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o Let Q< R", n>1, be a domain with C1¢ boundary;
o 00— [0, +0[, o€ L1(OQ);
o 1l<p<+o0;

J |V ulPdx +J o(x)|ulPdH" 1
(1(0,Q) = inf { Q[o, u] := 22 o9 ,ue WHP(Q), u#0
J |ulPdx
Q

Question

To optimize ¢1(a, Q) with respect to the function o.
More precisely, to study the existence and the properties
of o which minimize or maximize ¢1(o, ), under the
constraint

f odH" ' =m>0.
oQ
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For every o € L1(0R), with o > 0, then:
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o (1(0,Q) is simple, and v has costant sign in Q.

/18



Introduction

l1(0, Q) = min JQ

|VulPdx + j o(x)|ulPdH" "
o0

f |ulPdx
Q

,ue WHP(Q), u#0



Introduction

f |V ulPdx +f o(x)|ulPdH" "
(1(0,Q) = min { =& o9 ,ue WHP(Q), u#0

f |ulPdx
Q

Optimization problems for ¢1(o, Q)

3/18



Introduction

f |V ulPdx +f o(x)|ulPdH" "
Q oQ

f |ulPdx
Q

Optimization problems for ¢1(o, Q)

l1(0,Q2) = min ,ue WHP(Q), u#0

@ with respect to 2, where Q c R" is a
domain with fixed volume;




Introduction

f |V ulPdx —&—f o(x)|ulPdH" "
Q o0

f |ulPdx
Q

Optimization problems for ¢1(o, Q)
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domain with fixed volume;

@ with respect to o, where 0 € L}(Q), 0 >0
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Choosing as test function respectively :
e the first Dirichlet eigenfunction of —A, v~  (1(0,Q) < AP(Q)

eu=1 o Kl(U,Q)é‘ﬁ"’l
then l1(0, Q) < min {/\f(Q), |g|} )
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Q

is the first Dirichlet eigenvalue of —A, in €.
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Let n> 1. For any m > 0,
o A(m,Q) is a maximum.
o There exists a unique function o, € ¥,(0Q) such

that
A(m, Q) = t2(m, ).

@ 0., can be explicitly characterized.
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Proposition

Letp>1,m=>0,6¢€X,(0Q). If e WHP(Q) is such
that

f |v0|de+J &lalPdH"t
_ Ja oQ

El(a—vﬂ) = Q[6a 0]

and {i is constant on 0X2, then

ANm, Q) = £1(5,9).

b
f [P dx
Q
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Am, Q)= sup 41(0,9Q)
TET M (0Q)

Proof

Let 6 € X,,(0Q) be such that ¢1(8) = Q[&F, d], with J constant on 0.
Then for every o € ¥,(0Q) we have:

J|va|de+f o(x)aPdH "
Q N

l1(0,Q2)= min  Q[o,u] < 9o, ] =
ueWhP(Q) J‘ 4P dx
Q

L \Val|Pdx + m 4[5,

J- P dx
Q

Hence A(m, Q) = ¢1(6,9Q).

= 9[6-7 ﬁ] = 61(6', Q)
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Proposition
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If p > n, then for every m > 0 we have

Case p>n |

A(m, Q) > 0.

Moreover, \(m, Q) is a minimum iff n = 1.
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Theorem (Della Pietra-G.-Kova¥ik '15)
Case p > n ) If p> n, then A(m,Q) > 0.

Moreover, \(m, Q) is a minimum iff n = 1.

The previous sequence (o, uj) does not give any
information:

JP ‘B;_ (xo)‘ +jP27Pm
J
0= 185 Go)

Q[Uj’ uj] <

— +00

for j — 0.
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Optimizing ¢1(0, Q) with respect to o: the infimum
A(m, Q) = ae):i:](caﬂ)gl (0,9)
If n>1, \(m,Q) is not achieved
By absurd 35 € X ,,(0Q):  A(m,5) = 9|7, i,

where G e C%*(Q), &> 0 and i is not costant on 9.
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Optimizing ¢1(0, Q) with respect to o: the infimum

A(m, Q) = ﬂeZI:{aQ)El(O, Q)

If n=1, Q =]a, b[, A\1(0,Q) is achieved
A(m, Q) = ti(0a, Q) = li(05,9)

where 0,05 € Xn({a, b}) are such that
oa(a) = m, o,(b) =0,
and op(a) =0, op(b) = m.
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Relaxed problem and concentration effect (p > n)

| 1vutas | jule
in Q ,
ueWLr(Q) f lulPdx

where M(m) := {set of the y, Radon measures on 0Q such that u(0Q) = m}.

0(p, Q) = pe M(m),
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where M(m) := {set of the y, Radon measures on 0Q such that u(0Q) = m}.

0(p, Q) = pe M(m),

D(m) — {MEM(m) CIxeon LQ|U|Pdu= mlu(x)P ¥ ue WLP(Q)},

Dirac measures concentrated at a point of 0€2.

Theorem (Della Pietra-G.-Kovatik 2015)

Let p > n. Then for every m > Q there exists x,, € 0X2 such that
)‘(mvﬂ) = el(ILL"”Q) = (ﬂvQ),

where iy, € D(m) is the Dirac measure concentrated in Xp,.

inf 61
neD(m)

In general, x,, is not unique; his position depends on m and on Q.J
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For every m > 0, let (Um, ftm) @ minimum for A(m, ), with |Fpl, = 1:
A(m, Q) = Qlpm, Um] = J |V im|P dx —I—J P dpm,
Q o)
with p, = md,,, Dirac measure concentrated in x,, € 0Q2. Hence

A(m, Q) = J |V m|P dx + m bm(Xm)P.
Q

VulPd
Since A(m, Q) < M(x;Q) = inf M7 ¥ m,VxedQ
ZfXV)V;O” §q lulPdx
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Proposition (Della Pietra-G.-Kovatik '15)

Any convergent sequence {xm}men tends to a minimum of \1(-; Q) for m — oo.

V.

Dimostrazione

For every m > 0, let (Um, ftm) @ minimum for A(m, ), with |Fpl, = 1:
A(m, Q) = Qlpm, Um] = J |V im|P dx -I—J P dpm,
Q o)
with p, = md,,, Dirac measure concentrated in x,, € 0Q2. Hence

A(m, Q) = J |V m|P dx + m bm(Xm)P.
Q

VulPd
Since A(m, Q) < M(x;Q) = inf M7 ¥ m,VxedQ
ZfXV)V;O” §q lulPdx

then Om(xm) — 0, m — +0o0.
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Proposition (Della Pietra-G.-Kovatik '15)

Any convergent sequence {xm}men tends to a minimum of \1(-; Q) for m — oo.

V.

Dimostrazione
Om(xm) — 0per m — 400 la), =1
=
U — 1€ WHP(Q) n C(Q) u(x) =0, where x,, —> X

Hence 7 is an admissible test function for A1 (x; ), and

m—00

A () = liminf A(m, Q) > lim inff |V im|P dx = J |V al|P dx
m=90 Ja Q

= )\1()_(; Q) > min )\1()_<; Q) = )\1(9)
xe0)
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Estimates on A(m, Q) and A(m, Q)

Q)= inf Q A Q) = Q
A(m. Q) aezlz(aﬂ)gl(a’ ) (m, ) ae;:?aﬁ)gl(a’ )
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Estimates on A\(m, Q) and A(m, Q)

Am,Q) = sup (1(0,Q)
TEEH(0Q)

Proposition (Lower bound for A; Della Pietra-G.-Kovatik '15)
For every p > 1 and m > 0 we have
mA?(Q)

A(m, Q) >
[ (192182 @)™ + mi/e-n)]

p—1’

where NP (Q) is the first Dirichlet eigenvalue of —A, in Q
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Estimates on A\(m, Q) and A(m, Q)

Q)= inf Q
)‘(ma ) ae):I:(aQ)gl(o-, )a

Proposition (Lower bound for \; Della Pietra-G.-Kovatik '15)
Let p > n. Then for every m > 0 we have

=
[ (12 % (@) + /o]

A(m, Q) >

)
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Q)= inf Q A Q) = Q
A(m. Q) aezl:(aﬂ)el(o’ ) (m, ) ae;:?m)gl(m )

Proposition (Upper bounds)

We have  A(m,Q) < mm{)\l(Q),%}7 Am, Q) < mm{/\l(Q) |_g|}
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Joining the upper and lower bounds, we have the following

Corollary
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Proposition (Upper bounds)

We have  A(m,Q) < min {)\1(9)7%}7 W, ) < il {/\1( )%}

Joining the upper and lower bounds, we have the following

Corollary
o lim A(m Q) =A2(Q)

m—+00
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Q)= inf Q A Q) = Q
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Proposition (Upper bounds)

We have  A(m,Q) < min {)\1(9)7%}7 W, ) < il {/\1( )%}

Joining the upper and lower bounds, we have the following

Corollary
: _AD
° mlr?_w/\(m,ﬂ) = A7 (Q)

o lim A(m,Q) =X (Q) if p>n.

m— 400

17/18



Estimates on A(m, Q) and A(m, Q)

Q)= inf Q A Q) = Q
A(m. Q) aezlg(aﬂ)gl(a’ ) (m, ) ae;:?aﬁ)gl(a’ )

Proposition (Upper bounds)

We have  A(m,Q) < min {)\1(9)7%}7 W, ) < il {/\1( )%}

Joining the upper and lower bounds, we have the following

Corollary
: _AD
° mlr?_w/\(m,ﬂ) = A7 (Q)

° Iir‘?_ A(m, Q) = \(Q) if p>n.
m——+-00
° IimO/\(m,Q) = Iimo/\(m, Q)=0
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Limit case: p — 1
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Limit case: p — 1

Using the previous estimates we can study the asymptotic
behavior of
Nm,Q) = A(m7 Q; p)

for p — 1.
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Limit case: p — 1

Using the previous estimates we can study the asymptotic
behavior of
A(m, Q) = A(m,2; p)

for p — 1.

It is well known that the first Dirichlet eigenvalue AP (Q) = AP(Q; p) converges to
the Cheeger constant h(Q2), that is

hQ) = inf DE)

ECQ||
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Limit case: p — 1

Using the previous estimates we can study the asymptotic
behavior of
A(m, Q) = A(m,2; p)

for p — 1.

It is well known that the first Dirichlet eigenvalue AP (Q) = AP(Q; p) converges to
the Cheeger constant h(Q2), that is

_ i PE)
h(s) = Inf e
The bounds on A(m, Q; p) imply

Jim A(m, 2 p) = min { & @)} J
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Thanks for the attention!
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