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Series-Parallel Graphs

Series-parallel extension of a tree (if we restict to connected graphs)

Series-extension: . o —> - o o

. [ ® —
Parallel-extension: ~~



Series-Parallel Graphs

Equivalent Definitions
° EX(K4)
e tree-width <2

e nested ear decomposition (if connected)



Series-Parallel Graphs

Generating functions

bn.m ... number of 2-connected vertex labelled series-parallel graphs
with n vertices and m edges

n

T
B(x,y) = Z bn,m—lym
n.m n!

cnm ... Nnumber of connected vertex labelled series-parallel graphs
with n vertices and m edges

"
C(z,y) = Z Cn,may

n,m



Series-Parallel Graphs

Generating functions
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Series-Parallel Graphs

Asymptotic enumeration

[Bodirsky+Gimenez+Kang+Noy 2007]

cn = ch,m ~ en2/2 p~ "' nl
m

with ¢ = 0.0067912... and p = 0.11021...



Block-Decomposition




Block-Decomposition




Block-Decomposition




Block-Decomposition

block: 2-connected component (= maximal 2-connected subgraph)

Block-stable graph class G: g contains the one-edge graphand G € G
if and only if all blocks of G are contained in G.

Equivalently, the 2-connected graphs of G and the one-edge graph
generate all graphs of G.

Examples: Planar graphs, series-parallel graphs, minor-closed graph
classes etc.

B(x) ... GF for 2-connected graphs in G
C(x) ... GF for connected graphs in G

[We will consider here only connected graphs]



Labelled vs. Unlabelled Graphs




Labelled vs. Unlabelled Graphs
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Labelled vs. Unlabelled Graphs




Generating Functions

gn ... humber of graphs of size n (in a given graph class)

Labelled Graphs

n
G(z) = Z gn
n>0
Unlabelled Graphs
G(z) = > gna"

n>0




Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the root) is distinguished (and
usually discounted, that is, it gets no label)

le-

Generating function: (in den labelled case)

G*(z) = G/ (x)




Generating Functions for Block-Decomposition

(in the labelled case)

xC°

xC°

xC° Ro

¥C° (O xC°®

O%(z) = B (@C* (@)




Generating Functions for Block-Decomposition

(in the labelled case)




Labelled Trees

Rooted Trees:

le—0O
B®(x) ==z

T(x) = x2C*®(x) ... generating function of rooted, labelled trees

C.(iv) — eB'(a;C'(:C)) — T(CE) — xeT(gj)

Remark: T(z) ... GF for unrooted labelled trees:

Tz = %T(x) s T(2) = T(x) — %T(@Q



Outerplanar Graphs

All vertices are on the infinite face.



Outerplanar Graphs

Generating functions

C*(z) = B @C*(@))

Y

1—|—5:c—\/1—6:13—|—x2

B*(z) = 5

2-connected outerplanar graphs = dissections of the n-gon



Series-Parallel Graphs

Generating functions
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Labelled Planar Graphs

~

oC(z,y) — e 0B m3C(rfc,y)’y
Ox Ox Ox

OB(z,y) x°1+4 D(z,y)

oy 2 14y
M (z, D) (1 + D> rD?
= |log — :
212D 14y 1+ xD
1 1 (14+U)2(14+ V)2
M _ .22 1
(z,y) = z%y <1_|_$y+1_|_y 1 110 +V)3 )

U(z,y) = zy(1 + V(z,y))?,
V(z,y) = y(1+ U(z,y))?



Sub-critical Graphs

Functional equations

Suppose that |A(z) = P(x, A(x))|, where d(z,a) has a power series
expansion at (0,0) with non-negative coefficients and

Doa(x,a) £ O.

Let g > 0, ag > O (inside the region of convergence of &) satisfy
the system of equations:

ag = P(zg,ap0), 1= DPu(zg,aq)|

Then there exists analytic function g(x), h(x) such that locally

T

A(x) = g(x) — h(x), /1 — % :

Remark. If there is no zg, ag inside the region of convergence of &
then the singular behaviour of ® determines the singular behaviour of
A(x) M



Sub-critical Graphs

A(z) = 2C%(z), D(2,a) = 2eB° (@, | 20%(2) = zeB°@C* (@)

—> |A(x) = P(x, A(x))

Case 1: the case. The system (note that B*(z) = B/(x))
ag = a:oeB/(a()), 1= azoeB/(a’O)B”(ao)

has positive solutions zg,ag such that
. Eliminating zq: |agB"(ag) = 1| Thus

nB"(n) > 1

Case 2: the critical case. The other case:

nB"(n) < 1|

Here the singular behaviour of B® determines the singular behaviour of
C®(x).



Sub-critical Graphs

e Trees are
e Outerplanar graphs are
e Series-parallel graphs are

e Planar graphs are critical



Sub-critical Graphs

Conjecture [M. Noy]

Let G be a minor closed graph class, that is, |G = Ex(H1,..., Hg) |

G is sub-critical <= one of the excluced minors Hq,...,H; is planar.
° EX(K3)

® EX(K47K2,3)

° EX(K4)

e Planar Graphs: Ex(Ks, K3 3)



Sub-critical Graphs

Lemma. Suppose that B(xz) has radius of convergence n € (0, co].

im B"(z) =00 —
r—

Corollary If B*(z) = B/(z) is entire or has a squareroot singularity:
° xr
B*(z) = g(z) — h(z), /1 — m

then we are in the case.

This applies for outerplanar and series-parallel graphs.



Sub-critical Graphs

What does “ ” mean?

In a sub-critical graph class the average size of the 2-connected
components is bounded.

—> T his leads to a tree like structure.
—> [ he should apply so that we can expect

that are independent of the the precise structure
of 2-connected components.



Unlabelled Graph Classes

Cycle index sums

1 ci1\O Co\O Cn\O
Zg(s1,82,...) == Z—I Z 311( )822( )---sn( )

n: 0,9€6nXGn
7-9=g

where c;(o) denotes the number of cycles of size j in o € &y,
G(z) = Zg(x,x°, 23, )

0

Zge(s1,82,...) = D51 g(s51,82,--.)

G.(m) — Zg°($>$2>$37 T ) — i 9(75737275337 t )
0s1



Unlabelled Graph Classes

Block decomposition

C*(z) = exp (Z l_zB.(xic%mi), 22 C* (%Y, .. .))

i>1 "t

e Dichotomy between and critical can be defined in a
natural way.

e Unlabelled trees are

e Unlabelled outerplanar graphs are

e Unlabelled series-parallel graphs are



Sub-critical Graphs

e Asymptotic enumeration:

LLabelled case:

—5/2p—n

Cn ~ CTN n!

Unlabelled case:

—5/2p—n

Cn ~CN

(¢ > 0, p ... radius of convergence of C(z))

[D.4+Fusy+Kang+Kraus+Rue 2011]



Sub-critical Graphs

e Asymptotic enumeration:

C.(ZC) — eB’(xC.(ZC)

— aC%(@) =aC'(@) = g(a) —h(a), 1

—  [2"zC(2) = ncln ~ cn_3/2p_n
n!

—  lep ~ cn_5/2p_nn! :




Additive Parameters in Graph Classes

Theorem 1 [D.4+Fusy+Kang+Kraus+Rue]

Xn ... number of / number of / number of
/ number of

X _
— 2T H L N(0,02)

NG

with ¢ > 0 and ¢2 > 0.

Remark. There is an easy to check “combinatorial condition” that
ensures o2 > 0.



Additive Parameters in Graph Classes

Proof Methods:
Refined versions of the functional equation C*(z) = eB°(=C* (@),
+ singularity analysis ( )

E.g: number of edges:
C‘(x,y) — eB.(ZUC.(ZE‘,y),y)
or number of 2-connected components:

C*(x,y) = VB (@C*(zy))

) = g(a,y) — h(a, Wl _r
p(y)

—  [2"C%(x,y) ~ c(y)p(y) "n 32

+ application of Quasi-Power-Theorem (by Hwang).



Graph Limits

Te ... continuum random tree (CRT)
Theorem 2 [Panagiotou+Stufler4+Weller]

C ... sub-critical graph class of connected graphs

— S ST

vn
with respect to the Gromov-Hausdorff metric, where ¢ > 0 is a con-
stant.

Corollary. The diameter D,, as well as a typical distance in a sub-
critical graph is or order /n.



Graph Limits

Theorem 3 [Stufler, Georgakopoulos+Wagner]
C ... sub-critical graph class of connected graphs

Then there exists a random rooted graph C® such that for all R > 0
the R-neighborhood of a random vertex of a random graph in C has in
the limit the same distribution as the R-neighborhood of the root of
Ce.

Remark. C°® is the Benjamini-Schramm limit. All local structures
stabilize.



Graph Limits

Corollary [Stufler]
C ... sub-critical graph class of connected graphs
H ... fixed graph

XﬁLH) ... humber of occurences of H as a subgraph in graphs of size n

— XﬁbH)/n—>c in prob.

for some constant c.



Subgraph Counting

Theorem [D.4+Ramos+Rue]

G ... sub-critial graph class, |H € G| fixed.
éH) ... humber of occurences of H as a subgraph in graphs of size n

() _
—> - A, N(0,0?)

NG

with ¢ > 0 and ¢2 > 0.

Remark. The proof is easy if H is 2-connected = additive parame-
ter!!!



Subgraph Counting

H = P>| ... path of length 2

B;(wl,wz,wg),...;u) .... generating function of blocks in G, where the
root has degree j, where w; counts the number of non-root vertices of
degree 2, and where u counts the number of occurrences of H = P».

C;(:B,u) ... generating function of connected rooted graphs in G, where
the root vertex has degree j, where x counts the number of (all)
vertices and u the number of occurrences of H = P5.



Subgraph Counting

System of infinite number of equations

C;(CE,U):Z; Z U 1<tp /11712

§20 7" ji+-Fjs=J

S
x |] B;-Z, (az > ulezl(:c,u),a: > UQEQCZQ(SU,U),---iU)a
1=1

¢1>0 €>>0
(j = 0)

C%(x,1) = Z% S I B (2C*(2),5C(z), .. 1)

>0 57 jittje=j i=1

C*(z) = > Cj(z,1)

£>0



Subgraph Counting

System of infinite number of equations

Lemma [D.4Gittenberger4+Morgenbesser]

Suppose that|A(z) = (4,(2))j>0 = ®(z,A(z))|is a positive, non-linear,

infinite and strongly connected system such that the Jacobian ®4(z, a)
is compact for z > 0 and a > 0.

Let 29 > 0, ag = (a;,0)j>0 (inside the region of convergence) satisfy
the system of equations:

ag = ®(z0,a0), 7(Pal(z0,ap)) =1
where r(-) denotes the spectral radius.

~

Then there exists analytic function g;(z),h;(z) 7 0 such that locally

Ai(z) = g(z) — hj(z) 1—%.

with gj(Zo) = a;0 and hj(ZO) > 0.



Subgraph Counting

Extension [D.+4Gittenberger4+Morgenbesser]

Suppose that |A(z,u) = (A;(2,u)) ;>0 = P(2,u,A(2,u)) | is a positive,
non-linear, infinite and strongly connected system such that the
Jacobian ®,(z,1,a) is compact for z > 0 and a > 0.

Let zg > 0, ag = (a;,0)j>0 (inside the region of convergence) satisfy
the system of equations:

ag = ®(20,1,ap), r(Pa(zp,1,a9)) =1

where r(-) denotes the spectral radius.

-

Then there exists analytic function g;(z,u),h;(z,u) 7 0 and p(u) such
that locally

<

p(u) |

Ai(z,u) = g(z,u) — hj(z,u)\/l —

with g;(20,1) = a0, hj(2z0,1) > 0, and p(1) = zp.



Subgraph Counting

Central Limit Theorem

Z

p(u)

—  [2"MA(z,u) ~ C(u)p(u) "n=3/2

— A(z,u) = g(z,u) — h(z,u)\/l —

+ application of Quasi-Power-Theorem (by Hwang) implies CLT.



Subgraph Counting

Special case of infinite system

Ajzcbj(zvuaAOaAl)"')) J =20,

with

CDj(Z,].,AO,A]_,...) :JDJ(Z,AO_I_A]__I_))

so that |A = Ag + A1 + --- | satisfies

A= P(z, A)

~

where

CTD(ZaA) — Z CT)](ZaA) — Z CD(z7 17A07A17 .- )
720 7>0

0P ,
5 (z,1,a) does not depend on 17
a;

—> | Pa(z,1,a) is compact
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