m\,\bar{u}(x_0)^p>0.$$

$$\operatorname{Let}\{\sigma_j\}_{j\in\mathbb{N}}\subset \Sigma_m(\partial\Omega)\colon \int_{\partial\Omega}\sigma_j\,|\bar{u}|^p\,d\mathcal{H}^{n-1}\to m\,\bar{u}(x_0)^p,$$

there exists $k \in \mathbb{N}$: $\int_{\partial \Omega} \sigma_k |\bar{u}|^p d\mathcal{H}^{n-1} < \int_{\partial \Omega} \bar{\sigma} |\bar{u}|^p d\mathcal{H}^{n-1}.$

Hence
$$Q[\sigma_k, \bar{u}] < \lambda(m, \Omega)$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

If
$$n=1,\ \Omega=]a,b[,\ \lambda_1(\sigma,\Omega)$$
 is achieved
$$\lambda(m,\Omega)=\ell_1(\sigma_a,\Omega)=\ell_1(\sigma_b,\Omega)$$
 where $\sigma_a,\sigma_b\in \Sigma_m(\{a,b\})$ are such that
$$\sigma_a(a)=m,\ \sigma_a(b)=0,$$
 and $\sigma_b(a)=0,\ \sigma_b(b)=m.$

$$\ell_1(\mu,\Omega) = \inf_{u \in W^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p dx + \int_{\partial \Omega} |u|^p d\mu}{\int_{\Omega} |u|^p dx}, \qquad \mu \in \mathcal{M}(m),$$

where $\mathcal{M}(m):=\{\text{set of the }\mu,\ \text{Radon measures on }\ \partial\Omega\ \text{ such that }\ \mu(\partial\Omega)=m\}.$

$$\ell_1(\mu,\Omega) = \inf_{u \in W^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p dx + \int_{\partial \Omega} |u|^p d\mu}{\int_{\Omega} |u|^p dx}, \qquad \mu \in \mathcal{M}(m),$$

where $\mathcal{M}(\textit{m}) := \{ \text{set of the } \mu, \text{ Radon measures on } \partial \Omega \text{ such that } \mu(\partial \Omega) = \textit{m} \}.$

$$\mathcal{D}(m) := \left\{ \mu \in \mathcal{M}(m) : \exists x \in \partial \Omega : \int_{\partial \Omega} |u|^p d\mu = m |u(x)|^p \quad \forall \ u \in W^{1,p}(\Omega) \right\},$$

Dirac measures concentrated at a point of $\partial\Omega.$

$$\ell_1(\mu,\Omega) = \inf_{u \in W^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p dx + \int_{\partial \Omega} |u|^p d\mu}{\int_{\Omega} |u|^p dx}, \qquad \mu \in \mathcal{M}(m),$$

where $\mathcal{M}(\textit{m}) := \{ \text{set of the } \mu, \text{ Radon measures on } \partial \Omega \text{ such that } \mu(\partial \Omega) = \textit{m} \}.$

$$\mathcal{D}(\textit{m}) := \left\{ \mu \in \mathcal{M}(\textit{m}) \; : \; \exists \, x \in \partial \Omega \; : \; \int_{\partial \Omega} |\textit{u}|^{\textit{p}} d\mu = \textit{m} \, |\textit{u}(x)|^{\textit{p}} \quad \forall \; \textit{u} \in \textit{W}^{1,\textit{p}}(\Omega) \right\},$$

Dirac measures concentrated at a point of $\partial\Omega$.

Theorem (Della Pietra-G.-Kovařík 2015)

Let p > n. Then for every m > 0 there exists $x_m \in \partial \Omega$ such that $\lambda(m,\Omega) = \ell_1(\mu_m,\Omega) = \inf_{\mu \in \mathcal{D}(m)} \ell_1(\mu,\Omega),$

where $\mu_m \in \mathcal{D}(m)$ is the Dirac measure concentrated in x_m .

$$\ell_1(\mu,\Omega) = \inf_{u \in W^{1,p}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p dx + \int_{\partial \Omega} |u|^p d\mu}{\int_{\Omega} |u|^p dx}, \qquad \mu \in \mathcal{M}(m),$$

where $\mathcal{M}(\textit{m}) := \{ \text{set of the } \mu, \text{ Radon measures on } \partial \Omega \text{ such that } \mu(\partial \Omega) = \textit{m} \}.$

$$\mathcal{D}(m) := \left\{ \mu \in \mathcal{M}(m) : \exists x \in \partial \Omega : \int_{\partial \Omega} |u|^p d\mu = m |u(x)|^p \quad \forall u \in W^{1,p}(\Omega) \right\},$$

Dirac measures concentrated at a point of $\partial\Omega$.

Theorem (Della Pietra-G.-Kovařík 2015)

Let p > n. Then for every m > 0 there exists $x_m \in \partial \Omega$ such that $\lambda(m,\Omega) = \ell_1(\mu_m,\Omega) = \inf_{\mu \in \mathcal{D}(m)} \ell_1(\mu,\Omega),$

where $\mu_m \in \mathcal{D}(m)$ is the Dirac measure concentrated in x_m .

In general, x_m is not unique; his position depends on m and on Ω .

The behavior of convergent sequences of $\{x_m\}_{m\in\mathbb{N}}\subset\partial\Omega$ for $m\to\infty$ can be characterized.

The behavior of convergent sequences of $\{x_m\}_{m\in\mathbb{N}}\subset\partial\Omega$ for $m\to\infty$ can be characterized.

Let

$$\lambda_1(x;\Omega) := \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p}; \ u \in W^{1,p}(\Omega), \ u(x) = 0 \right\},$$
$$x \in \partial \Omega.$$

The behavior of convergent sequences of $\{x_m\}_{m\in\mathbb{N}}\subset\partial\Omega$ for $m\to\infty$ can be characterized.

Let

$$\lambda_1(x;\Omega) := \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p}; \ u \in W^{1,p}(\Omega), \ u(x) = 0 \right\},$$
$$x \in \partial \Omega.$$

The behavior of convergent sequences of $\{x_m\}_{m\in\mathbb{N}}\subset\partial\Omega$ for $m\to\infty$ can be characterized.

Let

$$\lambda_{1}(x;\Omega) := \inf \left\{ \frac{\int_{\Omega} |\nabla u|^{p}}{\int_{\Omega} |u|^{p}}; \ u \in W^{1,p}(\Omega), \ u(x) = 0 \right\},$$

$$x \in \partial \Omega.$$

Then

$$|\lambda_1(x,\Omega) - \lambda_1(y,\Omega)| \le C(n,p,\Omega) |x-y|^{1-\frac{n}{p}} \quad \forall x,y \in \partial\Omega.$$

The behavior of convergent sequences of $\{x_m\}_{m\in\mathbb{N}}\subset\partial\Omega$ for $m\to\infty$ can be characterized.

Let

$$\lambda_{1}(x;\Omega) := \inf \left\{ \frac{\int_{\Omega} |\nabla u|^{p}}{\int_{\Omega} |u|^{p}}; \ u \in W^{1,p}(\Omega), \ u(x) = 0 \right\},$$
$$x \in \partial \Omega.$$

Then

$$|\lambda_1(x,\Omega)-\lambda_1(y,\Omega)| \leq C(n,p,\Omega)|x-y|^{1-\frac{n}{p}} \quad \forall x,y \in \partial\Omega.$$

$$\lambda_1(\Omega) := \min \{\lambda_1(x; \Omega); x \in \partial \Omega\}.$$

The behavior of convergent sequences of $\{x_m\}_{m\in\mathbb{N}}\subset\partial\Omega$ for $m\to\infty$ can be characterized.

Let

$$\lambda_1(x;\Omega) := \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p}; \ u \in W^{1,p}(\Omega), \ u(x) = 0 \right\},$$

$$x \in \partial \Omega.$$

Then

$$|\lambda_1(x,\Omega) - \lambda_1(y,\Omega)| \le C(n,p,\Omega)|x-y|^{1-\frac{n}{p}} \quad \forall x,y \in \partial\Omega.$$

$$\lambda_1(\Omega) := \min \{\lambda_1(x; \Omega); x \in \partial \Omega\}.$$

Proposition (Della Pietra-G.-Kovařík '15)

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot;\Omega)$ for $m\to\infty$.

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot\,;\Omega)$ for $m\to\infty$.

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot;\Omega)$ for $m\to\infty$.

Dimostrazione

For every m>0, let (\bar{u}_m,μ_m) a minimum for $\lambda(m,\Omega)$, with $\|\bar{u}_m\|_p=1$:

$$\lambda(m,\Omega) = \mathcal{Q}[\mu_m, \bar{u}_m] = \int_{\Omega} |\nabla \bar{u}_m|^p dx + \int_{\partial \Omega} \bar{u}_m^p d\mu_m,$$

with $\mu_{\it m}={\it m}\delta_{\it x_{\it m}}$, Dirac measure concentrated in $\it x_{\it m}\in\partial\Omega.$

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot;\Omega)$ for $m\to\infty$.

Dimostrazione

For every m > 0, let (\bar{u}_m, μ_m) a minimum for $\lambda(m, \Omega)$, with $\|\bar{u}_m\|_p = 1$:

$$\lambda(m,\Omega) = \mathcal{Q}[\mu_m, \bar{u}_m] = \int_{\Omega} |\nabla \bar{u}_m|^p dx + \int_{\partial \Omega} \bar{u}_m^p d\mu_m,$$

with $\mu_m = m\delta_{x_m}$, Dirac measure concentrated in $x_m \in \partial \Omega$. Hence

$$\lambda(m,\Omega) = \int_{\Omega} |\nabla \bar{u}_m|^p dx + m \bar{u}_m(x_m)^p.$$

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot;\Omega)$ for $m\to\infty$.

Dimostrazione

For every m > 0, let (\bar{u}_m, μ_m) a minimum for $\lambda(m, \Omega)$, with $\|\bar{u}_m\|_p = 1$:

$$\lambda(m,\Omega) = \mathcal{Q}[\mu_m, \bar{u}_m] = \int_{\Omega} |\nabla \bar{u}_m|^p dx + \int_{\partial \Omega} \bar{u}_m^p d\mu_m,$$

with $\mu_m = m\delta_{x_m}$, Dirac measure concentrated in $x_m \in \partial \Omega$. Hence

$$\lambda(m,\Omega) = \int_{\Omega} |\nabla \bar{u}_m|^p dx + m \bar{u}_m(x_m)^p.$$

Since
$$\lambda(m,\Omega) \leqslant \lambda_1(x;\Omega) = \inf_{\substack{u \in W^{1,p} \\ u(x) = 0}} \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} |u|^p dx}, \quad \forall m, \forall x \in \partial \Omega$$

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot;\Omega)$ for $m\to\infty$.

Dimostrazione

For every m > 0, let (\bar{u}_m, μ_m) a minimum for $\lambda(m, \Omega)$, with $\|\bar{u}_m\|_p = 1$:

$$\lambda(m,\Omega) = \mathcal{Q}[\mu_m, \bar{u}_m] = \int_{\Omega} |\nabla \bar{u}_m|^p dx + \int_{\partial \Omega} \bar{u}_m^p d\mu_m,$$

with $\mu_m = m\delta_{x_m}$, Dirac measure concentrated in $x_m \in \partial \Omega$. Hence

$$\lambda(m,\Omega) = \int_{\Omega} |\nabla \bar{u}_m|^p dx + m \bar{u}_m(x_m)^p.$$

Since
$$\lambda(m,\Omega) \leqslant \lambda_1(x;\Omega) = \inf_{\substack{u \in W^{1,p} \\ u(x) = 0}} \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} |u|^p dx}, \quad \forall m, \forall x \in \partial\Omega$$

then
$$\bar{u}_m(x_m) \to 0$$
, $m \to +\infty$.

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot\,;\Omega)$ for $m\to\infty$.

$$\bar{u}_m(x_m) \to 0 \text{ per } m \to +\infty$$

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot\,;\Omega)$ for $m\to\infty$.

$$\bar{u}_m(x_m) \to 0 \text{ per } m \to +\infty$$

$$\bar{u}_m \rightharpoonup \bar{u} \in W^{1,p}(\Omega) \cap C(\Omega)$$

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot\,;\Omega)$ for $m\to\infty$.

$$egin{aligned} & \bar{u}_m(x_m)
ightarrow 0 \ \text{per} \ m
ightarrow + \infty \ & \bar{u}_m
ightarrow ar{u} \in W^{1,p}(\Omega) \cap C(\Omega) \end{aligned} \Rightarrow \left\{ egin{aligned} & \|\bar{u}\|_p = 1 \ & \bar{u}(ar{x}) = 0, \end{aligned}
ight. \text{ where } x_m
ightarrow ar{x} \end{aligned}$$

Any convergent sequence $\{x_m\}_{m\in\mathbb{N}}$ tends to a minimum of $\lambda_1(\cdot;\Omega)$ for $m\to\infty$.

Dimostrazione

$$ar{u}_m(x_m) o 0 \ \mathrm{per} \ m o + \infty$$
 $ar{u}_m o ar{u} \in W^{1,p}(\Omega) \cap C(\Omega) \Rightarrow \left\{ \begin{array}{l} \|ar{u}\|_p = 1 \\ ar{u}(ar{x}) = 0, \end{array} \right. \text{ where } x_m o ar{x}$

Hence \bar{u} is an admissible test function for $\lambda_1(\bar{x};\Omega)$, and

$$\lambda_{1}(\Omega) = \liminf_{m \to \infty} \lambda(m, \Omega) \geqslant \liminf_{m \to \infty} \int_{\Omega} |\nabla \bar{u}_{m}|^{p} dx \geqslant \int_{\Omega} |\nabla \bar{u}|^{p} dx$$
$$\geqslant \lambda_{1}(\bar{x}; \Omega) \geqslant \min_{x \in \partial\Omega} \lambda_{1}(\bar{x}; \Omega) = \lambda_{1}(\Omega).$$

$$\lambda(\mathit{m},\Omega) = \inf_{\sigma \in \Sigma_\mathit{m}(\partial\Omega)} \ell_1(\sigma,\Omega), \qquad \Lambda(\mathit{m},\Omega) = \sup_{\sigma \in \Sigma_\mathit{m}(\partial\Omega)} \ell_1(\sigma,\Omega)$$

$$\Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proposition (Lower bound for Λ; Della Pietra-G.-Kovařík '15)

For every p > 1 and m > 0 we have

$$\Lambda(m,\Omega) \geqslant \frac{m \Lambda_1^D(\Omega)}{\left[\left(|\Omega| \Lambda_1^D(\Omega)\right)^{1/(p-1)} + m^{1/(p-1)}\right]^{p-1}},$$

where $\Lambda_1^D(\Omega)$ is the first Dirichlet eigenvalue of $-\Delta_p$ in Ω

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega),$$

Proposition (Lower bound for λ ; Della Pietra-G.-Kovařík '15)

Let p > n. Then for every m > 0 we have

$$\lambda(m,\Omega) \geqslant \frac{m\lambda_1(\Omega)}{\left[\left(\left|\Omega\right|\lambda_1(\Omega)\right)^{1/(p-1)}+m^{1/(p-1)}\right]^{p-1}},$$

where

$$\lambda_1(\Omega) = \min_{\mathbf{x} \in \partial \Omega} \lambda_1(\mathbf{x}; \Omega) = \min_{\mathbf{x} \in \partial \Omega} \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p}; \ u \in W^{1,p}(\Omega), \ u(\mathbf{x}) = 0 \right\}$$

$$\lambda(m,\Omega) = \inf_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega), \qquad \Lambda(m,\Omega) = \sup_{\sigma \in \Sigma_m(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proposition (Upper bounds)

$$\textit{We have} \quad \lambda(\textit{m},\Omega) \leqslant \min\left\{\lambda_1(\Omega), \frac{\textit{m}}{|\Omega|}\right\}, \qquad \Lambda(\textit{m},\Omega) \leqslant \min\left\{\Lambda_1^D(\Omega), \frac{\textit{m}}{|\Omega|}\right\}$$

$$\lambda(\mathbf{m},\Omega) = \inf_{\sigma \in \Sigma_{\mathbf{m}}(\partial\Omega)} \ell_1(\sigma,\Omega), \qquad \Lambda(\mathbf{m},\Omega) = \sup_{\sigma \in \Sigma_{\mathbf{m}}(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proposition (Upper bounds)

$$\textit{We have} \quad \lambda(\textit{m},\Omega) \leqslant \min\left\{\lambda_1(\Omega), \frac{\textit{m}}{|\Omega|}\right\}, \qquad \Lambda(\textit{m},\Omega) \leqslant \min\left\{\Lambda_1^D(\Omega), \frac{\textit{m}}{|\Omega|}\right\}$$

Joining the upper and lower bounds, we have the following

$$\lambda(\mathit{m},\Omega) = \inf_{\sigma \in \Sigma_\mathit{m}(\partial\Omega)} \ell_1(\sigma,\Omega), \qquad \Lambda(\mathit{m},\Omega) = \sup_{\sigma \in \Sigma_\mathit{m}(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proposition (Upper bounds)

$$\textit{We have} \quad \lambda(\textit{m},\Omega) \leqslant \min\left\{\lambda_1(\Omega), \frac{\textit{m}}{|\Omega|}\right\}, \qquad \Lambda(\textit{m},\Omega) \leqslant \min\left\{\Lambda_1^D(\Omega), \frac{\textit{m}}{|\Omega|}\right\}$$

Joining the upper and lower bounds, we have the following

$$\bullet \lim_{m \to +\infty} \Lambda(m,\Omega) = \Lambda_1^D(\Omega)$$

$$\lambda(\mathit{m},\Omega) = \inf_{\sigma \in \Sigma_\mathit{m}(\partial\Omega)} \ell_1(\sigma,\Omega), \qquad \Lambda(\mathit{m},\Omega) = \sup_{\sigma \in \Sigma_\mathit{m}(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proposition (Upper bounds)

$$\textit{We have} \quad \lambda(\textit{m},\Omega) \leqslant \min\left\{\lambda_1(\Omega), \frac{\textit{m}}{|\Omega|}\right\}, \qquad \Lambda(\textit{m},\Omega) \leqslant \min\left\{\Lambda_1^D(\Omega), \frac{\textit{m}}{|\Omega|}\right\}$$

Joining the upper and lower bounds, we have the following

- $\lim_{m\to+\infty} \Lambda(m,\Omega) = \Lambda_1^D(\Omega)$
- $\bullet \lim_{m \to +\infty} \lambda(m, \Omega) = \lambda_1(\Omega) \quad \text{if } p > n.$

$$\lambda(\mathit{m},\Omega) = \inf_{\sigma \in \Sigma_\mathit{m}(\partial\Omega)} \ell_1(\sigma,\Omega), \qquad \Lambda(\mathit{m},\Omega) = \sup_{\sigma \in \Sigma_\mathit{m}(\partial\Omega)} \ell_1(\sigma,\Omega)$$

Proposition (Upper bounds)

$$\textit{We have} \quad \lambda(\textit{m},\Omega) \leqslant \min\left\{\lambda_1(\Omega), \frac{\textit{m}}{|\Omega|}\right\}, \qquad \Lambda(\textit{m},\Omega) \leqslant \min\left\{\Lambda_1^D(\Omega), \frac{\textit{m}}{|\Omega|}\right\}$$

Joining the upper and lower bounds, we have the following

- $\bullet \lim_{m \to +\infty} \Lambda(m, \Omega) = \Lambda_1^D(\Omega)$
- $\lim_{m \to +\infty} \lambda(m, \Omega) = \lambda_1(\Omega) \quad \text{if } p > n.$
- $\lim_{m\to 0} \lambda(m,\Omega) = \lim_{m\to 0} \Lambda(m,\Omega) = 0$

Using the previous estimates we can study the asymptotic behavior of

$$\Lambda(m,\Omega)=\Lambda(m,\Omega;p)$$

for $p \rightarrow 1$.

Using the previous estimates we can study the asymptotic behavior of

$$\Lambda(m,\Omega)=\Lambda(m,\Omega;p)$$

for $p \rightarrow 1$.

It is well known that the first Dirichlet eigenvalue $\Lambda_1^D(\Omega) = \Lambda_1^D(\Omega; p)$ converges to the Cheeger constant $h(\Omega)$, that is

$$h(\Omega) = \inf_{E \subset \Omega} \frac{P(E)}{|E|}.$$

Using the previous estimates we can study the asymptotic behavior of

$$\Lambda(m,\Omega)=\Lambda(m,\Omega;p)$$

for $p \rightarrow 1$.

It is well known that the first Dirichlet eigenvalue $\Lambda_1^D(\Omega) = \Lambda_1^D(\Omega; p)$ converges to the Cheeger constant $h(\Omega)$, that is

$$h(\Omega) = \inf_{E \subset \Omega} \frac{P(E)}{|E|}.$$

The bounds on $\Lambda(m, \Omega; p)$ imply

$$\lim_{\rho \to 1} \Lambda(m, \Omega; \rho) = \min \left\{ \frac{m}{|\Omega|}, h(\Omega) \right\}.$$

Thanks for the attention!