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Erdos—Kac Theorem

w(n) = # distinct prime factors of n.
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Erdos—Kac Theorem

w(n) = # distinct prime factors of n.

Theorem (Erdés—Kac 1940)

Let N be a uniformly random integer in [1,x]. Then

: w(N) — log log x 1 /Z _v2/9
lim P = — Y2 dy.
X ( log log x _Z> V27 Jo € Y
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Erdos—Kac Theorem

w(n) = # distinct prime factors of n.

Theorem (Erdés—Kac 1940)

Let N be a uniformly random integer in [1,x]. Then

: w(N) — log log x 1 /Z _v2/9
lim P = Y2 dy.
L ( log log x _Z> V27 Jo © Y

Similar result for Q(n) := # prime factors of n (with multiplicities).
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Primitive Divisors of Fibonacci Numbers

Fh=F,_1+F,_oforn>3; F1 =F =1.

1 1 2 3 5
8 13 21 34 55
89 144 233 377 610

'.l ALPEN-ADRIA
UNIVERSITAT

uuuuuuuuuuuuuuuuuuu



Primitive Divisors of Fibonacci Numbers
F,,: ,,_1+F,,_2forn23; F1:F2:1.
1=1 1=1 2=2 3=3 5=5

8§=23 13=13 210=3.7 34=2.17 55=5-11
80 =89 144=2%.32 233=233 377=13-29 610=2-5-61
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Primitive Divisors of Fibonacci Numbers
F,,: ,,_1+F,,_2forn23; F1:F2:1.
1=1 1=1 2=2 3=3 5=5

§=23 13=13 21=3.7 34=2.17 55=5-11
80 =289 144=2%.32 233=1233 377=13-29 610=2-5-61
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Primitive Divisors of Fibonacci Numbers

Fh=F,_1+F,_oforn>3; F1 =F =1.

2=2 3=3 5=5
13=13 21=3-7 34=2.17 5, =511
89 =89 233 =233 377=13-29 610=2-5-61

Theorem (Carmichael 1913)

For n > 12, F,, has a primitive divisor, i.e., a prime p with

pl|Fn,butptFi...Fo_q.
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Monoid Generated by Fibonacci Numbers

o F = {F, | F, has primitive divisor}.
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Monoid Generated by Fibonacci Numbers

o F = {F, | F, has primitive divisor}.
o M(F): free monoid generated by F, i.e.,

M(F):{ml...mk|k20,mj€.7-"}.
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Monoid Generated by Fibonacci Numbers

o F = {F, | F, has primitive divisor}.
o M(F): free monoid generated by F, i.e.,

./\/l(]-"):{ml...mk|k20,mj€]-"}.

M(F)=1{1,2,3,4=12256=123,8=2%9=3210=25,
12=122.3,13,15=3-5,16 =2* 18 =2-32,20 = 2. 5,21,
24 =2%3.325="5226=2.13,27=3%,30=2-3-5,32 = 25,
34,36 = 22.32,30 = 3.13,40 = 235,42 = 2.21,45 = 32.5 .. .}
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Unique Factorisation

Proposition

Every element of M(F) has unique factorisation into elements of
F.
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Unique Factorisation

Proposition

Every element of M(F) has unique factorisation into elements of

F.

Proof.
Choose x € M(F) minimally with two distinct factorisations

X=mp...Mg=n1...Nny.

O]
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Unique Factorisation

Proposition

Every element of M(F) has unique factorisation into elements of

F.

Proof.
Choose x € M(F) minimally with two distinct factorisations

X=mp...Mg=n1...Nny.

Wiog, ng = max{mu,...,my,n1,...,ng}.

O]
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Unique Factorisation

Proposition

Every element of M(F) has unique factorisation into elements of
F.

Proof.

Choose x € M(F) minimally with two distinct factorisations

X=mp...Mg=n1...Nny.

Wiog, ng = max{mu,...,my,n1,...,ng}.
Let p primitive divisor of ny.

O]

y
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Unique Factorisation

Proposition

Every element of M(F) has unique factorisation into elements of
F.

Proof.

Choose x € M(F) minimally with two distinct factorisations

X=mp...Mg=n1...Nny.

Wiog, ng = max{mu,...,my,n1,...,ng}.
Let p primitive divisor of ny. Then p | my ... my.

O]

y
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Unique Factorisation

Proposition

Every element of M(F) has unique factorisation into elements of

F.

Proof.
Choose x € M(F) minimally with two distinct factorisations

X=mp...Mg=n1...Nny.

Wiog, ng = max{mu,...,my,n1,...,ng}.
Let p primitive divisor of ny. Then p | my ... mk. Thus ny must
occur among my, ..., M.

O]
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Unique Factorisation

Proposition

Every element of M(F) has unique factorisation into elements of

F.

Proof.
Choose x € M(F) minimally with two distinct factorisations

X=mp...Mg=n1...Nny.

Wiog, ng = max{mu,...,my,n1,...,ng}.

Let p primitive divisor of ny. Then p | my ... mk. Thus ny must
occur among my, ..., M.

Division by ny yields smaller counterexample. Contradiction. [

y
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Lucas Sequence

=

1—
2

0" 145
¢ _ g_b b 2 b
All results remain valid if ¢, ¢ are replaced by any real algebraic

integers such that ¢ + ¢ and ¢¢ are non-zero coprime rational
integers with ¢ > |¢|.

Fn= 52
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Number of Elements

Theorem

We have

|M(]—")ﬂ[1,x]|:ko(logx)klexp(w g:zg;>(+ (W))

for x — oo and suitable constants kg and ki.
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Number of Elements

Theorem

We have

IM(F)N[L, x]| = ko(log x)* exp (71' ;'Z:;) (1+0(W))

for x — oo and suitable constants kg and ky. Specifically,

_|Fl-13 , log0—3)

k
! 2 2log ¢

Fo = {Fn | n <12, F, has primitive divisor}.
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Number of Factors Without Multiplicities

wrx(n) : # factors in factorisation of n into elements of F (without
multiplicities)
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Number of Factors Without Multiplicities

wrx(n) : # factors in factorisation of n into elements of F (without
multiplicities)

Theorem

Let N be a uniformly random positive integer in M(F) N [1, x| and
let
1 6 ™ —6 6

- = ————— | ——

A=\ log s’ 273 \logo

y
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Number of Factors Without Multiplicities

wzr(n) : # factors in factorisation of n into elements of F (without
multiplicities)

Theorem

Let N be a uniformly random positive integer in M(F) N [1, x| and
let

1 6 -6 6

=\ loge 2T 218 \loge

The random variable wr(N) is asymptotically normal: we have

_ 1/2
i IP)(cujr(N) ailog /< x < z) B

= L ‘ _y2/2 dy
/a2 log!/* V27 Jo

X—00

y
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Number of Factors With Multiplicities

Qx(n) : # factors in factorisation of n into elements of F (with
multiplicities)

'.l ALPEN-ADRIA
UNIVERSITAT

uuuuuuuuuuuuuuuuuuu



Number of Factors With Multiplicities

Qx(n) : # factors in factorisation of n into elements of F (with
multiplicities)

Theorem

Let N be a uniformly random positive integer in M(F) N [1,x], a1,
b1, by suitable constants.

4
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Number of Factors With Multiplicities

Qx(n) : # factors in factorisation of n into elements of F (with
multiplicities)

Theorem

Let N be a uniformly random positive integer in M(F) N [1,x], a1,
b1, by suitable constants.

The random variable Qx(N), suitably normalised, converges weakly
to a sum of shifted exponentially distributed random variables:

Qr(N) — %Iog/ x log log x — by log'/? x (4) Z (

by Iog1/2 X Iog m)

meF

where X, ~ Exp(log m).

v
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Number of Factors With Multiplicities—Constants

aolfe
177 log ¢

by — V6log @ (2 — log(? log ¢/6)
1T ( 2log ¢

1 1
- - —
;0 logm " log vi3(¢, )

1 1
- Z (log Vis13(¢, @)  klog ¢)>’

k>1

Vb log ¢
by = —=-.

™
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Sketch of Proof: without Multiplicities

Let u be real, u ~ 1.
uw}-(n)

d(z,u) = Z pe

neM(F)
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Sketch of Proof: without Multiplicities

Let u be real, u ~ 1.
uw}-(n)

d(z,u) = Z pe

neM(F)

= H(1+um_z+um_22+---)
meF
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Sketch of Proof: without Multiplicities

Let u be real, u ~ 1.

d(z,u) = Z uw,:rz(n)
neM(F)
= H(1+um_z+um_22+---): H <1+1u_m—’;z_z)
meF meF

'.l ALPEN-ADRIA
UNIVERSITAT

uuuuuuuuuuuuuuuuuuu



Sketch of Proof: without Multiplicities

Let u be real, u ~ 1.

d(z,u) = Z UW:z(n)
neM(F)
= H(1+um_z+um_2z+---): H <1+1u_m—’;z_z)
meF meF

Mellin—Perron summation formula:

. wr(n n 1 [ d(z,u)
/w]:(X,U) ES Z u b )(1—;> :%/rloo mx dz.
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Sketch of Proof: without Multiplicities

Let u be real, u ~ 1.

d(z,u) = Z uwfz(n)
neM(F) n
=@ +um+um*+...)= 1+L1
1 I

Mellin—Perron summation formula:
1 r+ioco d(z u)
I, — w]—'(”)(]__2>:_/ S\ 2y
# () Z . X 270 Jr_ino z(z+ 1)X i

Use saddle point approach for computing the asymptotic behaviour
of the integral. l.lanEN.ann
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Saddle Point: Central Approximation

otz =TT (14 27.5)

meF

Asymptotic behaviour for z — 0 via Mellin transform.
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Saddle Point: Central Approximation

d(z,u) = H (1-1— 1_m——z>

meF

Asymptotic behaviour for z — 0 via Mellin transform.

gz, u) Z Iog<1 + )

meF
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Saddle Point: Central Approximation

d(z,u) = H (1-1— 1_m——z)

meF

Asymptotic behaviour for z — 0 via Mellin transform.

gz, u) Z Iog<1 + ) Z f(zlogm,u)

meF

for
—Z

f(z,u) = Iog<1 + 1Lfe_z>.
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Saddle Point: Central Approximation

d(z,u) = H (1-1— 1_m——z)

meF

Asymptotic behaviour for z — 0 via Mellin transform.

gz, u) Z Iog<1 + ) Z f(zlogm,u)

meF

for
—Z

f(z,u) = Iog<1 + 1Lfe_z>.

Harmonic sum.
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Saddle Point: Central Approximation

d(z,u) = H (1-1- 1_m——z)

meF
Asymptotic behaviour for z — 0 via Mellin transform.

gz, u) Z Iog<1 + ) Z f(zlogm,u)

meF

for
—Z

f(z,u) = Iog<1 + 1Lfe_z>.

Harmonic sum. Mellin transform:

£°(5.0) = (C(s+ 1) = La(L = )1 (9) - e
meF

. . ALPEN-ADRIA
Li denotes the polylogarithm. ||IUNIVERSIT'£TT
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Saddle Point: Central Approximation (2)

Lemma

Let r >0, z=r+ it with |t| < r"/5, and |1 — u| < 1.

Then
ia(u a(u)t?
d(z,u) = d(r,u) exp(— (rz)t — (r3)t + O(r1/5)>,
d(r,u) = exp(iru) + blog r + c(u) + o(r))

for r — 0T and

72/6 — Lip(1 —
() = =1 IOLg;(l u),

b: constant; c(u) analytic around 1.




Mellin—Perron Summation

/w]:(X, u) _ Z uw}-(n) (1 _ 2) _ %/r—f—ioo d(z, U) Z 4z

X
neM(F) X rico Z(z+1)
n<x



Mellin—Perron Summation

/w]:(X, u) _ Z uw}-(n) (1 _ 2) _ %/r—f—ioo d(z, U) Z 4z

X
r—ioco Z(Z + 1)

X
neM(F)
n<x
Trivially,
Lz (x, u) < Z yoF(n).
neM(F)
n<x



Mellin—Perron Summation

1 r+ioco d(z u)
b (x. u) = wrn)(1_ " :_/ d(z,u)
#(xu) ne;(ﬂ“ ( x) 21i )y i 2(z+ 1)
n<x
Trivially,
Lz (x, u) < Z ur (),
neM(F)
n<x

On the other hand:
Iw]_.(XIOgX, U) _ 1 Z uwf(")(]_— n )

1 1

_ _ 1 x log x

1 log x 1 log x ne M(F) J
n<x log x

Zdz.



Mellin—Perron Summation

r+ioo
— wr(n) (1 _ M\ _ i/ M z
/w]:(Xa U) Z u (1 ) 210 Jr_iso Z(Z + l)X o

X
neM(F)
n<x
Trivially,
Lz (x, u) < Z ur (),
neM(F)
n<x

On the other hand:

Iw]—‘]FX_IOg1X7 u) _ : 1 . Z yeF(n) (1 __n )

log x ~ logx neEM(F) XIOgX
n<x log x
1 n
> wr(n) (1 _ )
T 1 L Z ! x log x
g X ne M(F)
n<x



Mellin—Perron Summation

r+ioo
— wr(n) (1 _ M\ _ i/ M z
/w]:(Xa U) Z u (1 ) 210 Jr_iso Z(Z + l)X o

X
neM(F)
n<x
Trivially,
Lz (x, u) < Z ur (),
neM(F)
n<x

On the other hand:

Iw]—‘]FX_IOg1X7 u) _ : 1 . Z yeF(n) (1 __n )

Togx ~ Togx neM(F) x log x
n<x log x
1 n
> w}'(")(l — ) > wr(n)
T 1 L Z ! xlogx/ — Z 4
og X ne M(F) ne M(F)
n<x n<x



Putting Everything Together

Lemma

We have

Z yeF(n) —

neEM(F)
n<x

1 2b+1 2b—-1
N exp (2\/ a(u)+/log x— log log x+ q log a(u)—i—c(u))

4
(14 0 (o)

for x — 00 and 1/2 < u < 3/2.

Use Curtiss’ theorem to obtain the central limit theorem.
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