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Series-Parallel Graphs

Series-parallel extension of a tree (if we restict to connected graphs)

Series-extension:

Parallel-extension:



Series-Parallel Graphs

Equivalent Definitions

• Ex(K4)

• tree-width ≤ 2

• nested ear decomposition (if connected)



Series-Parallel Graphs

Generating functions

bn,m ... number of 2-connected vertex labelled series-parallel graphs

with n vertices and m edges

B(x, y) =
∑
n,m

bn,m
xn

n!
ym

cn,m ... number of connected vertex labelled series-parallel graphs

with n vertices and m edges

C(x, y) =
∑
n,m

cn,m
xn

n!
ym



Series-Parallel Graphs

Generating functions

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

D(x, y) = y + S(x, y) + P (x, y),

S(x, y) =
x(P (x, y) + y)2

1− x(P (x, y) + y)
,

P (x, y) = (eS(x,y) − 1− S(x, y)) + y(eS(x,y) − 1).



Series-Parallel Graphs

Asymptotic enumeration

[Bodirsky+Gimenez+Kang+Noy 2007]

cn =
∑
m
cn,m ∼ c n−5/2 ρ−n n!

with c = 0.0067912... and ρ = 0.11021...



Block-Decomposition



Block-Decomposition



Block-Decomposition



Block-Decomposition

block: 2-connected component (= maximal 2-connected subgraph)

Block-stable graph class G: G contains the one-edge graph and G ∈ G
if and only if all blocks of G are contained in G.

Equivalently, the 2-connected graphs of G and the one-edge graph

generate all graphs of G.

Examples: Planar graphs, series-parallel graphs, minor-closed graph

classes etc.

B(x) ... GF for 2-connected graphs in G

C(x) ... GF for connected graphs in G

[We will consider here only connected graphs]



Labelled vs. Unlabelled Graphs
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Labelled vs. Unlabelled Graphs
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Labelled vs. Unlabelled Graphs
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Generating Functions

gn ... number of graphs of size n (in a given graph class)

Labelled Graphs

G(x) =
∑
n≥0

gn
xn

n!

Unlabelled Graphs

G(x) =
∑
n≥0

gnx
n



Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the root) is distinguished (and

usually discounted, that is, it gets no label)

1

24

3

Generating function: (in den labelled case)

G•(x) = G′(x)



Generating Functions for Block-Decomposition

(in the labelled case)

B° B°

B°

xC°
xC°

xC°xC°

xC°
xC°

xC°

C•(x) = eB
•(xC•(x))



Generating Functions for Block-Decomposition

(in the labelled case)

B° B°

B°

xC°
xC°

xC°xC°

xC°
xC°

xC°

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))



Labelled Trees

Rooted Trees:

B•(x) = x

1

T (x) = xC•(x) ... generating function of rooted, labelled trees

C•(x) = eB
•(xC•(x)) =⇒ T (x) = xeT (x)

Remark: T̃ (x) ... GF for unrooted labelled trees:

T̃ (x)′ =
1

x
T (x) =⇒ T̃ (x) = T (x)−

1

2
T (x)2



Outerplanar Graphs
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Outerplanar Graphs

Generating functions

C•(x) = eB
•(xC•(x)) ,

B•(x) =
1 + 5x−

√
1− 6x+ x2

8
.

2-connected outerplanar graphs = dissections of the n-gon



Series-Parallel Graphs

Generating functions

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

D(x, y) = y + S(x, y) + P (x, y),

S(x, y) =
x(P (x, y) + y)2

1− x(P (x, y) + y)
,

P (x, y) = (eS(x,y) − 1− S(x, y)) + y(eS(x,y) − 1).



Labelled Planar Graphs

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

M(x,D)

2x2D
= log

(
1 +D

1 + y

)
−

xD2

1 + xD
,

M(x, y) = x2y2
(

1

1 + xy
+

1

1 + y
− 1−

(1 + U)2(1 + V )2

(1 + U + V )3

)
,

U(x, y) = xy(1 + V (x, y))2,

V (x, y) = y(1 + U(x, y))2.



Sub-critical Graphs

Functional equations

Suppose that A(x) = Φ(x,A(x)) , where Φ(x, a) has a power series
expansion at (0,0) with non-negative coefficients and
Φaa(x, a) 6= 0.

Let x0 > 0, a0 > 0 (inside the region of convergence of Φ) satisfy
the system of equations:

a0 = Φ(x0, a0), 1 = Φa(x0, a0) .

Then there exists analytic function g(x), h(x) such that locally

A(x) = g(x)− h(x)

√
1−

x

x0
.

Remark. If there is no x0, a0 inside the region of convergence of Φ
then the singular behaviour of Φ determines the singular behaviour of
A(x) !!!



Sub-critical Graphs

A(x) = xC•(x), Φ(x, a) = xeB
•(a), xC•(x) = xeB

•(xC•(x))

=⇒ A(x) = Φ(x,A(x))

Case 1: the sub-critical case. The system (note that B•(x) = B′(x))

a0 = x0e
B′(a0), 1 = x0e

B′(a0)B′′(a0)

has positive solutions x0, a0 such that a0 is smaller than the radius

of convergence η of B•. Eliminating x0: a0B
′′(a0) = 1 . Thus

ηB′′(η) > 1

Case 2: the critical case. The other case:

ηB′′(η) ≤ 1 .

Here the singular behaviour of B• determines the singular behaviour of

C•(x).



Sub-critical Graphs

• Trees are sub-critical

• Outerplanar graphs are sub-critical

• Series-parallel graphs are sub-critical

• Planar graphs are critical



Sub-critical Graphs

Conjecture [M. Noy]

Let G be a minor closed graph class, that is, G = Ex(H1, . . . , Hk) .

G is sub-critical ⇐⇒ one of the excluced minors H1, . . . , Hk is planar.

• Trees: Ex(K3)

• Outerplanar Graphs: Ex(K4,K2,3)

• Series parallel Graphs: Ex(K4)

• Planar Graphs: Ex(K5,K3,3)



Sub-critical Graphs

Lemma. Suppose that B(x) has radius of convergence η ∈ (0,∞].

lim
x→ηB

′′(x) =∞ =⇒ sub-critical.

Corollary If B•(x) = B′(x) is entire or has a squareroot singularity:

B•(x) = g(x)− h(x)

√
1−

x

η
,

then we are in the sub-critical case.

This applies for outerplanar and series-parallel graphs.



Sub-critical Graphs

What does “sub-critical” mean?

In a sub-critical graph class the average size of the 2-connected

components is bounded.

=⇒ This leads to a tree like structure.

=⇒ The law of large numbers should apply so that we can expect

universal behaviors that are independent of the the precise structure

of 2-connected components.



Unlabelled Graph Classes

Cycle index sums

ZG(s1, s2, . . .) :=
∑
n

1

n!

∑
σ,g∈Sn×Gn
σ·g=g

s
c1(σ)
1 s

c2(σ)
2 · · · scn(σ)

n

where cj(σ) denotes the number of cycles of size j in σ ∈ Sn

G(x) = ZG(x, x2, x3, · · · )

ZG•(s1, s2, . . .) =
∂

∂s1
ZG(s1, s2, . . .)

G•(x) = ZG•(x, x
2, x3, · · · ) =

∂

∂s1
ZG(x, x2, x3, · · · )



Unlabelled Graph Classes

Block decomposition

C•(x) = exp

∑
i≥1

1

i
ZB•(x

iC•(xi), x2iC•(x2i), . . .)



• Dichotomy between sub-critical and critical can be defined in a

natural way.

• Unlabelled trees are sub-critical.

• Unlabelled outerplanar graphs are sub-critical

• Unlabelled series-parallel graphs are sub-critical.



Sub-critical Graphs

Universal properties

• Asymptotic enumeration:

Labelled case:

cn ∼ c n−5/2ρ−nn!

Unlabelled case:

cn ∼ c n−5/2ρ−n

(c > 0, ρ ... radius of convergence of C(z))

[D.+Fusy+Kang+Kraus+Rue 2011]



Sub-critical Graphs

• Asymptotic enumeration:

C•(x) = eB
•(xC•(x)

−→ xC•(x) = xC′(x) = g(x)− h(x)

√
1−

x

ρ

−→ [xn]xC′(x) =
n cn

n!
∼ c n−3/2ρ−n

−→ cn ∼ c n−5/2ρ−nn! .



Additive Parameters in Subcritical Graph Classes

Theorem 1 [D.+Fusy+Kang+Kraus+Rue]

Xn ... number of edges / number of blocks / number of cut-vertices

/ number of vertices of degree k

=⇒ Xn − µn√
n

→ N(0, σ2)

with µ > 0 and σ2 ≥ 0.

Remark. There is an easy to check “combinatorial condition” that

ensures σ2 > 0.



Additive Parameters in Subcritical Graph Classes

Proof Methods:

Refined versions of the functional equation C•(x) = eB
•(xC•(x)),

+ singularity analysis (always squareroot singularity)

E.g: number of edges:

C•(x, y) = eB
•(xC•(x,y),y)

or number of 2-connected components:

C•(x, y) = eyB
•(xC•(x,y))

−→ C•(x, y) = g(x, y)− h(x, y)

√
1−

x

ρ(y)

−→ [xn]C•(x, y) ∼ c(y)ρ(y)−nn−3/2

+ application of Quasi-Power-Theorem (by Hwang).



Graph Limits

Te ... continuum random tree (CRT)

Theorem 2 [Panagiotou+Stufler+Weller]

C ... sub-critical graph class of connected graphs

=⇒ c
√
n
Cn → Te

with respect to the Gromov-Hausdorff metric, where c > 0 is a con-

stant.

Corollary. The diameter Dn as well as a typical distance in a sub-

critical graph is or order
√
n.



Graph Limits

Theorem 3 [Stufler, Georgakopoulos+Wagner]

C ... sub-critical graph class of connected graphs

Then there exists a random rooted graph Ĉ• such that for all R > 0

the R-neighborhood of a random vertex of a random graph in C has in

the limit the same distribution as the R-neighborhood of the root of

Ĉ•.

Remark. Ĉ• is the Benjamini-Schramm limit. All local structures

stabilize.



Graph Limits

Corollary [Stufler]

C ... sub-critical graph class of connected graphs

H ... fixed graph

X
(H)
n ... number of occurences of H as a subgraph in graphs of size n

=⇒ X
(H)
n /n→ c in prob.

for some constant c.



Subgraph Counting

Theorem [D.+Ramos+Rue]

G ... sub-critial graph class, H ∈ G fixed.

X
(H)
n ... number of occurences of H as a subgraph in graphs of size n

=⇒ X
(H)
n − µn
√
n

→ N(0, σ2)

with µ > 0 and σ2 ≥ 0.

Remark. The proof is easy if H is 2-connected = additive parame-

ter!!!



Subgraph Counting

H = P2 ... path of length 2

B•j (w1, w2, w3, . . . ;u) .... generating function of blocks in G, where the

root has degree j, where wi counts the number of non-root vertices of

degree i, and where u counts the number of occurrences of H = P2.

C•j (x, u) ... generating function of connected rooted graphs in G, where

the root vertex has degree j, where x counts the number of (all)

vertices and u the number of occurrences of H = P2.



Subgraph Counting

System of infinite number of equations

C•j (x, u) =
∑
s≥0

1

s!

∑
j1+···+js=j

u
∑
i1<i2

ji1ji2

×
s∏

i=1

B•ji

x ∑
`1≥0

u`1C•`1(x, u), x
∑
`2≥0

u2`2C•`2(x, u), . . . ;u

 ,
(j ≥ 0)

C•j (x,1) =
∑
s≥0

1

s!

∑
j1+···+js=j

s∏
i=1

B•ji
(
xC•(x), xC•(x), . . . ; 1

)
C•(x) =

∑
`≥0

C•` (x,1)



Subgraph Counting

System of infinite number of equations

Lemma [D.+Gittenberger+Morgenbesser]

Suppose that A(z) = (Aj(z))j≥0 = Φ(z,A(z)) is a positive, non-linear,

infinite and strongly connected system such that the Jacobian Φa(z, a)
is compact for z > 0 and a > 0.

Let z0 > 0, a0 = (aj,0)j≥0 (inside the region of convergence) satisfy
the system of equations:

a0 = Φ(z0, a0), r(Φa(z0, a0)) = 1 ,

where r(·) denotes the spectral radius.

Then there exists analytic function gj(z), hj(z) 6= 0 such that locally

Aj(z) = gj(z)− hj(z)

√
1−

z

z0
.

with gj(z0) = aj,0 and hj(z0) > 0.



Subgraph Counting

Extension [D.+Gittenberger+Morgenbesser]

Suppose that A(z, u) = (Aj(z, u))j≥0 = Φ(z, u,A(z, u)) is a positive,
non-linear, infinite and strongly connected system such that the
Jacobian Φa(z, 1, a) is compact for z > 0 and a > 0.

Let z0 > 0, a0 = (aj,0)j≥0 (inside the region of convergence) satisfy
the system of equations:

a0 = Φ(z0,1, a0), r(Φa(z0,1, a0)) = 1 ,

where r(·) denotes the spectral radius.

Then there exists analytic function gj(z, u), hj(z, u) 6= 0 and ρ(u) such
that locally

Aj(z, u) = gj(z, u)− hj(z, u)

√
1−

z

ρ(u)
.

with gj(z0,1) = aj,0, hj(z0,1) > 0, and ρ(1) = z0.



Subgraph Counting

Central Limit Theorem

=⇒ A(z, u) = g(z, u)− h(z, u)

√
1−

z

ρ(u)

−→ [zn]A(z, u) ∼ C(u)ρ(u)−nn−3/2

+ application of Quasi-Power-Theorem (by Hwang) implies CLT.



Subgraph Counting

Special case of infinite system

Aj = Φj(z, u,A0, A1, . . .), j ≥ 0,

with

Φj(z, 1, A0, A1, . . .) = Φ̃j(z,A0 +A1 + · · · ) ,

so that A = A0 +A1 + · · · satisfies

A = Φ̃(z,A) ,

where

Φ̃(z,A) =
∑
j≥0

Φ̃j(z,A) =
∑
j≥0

Φ(z,1, A0, A1, . . .)

=⇒
∂Φj

∂ai
(z,1, a) does not depend on i

=⇒ Φa(z,1, a) is compact



Thank You for Your Attention!


